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ABSTRACT 
Nowadays, classification problems are becoming increasingly important in many real-world applications. As the problems 
become more complex and the consequences of a bad decision are more serious, more advanced techniques, as the combination 
of classifiers, need to be applied. When combining classifiers, it is important to ensure diversity between them as it does not 
make sense to combine classifiers whose classification is the same. There are several techniques to ensure diversity in systems 
like these and generally it consider modify the data set, use different learning algorithms or make a process of improvement or 
learning on the individual classification. Although the relationship between diversity and system accuracy has not been fully 
established, it is clear that diversity remains a factor to be taken into account in the construction of multiclassifiers. In this paper 
we present a modification to the bagging algorithm to consider different learning algorithms during the training process and 
optimize the classifiers built to obtain diverse systems and as accurate as possible. Executed simulations suggest the use of the 
Double Failure pairwise measure to quantify the diversity of the system. With respect to the number of classifiers used, it was 
observed that the systems built had approximately half of the total classifiers they should have. After, the superiority of the 
proposed method with respect to five state-of-the-art multiclassifiers was verified and it is suggested the incorporation of a 
learning process like the one executed in Stacking. Finally, are shown results in biochemical real applications and the general 
conclusions are exposed. 
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RESUMEN 
En la actualidad, los problemas de clasificación cada día cobran mayor importancia en muchas aplicaciones reales. A medida 
que los problemas se hacen más complejos y las consecuencias de una mala decisión son más graves se necesita aplicar técnicas 
más avanzadas como la combinación de clasificadores. Cuando se combinan clasificadores es importante garantizar la 
diversidad entre ellos ya que no tiene sentido combinar clasificadores cuya clasificación sea la misma. Existen varias técnicas 
para garantizar la diversidad en sistemas de este tipo y de forma general consideran modificar el conjunto de datos, utilizar 
diferentes algoritmos de aprendizaje o efectuar un proceso de mejora o aprendizaje sobre la clasificación individual. Aunque la 
relación entre la diversidad y la exactitud del sistema no ha sido establecida del todo, sí queda claro que la diversidad sigue 
siendo un factor a tener en cuenta en la construcción de los multiclasificadores. En este trabajo se presenta una modificación al 
algoritmo de Bagging para considerar diferentes algoritmos de aprendizaje durante el proceso de entrenamiento y optimizar los 
clasificadores construidos para obtener sistemas diversos y lo más exacto posibles. Las simulaciones ejecutadas sugieren la 
utilización de la medida pairwise de Doble Fallo para cuantificar la diversidad del sistema. Con respecto a la cantidad de 
clasificadores usados, se observó que los sistemas construidos tenían aproximadamente la mitad del total de clasificadores que 
debían tener. Después, se comprobó la superioridad del método propuesto con respecto a cinco multiclasificadores reportados en 
la literatura y se sugiere la incorporación de un proceso de aprendizaje como el ejecutado en Stacking. Finalmente, se muestran 
los resultados en aplicaciones reales de bioquímicas y las conclusiones generales son expuestas. 
 

PALABRAS CLAVES: Medidas de diversidad, combinación de clasificadores, Bagging, aprendizaje supervisado. 

1. INTRODUCTION  

A classifier has as main objective to assign the category or class to an example that represents an instance of a 
certain problem. Hence, one of the distinctive stages in them is the training of a learning algorithm to build a 
model, mathematical or not, that allows classification. Although the use of classifiers has proven to be an 
effective tool in different classification processes, many researchers suggest combining them instead of using 
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just one [35]. There are several works that use the combination of some classifiers with success to solve many 
real-life problems [17, 32-34, 43, 48]. 
In these combinations, a key factor is the use of classifiers whose performance is different. In fact, combining 
similar classifiers would not improve individual classification. There are a large number of learning 
algorithms and the configuration possibilities of their parameters make it difficult to select a set of classifiers 
that guarantee a better classification than that which can be obtained using a single classifier. The classic 
methods to build this type of system are Bagging [41], Boosting [44] and Stacking [49]. In general, the 
individual classifiers used to build the system should complement each other since, if one classifier fails, the 
others can prevent the system from failing as well [18]. 
In relation to diversity in multiclassifier systems, not always greater diversity is related to better accuracy in 
the system [8]. In fact, in a multiclassifier system, diversity is not always associated with a higher 
classification than the individual classification [37, 45]. However, diversity remains an important element to 
take into account due to its own definition: two classifiers are diverse if they make mistakes different and as 
was mentioned before not have sense combine classifiers with the same errors, because then the results of the 
combination not will be better. 
Although there are many measures of diversity reported in the literature to quantify the diversity [25, 35, 44], 
the presence of this in the construction of the system is normally assumed and not used directly the measures. 
These are the cases of the classical approaches in which diversity is generated by modifying the training set, 
using different learning algorithms or introducing meta-learners to learn from the outputs given by the 
individual classifiers. However, some methods have been developed that explicitly use the measures to 
quantify the diversity between the classifiers and build better systems [10, 12]. Although the results obtained 
in these investigations show the possibility of finding better combinations of classifiers that ensure an 
accuracy superior to the best individual accuracy, they have not been extended to the traditional construction 
approaches mentioned above. Also, there are other works [1] that use diversity and accuracy as important 
aspects but they neither have been extended to the traditional construction approaches mentioned above. 
In this work, a new method of construction of multi-classifiers based on the resampling performed by 
Bagging is presented, incorporating the possibility of using different learning algorithms and selecting the 
best combination of classifiers according to the diversity between the combined classifiers and the accuracy of 
the system formed. More explicitly, this work has two main contributions. First, the scheme for combining 
classifiers generated from different training samples and whose combination is optimized by means of a 
Genetic Algorithm is proposed in order to obtain the most exact and diverse combination possible. Finally, an 
experimental study is carried out using 20 data sets recognized in the literature to validate the proposed 
method. 
The rest of the article is organized as follows: Section 2 and 3 present the main elements associated with 
multiclassifier systems and the diversity measures reported in the literature. In section 4, reference is made to 
the method of construction of multi-classifiers proposed in this work. The empirical study carried out on the 
proposed method applied to 20 data sets is presented in Section 5. In Section 6 is presented results in 
biochemical real applications. Finally, the main results found are summarized in the conclusions. 

2. MULTICLASSIFIER SYSTEMS 

A multiclassifier system is built in several ways but generally it requires that the classification models be 
exact and that there be diversity among them [50]. Diversity can be guaranteed in different ways and is 
generally considered implicitly in the construction of the system. Methods that modify the training set do so 
by taking different subsets of training examples or by selecting different subsets of features. Bagging [41] is 
the classic example of classifiers of this type. Its operation is simple: the construction of the system is done 
from classifiers with the same learning algorithm, but trained in different samples taken from the training set. 
The classification given by the system will be the one with the most votes within the total set of classifiers 
formed. Boosting [44] can be considered in this group too, if it is taken into account that in each iteration the 
set of data is “modified” by weighing the incorrectly classified examples in the previous iteration to try to 
classify them correctly in the next one. 
On the other hand, in the group of methods that use different learning algorithms to build the system, the 
training set is not modified. The simplest is Vote [35], that starts from the individual training of different 
learning algorithms and uses different ways to combine the outputs; either by majority vote, average of the 
class assignment probabilities, among others. The variants in this type of method are generally given by the 
modification of the vote to carry out a heavy vote [35, 39]. Another method is Stacking [49] but instead of 
using a vote to obtain the result of the system, it uses another learning algorithm to learn from the individual 



outputs. 
Hybrid approaches are more common because they try to take advantage of the previous methods. In [4] a 
modification is made to the majority vote implemented in Vote so that each learning algorithm is trained in a 
subset of traits of the training set. In turn, in [40] three levels of diversity generation are used to analyze their 
influence on the construction of the multiclassifier; doing feature selection, resampling the training set and 
using different learning algorithms. 
Another very common technique is the use of metaheuristics for the optimization of the multiclassifier. For 
example, in [40] a Genetic Algorithm is used to carry out the selection of traits, while in [31, 36] other 
variants are explored to also select classifiers and applied to digit recognition.  
On the other hand, the works presented in [10-12] make use of the diversity measures to guide the search in 
metaheuristics that select a combination of classifiers whose performance in the system is superior to that 
obtained individually. 

3. DIVERSITY MEASURES 

As mentioned before, it does not make sense that multiclassifiers combine identical classifiers between them 
because a good performance would not be attained, so it is important to know how diverse a classifier 
ensemble is.  
According to Kuncheva and Whitaker [37], there is no measure of diversity explicitly involved in classic 
methods of multiclassifiers construction, although diversity is the key point in any of the previously discussed 
methods. A number of diversity measures have been proposed in the literature. They are divided into two 
categories: pairwise and non-pairwise. 
The first set of measures is calculated for pairs of classifiers. Its outputs are binary (0, 1)  indicating whether 
the instance was correctly classified or not. Table 1 shows the results of two classifiers (Ci, Cj) for one given 
instance, depending on whether or not it was correctly classified. If we consider all N instances between the 
pair of classifiers (Ci, Cj), the results summarized in the Table 2 are obtained. In this case, A is equal to the 
amount of instances where both classifiers have correct classification. D is equal to the amount of instances 
where both classifiers have incorrect classification. B and C are equals to the amount of instances where one 
classifier is correct and the other is incorrect.  It should be observed that a set of L classifiers have associated 
L (L-1)/2 pairs of values, so to obtain a single result these values must be averaged. N is the total number of 
case. Some of more common pairwise measures are shown below.

 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1)         a          b 

Ci incorrect (0)         c          d 

                                         a + b + c + d = 1 

Table 1: Binary matrix for one instance. 
 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1)         A         B 

Ci incorrect (0)         C         D 

                                         A +B + C + D = N 

Table 2: Binary matrix for N instances. 

Correlation coefficient ρ 
The coefficient of correlation [35] is one of the measures for pairs of classifiers. A better diversity is obtained 
for smaller values of �. The value of � will be in the interval [-1,1]. The Correlation coefficient is Pearson`s 
for the particular case of (0,1) variables (known as ɸ-coefficient). The coefficient is calculated as: 
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                                                                                                           (1) 

The Measure of Differences 
The measure of differences was introduced by Skalak [46], it is the most intuitive measure between a pair of 
classifiers, and it is equal to the probability that the two classifiers disagree in their predictions. The value of 
� will be in the interval [0,1]. The diversity increases when the value of D increases. 
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The Double Fault Measure 
Another measure to be analyzed is known as double fault measure, which was introduced by Giacinto and 
Roli [25]and considers the failure of two classifiers simultaneously. This measure is based on the concept that 
it is more important to know when simultaneous errors are committed, that when both have a correct 
classification. The value of �� will be in the interval [0,1]. The diversity increases when the value of DF 
decreases. 
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On the other hand, the non-pairwise measures take into account the outputs of all classifiers at the same time 

and calculate a unique value of diversity for the whole ensemble, some of them are shown below.Entropy 
This measure was introduced by Cunningham and Carney [15], where Yji will be 1 if the classifier i was 
correct in the case j and 0 otherwise. The value of � will be in the interval [0,1]. If E is equal to zero, then 
there is not a difference between the classifiers and if E is equal to 1 then there is the most diversity. 
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Measurement of Interrater Agreement  
The Measurement of Interrater Agreement was presented in [22]. This measure is known too as kappa and 
their origin is in [21]. The k is calculated by equation 5, this equation is formed by the subtraction between 
the unit and the measure of Kendall concordance. In this last term p is the mean of the accuracy in the 
individual classification, this term is calculated by Equation 6. The value of � will be in the interval [-1,1]. In 
this measure the diversity is lower when the k value is higher. 
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Difficult Measure 
The difficulty Measure, comes from the study carried out for Hansen and Salamon [29]. It is calculated 
through the variance of a discrete random variable X that takes values in the set (0/L, 1/L, 2/L, …, 1) and it 
denotes the probability that exactly i classifiers has classified well all the instances. 
The intuition of this measure can be explained in the following way: a diverse classifier set has a small value 
of difficulty measure, since each training sample at least can be classified correctly by a proportion of all the 
classifiers base, that which is more probable with a low variance of X. In equation 7 the symbol � represent 
the mean of the discrete random variable � and � represent each possible value of �, �(�) represent the own 
probability of each value. For convenience, this measure is usually climbed lineally in the interval [0,1].  
 ��� = Ɵ = ��� (�) =  �∑��� × �(�)�� − ��                                                                                            (7) 

As a general rule, we may notice that non-pairwise measures are more computationally complex than pairwise 
measures; the latter are simpler and the results lend themselves to an easier interpretation given their 
mathematic formulation. After the implementation of each one of all these measures, was implemented a 
standardization method over them used in [9, 10], to facilitate the analysis of the results of the simulations 
carried out in section 5, because as we observe they have different intervals in their values. 

4. BAGGING MODIFICATION 

The method proposed in this paper (mulGA) starts from the idea of Bagging by obtaining different subsets to 
train. The main difference with the classic method of Bagging is that a single learning algorithm is not used 
and that not all the trained classifiers are used to build the multi-classifier. The combination of the individual 
outputs of the classifiers is done using a majority vote. 
The proposed method can be divided as follows: 

1. Obtain the set of samples to train. 
2. Carry out the training of a learning algorithm, taken from a previously defined set P, with one of the 

samples previously formed and form the set Ω. 
3. Select the best set ω, ω⊂Ω to form the multiclassifier, using a Genetic Algorithm. 



The general operation of the proposed method can be seen in Figure 1. 

 
Figure 1: Construction of the multiclassifier from the training data set. 

The following sections describe the main parts of the method. 

4.1 . Resampling method and obtaining the trained classifiers 

The way in which Bagging guarantees diversity in results is by dividing the training set into several replicas 
and using a single learning algorithm to train on them. Taking advantage of the variations present in the 
training sets requires that the classifier be unstable; that is, small modifications in the training set should lead 
to large changes in the classifier output. Otherwise, the built system would be a collection of almost identical 
classifiers and it would be almost unlikely to improve the performance that only one of them can have [35]. In 
mulGA, the resampling with replacement carried out by Bagging is maintained and unlike this it incorporates 
more than one learning algorithm to construct the individual classifiers. The Algorithm 1 describes this 
process. 
 

Algorithm 1: Obtaining the set of classifiers � 
Input: number of samples to form T, set P of learning 
algorithms to train, set S of examples 
Output: set Ω of already trained classifiers 
  1 Begin 
  2 |  Ω ← { } 
  3 |  � ← 1 
  4 | Repeat 
  5 |    |  � ← ���������� ���ℎ �����������(�) 
  6 |    |  � ← ������ ��������(�) 
  7 |    |  �� �����(�, �) 
  8 |    |  Ω ← Ω ∪ p 
  9 |    |  � ← � + 1 
10 | until � == � 
11 End 
Figure 2: Algorithm 2: obtaining the set of classifiers. 

4.2 . Learning algorithms 



Among the most widely used learning algorithms are case-based algorithms, decision trees, Bayesian 
networks, discriminant analysis, logistic regression, and artificial neural networks. 
The closest neighbor rule is to assign a given example the associated class of the closest prototype. An 
extension to this rule is the k closest neighbors rule [14]. In this case, an example x is classified according to 
the most frequent class in the k closest samples. 
In a classification tree [5], the root node is located above the structure and is connected to the descendant 
nodes by links or branches. Leaf nodes can be considered as the class to assign. When assigning a class to a 
new example, the analysis begins starting from the root to one of the leaves of the tree. 
A Bayesian network is a probabilistic model that graphically represents a set of variables and the relationships 
between them [7]. Naive Bayes [38] is the simplest Bayesian classifier that can be formed. Although this 
cannot always be assured in real problems, its performance can remain acceptable in many situations. 
Discriminant analysis is a mathematical technique that helps to identify the characteristics that discriminate 
two or more groups and to create a function capable of distinguishing with the greatest possible precision the 
members of one or the other group. For a two-class problem, linear discriminant analysis [20] constructs a 
hyperplane that separates the data set according to each class. 
The logistic regression is defined as equation 8, where x represents an example to classify and ��, ��, ⋯ , �� 
are the parameters of the model. These parameters must be estimated from the data to obtain a model fitted to 
them. The purpose of discriminant analysis is to predict the probability of a certain event occurring, based on 
the characteristics presented by the learning examples analyzed during training. 
 

 �(� = 1|�) = 1 �1 + ������∑ ����
�
��� ��⁄                                                                                                           (8) 

Artificial neural networks (ANNs) arise inspired by the modeling of the human brain through the 
mathematical expression of human intellectual abilities [27]. Of all the existing RNA models, the most 
popular has been multilayer perceptron (MLP). Among the parameters that are specified in an MLP are the 
learning ratio and the influence of the old weights on the new ones (momentum). Although these are not the 
only ones, they can be used to generate a set of RNAs with different performances, varying their values and 
establishing different combinations, even if the topology of the network remains identical. 

4.3 . Genetic algorithms 

Once the set of trained classifiers has been obtained, the Genetic Algorithm (GA) metaheuristics [26] is used 
to obtain a combination of diverse classifiers that guarantee the highest possible accuracy. GA modeling is 
done using the binary representation of chromosomes. In this way, each chromosome represents a possible 
combination of classifiers in the multiclassifier, according to equation 9. 
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           (9) 

The quality function of each chromosome contains two variables; the diversity determined between classifiers 
of the combination and the accuracy of the multiclassifier formed. In general, it can be seen as: 
 �(��) = �(��) ∗ �(��)                                                                                                                                               (10) 
Where, �(��) is the accuracy of the multiclassifier and �(��) is the value resulting from measuring the 
diversity in the built system. Taking into account this quality function, it is defined as an objective function 

max
�����

�(��)), where P is the size of the population. 

The crossover operator used is based on a crossover point [30] and the implementation of the mutation 
operator is done by exchanging the information of the gene to be mutated. In relation to the size of the 
populations, in the present work a size equal to 50 is used, because, in the combination of classifiers, the 
process of obtaining the quality function in each chromosome can be computationally expensive. The initial 
population is generated randomly so that the genes of each chromosome take on a value of 0 or 1 depending 
on a random value � ∈ [0, 1], if r is greater than 0,5 the classifier represented by the ith gene is included; 
otherwise, it is not included. Furthermore, the best individual classifiers are included in the combination 
according to the results obtained in [10, 11]. 
Each generation of GA begins with a population with the number of chromosomes specified above. With the 
roulette selection method [30], half of the chromosomes are taken to form an intermediate population. On 
these, the genetic recombination operators are applied and their result is added to the intermediate population 



until it reaches the established size. The AG runs until the generations for which it is sent to evolve are 
reached. 

5. SIMULATIONS 

In this section, the proposed method is validated in a real scenario where the objective is to build 
multiclassifiers with the highest possible accuracy and using the diversity between the combined classifiers. 

5.1 . Data sets, learning algorithms and evaluation measure 

In order to validate the proposed method is used 20 data sets available in the automatic learning repository of 
the University of California Irvine UCIML [2] and in the PMB (Penn Machine Learning Benchmarks) [42] 
developed by the Laboratory of Computational Genetics of the University of Pennsylvania. Table 3 
summarizes the main characteristics of these sets. 

 
ID Data Sets Examples Features 
1 acute-inflammation 120 6 
2 appendicitis 120 6 
3 australian 690 14 
4 blood-transfusion 748 4 
5 bupa 345 6 
6 Clean1* 476 24 
7 echocardiogram 131 11 
8 fertility diagnosis 100 9 
9 German Credit 1000 20 
10 HCC 165 49 
11 Heart-statlog 270 13 
12 ionosphere 351 34 
13 liver-disorder 345 6 
14 new-tyroid 215 5 
15 parkinsons 195 22 
16 Pima diabetes 768 8 
17 promoters 100 57 
18 saheart 462 9 
19 sonar 208 60 
20 vote 435 16 

Table 3: Data sets used in simulations. 
* The original data set underwent a principal component analysis to reduce the number of features. 

In relation to learning algorithms, 11 algorithms recognized in the literature were used, which are 
implemented in the WEKA tool. They are: 

1. MultilayerPerceptron (MLP) 
2. Logistic (L) 
3. IBk 
4. J48 
5. DecisionStump (DS) 
6. REPTree(RepT) 
7. NaiveBayes (NB) 
8. ZeroR (ZR) 
9. RandomTree (RanT) 
10. SimpleLogistic (SL) 
11. SMO 

Were used five RNAs; one with the WEKA default parameters and four more with random values for 
momentum and learning rate. In the case of IBk, the values of k = 1; k = 3; k = 5 and k = 7. The rest of the 
algorithms kept the default parameters. 
The analysis of the results is made from the average of the results obtained in 10 executions of the method 
and the accuracy of the system is used in comparison with the performance of other methods reported in the 
literature. The execution of all the algorithms used for the validation of the method and that are executed 



externally to the method, is done using a 10-fold cross-validation process. Furthermore, all random numbers 
were generated with the same seed to ensure subsequent replication of the experiments. 
The parameters used by default in the proposed method consider 30 samples to be formed from the training 
set with 85% of the original size. Regarding the genetic algorithm to optimize the combination of classifiers, 
the configuration used in [10] was maintained with 50 generations to evolve, a mutation probability equal to 
0,25 and a crossing probability equal to 0,75. 

5.2 . Diversity 

The Table 4 shows the diversity obtained according to the measure considered in the quality function of the 
chromosomes, in each of the data sets studied. 
 

ID � D DF E k DIF 
1 0,499 0,194 1,000 0,180 0,517 0,999 
2 0,315 0,171 0,944 0,202 0,325 0,948 
3 0,361 0,249 0,948 0,376 0,411 0,963 
4 0,245 0,167 0,852 0,228 0,235 0,902 
5 0,450 0,386 0,902 0,593 0,458 0,966 
6 0,463 0,319 0,968 0,466 0,486 0,983 
7 0,389 0,299 0,903 0,440 0,407 0,958 
8 0,309 0,125 0,950 0,175 0,281 0,950 
9 0,388 0,232 0,924 0,345 0,385 0,954 
10 0,453 0,334 0,947 0,497 0,465 0,977 
11 0,396 0,258 0,949 0,341 0,401 0,964 
12 0,390 0,237 0,965 0,305 0,439 0,977 
13 0,446 0,391 0,900 0,606 0,454 0,965 
14 0,422 0,076 0,996 0,116 0,433 0,995 
15 0,425 0,156 0,987 0,256 0,434 0,987 
16 0,370 0,256 0,901 0,390 0,354 0,945 
17 0,475 0,322 0,980 0,478 0,484 0,990 
18 0,398 0,290 0,891 0,469 0,400 0,943 
19 0,470 0,355 0,956 0,519 0,483 0,985 
20 0,374 0,125 0,985 0,158 0,424 0,988 

AVG 0,402 0,247 0,942 0,357 0,414 0,967 

Table 4: Diversity obtained according to the measure used in the quality function. 
The results observed in the calculated measures of diversity indicate that the greatest diversity is obtained 
with the DIF measure, followed by the DF measure. Taking into account that DIF considers the number of 
classifiers that correctly classify an instance, it can be deduced that for the data sets and the constructed 
classifiers there is a proportion of these that can correctly classify each training sample. 

 
Figure 3: Correlation between the diversity and the accuracy of the systems formed. * Significance at 95% ** 

Significance at 99%. 
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Despite the foregoing, it is not advisable to consider only the magnitude of the measure as a criterion to select 
the one to be used in the proposed method. Taking into account that the quality function includes both the 
diversity and the accuracy of the system formed, the relationship between these must be considered. In some 
works [8, 37] a poor relationship between diversity and system accuracy has been reported and in others [1, 
28] it is concluded that it is better to form systems with a medium diversity than to form them too diverse. 
By applying a Pearson correlation analysis between the diversity values and the accuracy of the 
multiclassifier, it is possible to determine which measure could be selected. In Figure 3 it can be seen that DF 
measure is the one that has a greater correlation with the accuracy of the system, even when the Pearson 
coefficient is not high. 
Note that the DIF measure, which was the one that had measured the greatest diversity, has practically a zero 
relationship with the accuracy of the system. Therefore, analyzing diversity according to the successes made 
by individual classifiers does not seem to be a very good option and it is better to take into account the 
existence of diversity when the errors in the individual classification coincide. This is precisely the idea that 
the DF measure considers. 

5.3 . System size and accuracy 

 
The Table 5 shows the accuracy of the systems formed depending on the diversity measure used in the quality 
function of chromosomes. 
 

ID � D DF E k DIF 
1 100,0 100,0 100,0 100,0 100,0 100,0 
2 90,0 90,0 90,0 90,0 90,0 90,0 
3 82,8 82,2 83,0 81,9 83,6 84,1 
4 93,2 93,2 93,2 93,2 93,2 93,2 
5 59,7 60,3 61,2 60,0 57,4 60,6 
6 90,4 91,5 89,2 93,4 94,3 90,2 
7 56,2 61,5 59,2 57,7 57,7 62,3 
8 88,0 90,0 90,0 88,0 89,0 90,0 
9 73,4 74,1 75,9 73,9 74,8 74,7 
10 56,9 64,4 59,4 59,4 61,9 56,9 
11 81,5 81,1 81,9 80,7 80,7 81,9 
12 99,1 98,0 97,7 98,3 98,9 98,9 
13 69,7 68,8 67,1 65,9 69,7 67,9 
14 99,5 98,6 100,0 97,6 100,0 100,0 
15 37,4 37,4 36,8 36,3 37,9 37,4 
16 79,2 78,3 80,3 77,2 79,5 79,2 
17 93,0 91,0 97,0 88,0 95,0 93,0 
18 78,3 80,0 79,8 79,1 78,7 78,9 
19 76,0 77,5 79,0 76,5 83,0 76,0 
20 95,3 95,1 95,4 94,4 95,3 95,3 

AVG 80,0 80,6 80,8 79,6 81,0 80,5 

Table 5: Accuracy obtained in the multiclassifiers built according to the diversity measure used in the quality 
function. 

The numerical results do not highlight the use of one measure of diversity over the other to obtain more 
accurate systems. In order to determine if there were significant differences in the measured accuracy values, 
the Friedman aligned rank test is applied [23]. This test rejects the null hypothesis (p-value = 1,081E-4 <0,05) 
for a confidence interval of 95%, so it can be concluded that there are significant differences in at least two 
pairs of values. 
As a second step, a pairwise significance analysis is performed to determine where significant differences 
exist and with what measure of diversity the best accuracy was obtained. Taking this into account, the 
Wilcoxon test is applied with the correction of the p-values given by the Finner method [13]. In Figure 4 it 
can be seen that using the DF diversity measure in the quality function the best results are obtained, 
considering the range of values determined by the test. 



 
Figure 4: Significant differences between accuracy of the systems formed according to diversity measure 

used. 
Regarding the number of classifiers included in the combinations of the multiclassifiers formed, solutions 
were obtained with approximately half of the classifiers of the maximum that could be obtained (30 according 
to the experimental design carried out), to see Table 6. 
 

� D DF E k DIF 
16 15 16 14 15 17 

Table 6: Average of classifiers included in the systems formed according to diversity measure used. 

5.4 COMPARISON WITH OTHER ALGORITHMS 

In this subsection, the performance of the multiclassifiers formed with the proposed method is compared with 
other multiclassifiers widely used in the literature. Since mulGA constitutes a modification to Bagging (BAG), 
the existing implementation in WEKA software is used. Similarly, the AdaboostM1 algorithm is used as an 
implementation of Boosting (BST), with a DecisionStump as classifier. 
Both Bagging and mulGA use majority vote to combine the outputs of the combined classifiers, hence the 
existing multiclassifier Vote (VOT) in WEKA is used with the majority vote combination rule and as 
individual algorithms are used those mentioned in the section 5.1, which are also part of the Ω set used in 
mulGA. These algorithms are also used by Stacking (STK), in addition to using a vector support machine 
(SMO) as a meta-classifier. 
Although many times the Random Forest algorithm (RNF) [6] is considered one of the decision tree 
algorithms, it can also be considered as an implementation of Bagging but using a decision tree. The 
algorithm creates its own structure depending on the data set used for training and as a result a set of trees 
(forest) already trained is obtained. All algorithms kept the default configuration of the parameters, except 
those that were mentioned previously. 

 
Figure 5: Accuracy obtained in each of the analyzed multiclassifiers. 

The Figure 5 shows the accuracy values obtained for each analyzed multiclassifier, including the proposed 
method. From the results observed in mulGA, the system formed using the DF diversity measure in the quality 
function of chromosomes is used and the best result achieved by this is reported. It can be noted that the 
proposed method is superior to all the multiclassifiers compared followed by Stacking, which suggests as 
future work to execute a learning process similar to the one performed by the meta-learner in this algorithm, 
after the combination of classifiers is optimized with the Genetic Algorithm. We use Friedman's aligned rank 



test to determine if there are significant differences between the results of the multiclassifiers. This test is a 
non-parametric statistical test that compares three or more matched or paired groups where no normality 
assumption in data is required. Also, this test demonstrating its effectiveness in the comparison of machine 
learning algorithms [3, 16, 24]. The test reports a p-value = 0,005 <0,05, so differences can be established in 
at least one pair of multiclassifiers. 
On the other hand, the p-values corrected for the Wilcoxon test with Finner's method in Table 7 suggest 
rejecting, in all cases, the null hypothesis, for a confidence level of 95%. 
The Table 7 shows the negative (R-) and positive (R +) ranges obtained in the test, where the latter represent 
the number of times in which the accuracy of the proposed method is greater than the other multi-classifiers. 
Taking this into account, the statistical test confirms the superiority of the proposed method over the rest of 
the multi-classifiers analyzed. 

Mult. p-value R+ R- Finner 

BAG 0,0117 14 6 0,0310 

BST 0,0034 15 4 0,0282 

VOT 0,0052 14 5 0,0282 

STK 0,0065 15 4 0,0282 

RNF 0,0047 14 5 0,0282 
Table 7: Paired analysis of multi-classifier results, using mulGA as control. 

 

6. BIOCHEMICAL APPLICATIONS 

In the pharmacology environment, the in-silico methods make reference to computers technical applied to the 
summary, analysis and integration of biological data coming from diverse sources, dedicated to the virtual 
development of models and simulations able to predict or to outline hypothesis with the purpose of to provide 
discoveries and relative advances to the medicine and the therapy [19]. 
The in-silico methods that relate the chemical structure of the molecules with their biological activity are 
divided in two big groups: the SAR (Structure-Activity Relationship) methods and the QSAR (Quantitative 
Structure-Activity Relationship) methods. With regard to the last ones, these consist on the construction of 
mathematical models that relate the molecules structure with their chemical properties and biological effects, 
assuming that similar molecules have similar properties [47], i.e., the QSAR methods establishes that the 
biological activity of the medicine is a dependent function of the structural characteristics of the molecule and 
the activity prediction is carried out by means of the calculation of Molecular Describers (MD) and the 
application of statistical or quimio-metric techniques [19]. The MD are the final result of a logical and 
mathematical procedure that transforms coded chemical information, inside a symbolic representation of a 
molecule, in a number of utility or in the result of some standardized experiment. 
In this case, two data sets of QSAR models are used to identify compounds with activity in presence of 
parasite Trypanosoma cruzi (illness of Chagas) and in presence of inflammatory processes of the human body 
(Inflammatory processes) respectively, this helps in the process of medicines elaboration for the prevention or 
cure of these illnesses or sufferings. These data sets are provided by the Center of Chemicals Bioactive (CCB) 
of Central University “Marta Abreu” of Las Villas. For the construction of the data sets several MD were used 
and also the statistical technique Lineal Discriminant Analysis (LDA), implemented in the Statistical package.  
The classification of a compound (an example or an instance) is active or inactive and it can be expressed in 
two ways: the first one is the probability granted by the classifier to classify the compound as active/inactive, 
or the second based on the difference of the probabilities (ΔP), in the last case when the difference is bigger 
than zero the compound will be classified as active, otherwise it will be classified as inactive. 
These data sets are characterized to present big features number, each one of feature represents coded 
chemical information, in Table 8 the characteristics of them are described. 

Data sets Nominal 

features 

Numeric 

features 

Classes    Cases 
(examples) 

Distribution 

by class 

Trypanosoma cruzi 1 22 2 650 325-325 
Inflammatory 1 45 2 592 260-332 

Table 8: Principal characteristics of data sets. 
As part of the pre-processing of these sets for their specific characteristics was carried out an analysis of 
consistency in the data to avoid the existence of equal compounds (examples) assigned to different classes. As 



a result of this analysis is proven the consistency in the same ones. Then it was thought of using some 
technique of features selection, but for the importance that is assigned to the features in this applications type 
is not carried out. 
The objective of the researchers in the CCB is to select the models that combined increase the precision of the 
analysis, if the certainty in the prediction of the activity of a compound in presence of certain illness is bigger, 
then bigger quantity of money and time can be saved in the conformation process of the medicine to combat 
this illness, for this reason the importance of this process.  
In summary, it is wanted to look for the best combinations of classifiers to increase the precision of the 
analysis, for this is taking into account the same 11 algorithms in previous section with their default 
parameters. Regarding the genetic algorithm is maintained the same configuration and is used the cross-
validation process too. Also, according with the results in previous section is used the DF measure to quantify 
the diversity between the classifiers. 
At the request of the researchers interested in these applications the evaluation measures used in the 
classification were several: Mathews coefficient, Accuracy, Sensibility, Specificity, Reason of False Positive 
(RFP), Precision and Reason of False Discoveries (RFD). Also, as the request of the researchers in these 
cases, the combinations of classifiers are selected using several combination methods for the classifiers 
outputs as: Majority vote (MAJ), Average (AVG), Product (PROD), Maximum (MAX) and Minimum (MIN). 
The results of mulGA are taking into account to look for the best combinations in both data sets.  
As selection approach for the best combinations the researchers interested in these applications have mainly in 
consideration the Accuracy and the Reason of False Positive (RFP). The accuracy should be the biggest 
possible value, near to 100%, while the RFP should be the smallest possible value, closer to 0%. In many 
occasions for these applications type the selection approach for the best combinations is subjective and it 
depends on the researcher reasoning, independently that the proposed method will offer the best combinations 
as for accuracy and diversity.   
In the case of Trypanosoma cruzi, the best individual classifier has an accuracy of 79%, while the best 
classifier according to the RFP has a value of 16%. These will be the values to overcome in the search of the 
best combinations. The results are shown in Table 9, where is presented the five better combinations of 
classifiers that are found. The accuracy of the best classifier is overcome, also, is pointed out with more 
importance those combinations where the RFP diminished with regard to the smallest value obtained by the 
individual classifiers. Only in one combination the RFP doesn't diminish regarding this value. 
In the case of Inflammatory the best individual classifier has an accuracy of 90%, while the best classifier 
according to the RFP has a value of 5,45%. These will be the values to overcome in the search of the best 
combinations. The results are shown in Table 10, where is presented the five better combinations of 
classifiers. The accuracy of the best classifier is overcome, also, is pointed out with more importance those 
combinations where the RFP diminished with regard to the smallest value obtained by the individual 
classifiers. In three combinations the RFP doesn't diminish regarding this value. 
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mulGA 

J48_MLP_IBk (MAJ) 66,74 80,33 84,67 80 16 80,8 15,2 

DS_L (AVG) 68,01 83 84 82 14 82,31 14,69 

MLP_NB_ZR (AVG) 68,69 83,33 84,67 82 14 82,42 14,58 

SMO_NB_RepT (MAX) 60,01 81,33 68 88,67 7,33 86,24 9,76 

21_4_20 (MAJ) 67,34 82,67 83,33 82 14 82,21 13,79 

Table 9: Statistical results of the combinations for Trypanosoma cruzi. 
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mulGA 

SMO_NB_L_J48_SL (MAJ) 89,08 91,59 92,37 92,76 5,45 91,88 2,12 

MLP_SL_SMO_IBk (AVG) 88,62 92,36 91,85 92,76 5,45 92,85 2,15 

MLP_L_NB (AVG) 90,46 93,27 92,89 93,57 4,43 92,89 3,11 

RepT_J48 (PROD) 80,76 91,96 87,19 89,52 8,48 89,67 3,33 

J48_MLP_SL (MAJ) 90,49 93,27 93,93 92,76 4,24 91,94 2,06 

Table 10: Statistical results of the combinations for Inflammatory. 
 

7. CONCLUSIONS 

This paper has presented a modification of the method followed by Bagging to build a multiclassifier. The 
modification consists of allowing the use of more than one learning algorithm in the training stage and the use 
of optimization with metaheuristic to obtain a combination of diverse and precise classifiers. 
The proposed method considers the diversity measured in the training of each learning algorithm and at the 
same time the accuracy of the multiclassifier formed. Six diversity measures reported in the literature were 
analyzed and it was determined that, although with the DIF measure the highest diversity values were 
obtained, the DF measure is the one that best relates to the accuracy of the systems formed. 
The analysis of significant differences between the accuracy obtained with the proposed method and some 
multiclassifiers reported in the literature shows the superiority of the proposed method. However, according 
to the results observed for the Stacking multiclassifier, the use of a meta-learner can be suggested in the 
proposed method to learn from the behavior of the combined classifiers after the optimization of the 
metaheuristic. Finally, real applications of biochemical are presented, where satisfactory results are reached 
with the proposed method. 
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