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ABSTRACT 

The  estimation of Differences-in-Differences (DiD) using  a simple random sampling with replacement (SRSWR) sample is 

developed. The cases in which the sample s is selected and  subsamples  s1 and s0 are determined , deterministically or 

randomly,  are considered, as well as the case in which non-responses are present. Different alternative models are developed. 
Their behaviour in a real-life problem is discussed. 
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RESUMEN 

La  estimación de Diferencias-en-la-Differrencia ( Differences-in-Differences, DiD) usando muestreo simple aleatorio con 

reemplazo   (simple random sampling with replacemebt, SRSWR) es desarrollada. Los casos en los que se selecciona una 

muetra simple es desarrollado. Los casos en que la muestra  s es seleccionada y submuestras  s1 y s0 son determinadas 

deterministamente o aleatoriamente son considerados, así como el caso en que hay no respuestas. Diferentes alternativas son 
modeladas y se desarrollan. Su comportamiento en un problemas de la vida real es discutido. 

 

PALABRAS CLAVE: Estimación de Diferencias-en-la-Diferencia, muestreo simple aleatorio, error esperado, no-respuestas 
, reglas de submuestreo 

 
1. INTRODUCTION 

 

Econometricians are using frequently  Difference-in-Differences (DiD) methods for developing evaluations 

of the impact of new policies. The studies are based on evaluating the effect of them by comparing how 

they increase the response. These methods allow estimating the causal  effects of a policy, program or 

treatment. See as examples  Ashenfelter (1978) , Card (1990): Recent discussion on DiD methods are 

provided by Abadie- Cattaneo (2018), Wing et al. (2018): Its application is generating a growing literature . 

See for example Aggarwal-Hsu (2014), Distelhorst et al. (2016),  

Conyon et al. . (2019), Holm (2018),  Kumar et al. (2016) and He-Zhang (2018).  

The basic idea of DiD is that a group of similar units is observed.  It is divided in two subgroups. In a 

subgroup the policy is implemented and in the other one no. They are denominated treatment and control 

groups respectively.  DiD methods have been used not only in economics but in studies on  management.  

The evaluation looks for estimating  the effect in the response of the observed units to the policy . It is non 

randomly implemented and will be  denominated in the sequel as “treatment”. The goal is to compare the 

treatment and control groups. The observed  difference is possibly  due to the policy.  Non controlled 

factors may be present. They may be observable or not.  The factors may be affecting  the level of the 

outcomes both in  the treatment and control groups. The aims of the decision maker is to establish if the 

observed difference is the effect of treatment. 

The use of sampling modelling is not considered in the studies. This paper considers a survey sampling 

study where is needed to develop inferences of DID. A randomly selected sample s is partitioned into two 

subsamples and the treatment is assigned to one of them. A variable Y is evaluated in the selected units 
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before and after applying the treatment.  The difference of the estimated means is estimated in both groups 

and the difference between them is estimated. The question is if the observed DiD sustains that the effect of 

the treatment is significatively different for zero. 

The next section presents the estimation of DiD of  a simple individual-level DID model is presented. 

Simple random sampling with replacement (SRSWR) is used for selecting the sample. Estimators of the  

population DID are developed. Two alternatives are studied. The cases in which s is selected and it is s1 and 

s0 are determined deterministically or randomly are considered. Section 3 is devoted to study the case in 

which non-responses are present. The subsampling rules of Hansen-Hurwitz (1946), Srinath (1971) and 

Bouza (1981) are used for determining alternative models. Finally, a real-life problem is analysed. The data 

comes from a study of the effect of an after heart-stroke  new treatment. 

 

2. ESTIMATION OF DIffERENCES-IN-DIffERENCES  

 

Differences-in-Differences (DID) is widely used in applied economics.  

a simple individual-level DID model is given by 

𝑌𝑖𝑗𝑡 = 𝛼𝛿𝑗𝑡 + 𝜃𝑗 + 𝛾𝑡 + 𝜈𝑗𝑡 + 휀𝑖𝑗𝑡  

Yijt is the outcome of individual i belonging to the j-th group. 

𝜃𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑒𝑓𝑓𝑒𝑐𝑡 

𝛾𝑡  𝑖s a fixed time effect   
νjt is the interaction of the j-th group with the time error term . 

휀𝑖𝑗𝑡 is an individual random error term 

The development of inferences is rather complicated due to the fact that errors are affected by the possible 

existence of  intra-group and serial correlations. Underestimation of DID`s standard errors is expected if 

these effects are not considered, see Bertrand et al. (2004). Still, there is as yet no unified approach to 

dealing with this problem. 

We are going to consider a problem arising in many survey sampling studies where is needed to develop 

inferences of DID. 

Take a finite population 𝑈 = {𝑢1, … , 𝑢𝑁}. Consider that the interest is establishing the effect of a certain 

treatment on the behaviour of a variable Y.  A sample s of size n is to be selected. It is partitioned into 

subsamples s1 of size n1, the individuals assigned to the treatment, and a subsample s0 of size n0, a control 

group. The variable is measured in two different moments. For example, before introducing the changes 

(treatment) and after. Take for example a new teaching method. A test is developed at the beginning of the 

course to both groups at the end of it. The question of the teacher is on the improvements of the marks. 

Similarly, are the studies of a physician establishing the difference of parameters in persons recovering 

from a heart stroke, the biologist in evaluating a new treatment pest control, the engineering introducing 

technological changes in some factories, etc.  

These problems particular cases where the decision maker aims to estimate DiD. Consider only a group and 

fixing: 

𝑡 = {
1 if the treatment is applied to the individual

0 otherwise
  

The response of an individual may be modelled as  

𝑌𝑖𝑡𝑞 = 𝜇𝑡𝑞 + 𝛾𝑡𝐼𝑞 + 휀𝑖𝑡𝑞 , 

 𝑞 = {
𝑎 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑚𝑎𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑎𝑓𝑡𝑒𝑟)
𝑏  𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑚𝑎𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑏𝑒𝑓𝑜𝑟𝑒)

 

𝐼𝑞 = {
1 𝑖𝑓 𝑞 = 𝑎
0 𝑖𝑓 𝑞 = 𝑏

 

 𝛾𝑡 is the effect of the treatment. The difference in the sample of units assigned to the treatment is  

�̂�1 =
1

𝑛1
(∑𝑌𝑖1𝑎

𝑛1

𝑖=1

−∑𝑌𝑖1𝑏

𝑛1

𝑖=1

) =
1

𝑛1
∑𝑑𝑖1

𝑛1

𝑖=1

 

If simple random sampling with replacement (SRSWR) is used for selecting the sample 

𝐸(𝑌𝑖1𝑞) = 𝜇1𝑞 + 𝛾1𝐼𝑞 . 

Hence  



𝐸(�̂�1) =
1

𝑛1
(∑𝐸(𝑌𝑖1𝑎)

𝑛1

𝑖=1

−∑𝐸(𝑌𝑖1𝑏)

𝑛1

𝑖=1

) = 𝜇1𝑎+𝛾1 − 𝜇1𝑏 = 𝐷1 + 𝛾1 

Note that 𝛾1 is the effect of the treatment.  The variance of the estimator is 

𝑉(�̂�1) = 𝑉 (
1

𝑛1
∑𝑑𝑖1

𝑛1

𝑖=1

) =
𝜎1𝑏
2 + 𝜎1𝑎

2 −2𝜎1𝑎𝑏
2

𝑛1
 

where 

𝜎1𝑞
2 = 𝐸(𝑌1𝑞 − 𝜇1𝑞)

2
; 𝑞 = 𝑎, 𝑏 

𝜎1𝑎𝑏 = 𝐸(𝑌1𝑎 − 𝜇1𝑎)(𝑌1𝑏 − 𝜇1𝑏)  

These parameters are estimable by 

 

𝑠1𝑞
2 =

1

𝑛1 − 1
∑(𝑌𝑖1𝑞 − �̅�1𝑞)

2

𝑛1

𝑖=1

, �̅�1𝑞 =
1

𝑛1
∑𝑌𝑖1ℎ

𝑛1

𝑖=1

; 𝑞 = 𝑎, 𝑏 

𝑠1𝑎𝑏 =
1

𝑛1−1
∑ (𝑌𝑖1𝑎 − �̅�1𝑎)(𝑌𝑖1𝑏 − �̅�1𝑏)
𝑛1
𝑖=1 . 

 Hence 

𝑠2(�̂�1) =
𝑠1𝑏
2 + 𝑠1𝑎

2 −2𝑠1𝑎𝑏
2

𝑛1
 

is an unbiased estimator of 𝑉(�̂�1). 

�̂�1 is a mean, therefore under suitable conditions it is distributed 𝑁(𝐷1 + 𝛾1, 𝑉(�̂�1)).  Then, we may test 

the validity of 𝐻1: 𝐸(�̂�1) > 0 using T-tests . 

A similar analysis of the case t=0 derives that   

�̂�0 =
1

𝑛0
(∑𝑌𝑖0𝑎

𝑛0

𝑖=1

−∑𝑌𝑖0𝑏

𝑛0

𝑖=1

) =
1

𝑛0
∑𝑑𝑖0

𝑛0

𝑖=1

 

𝐸(�̂�0) = 𝜇0𝑎−𝜇0𝑏 + 𝛾0 = 𝐷0 + 𝛾0 

𝛾0 is a residual effect due to the elapsed time between the first and second moments.  The sampling error is 

𝑉(�̂�0) = 𝑉 (
1

𝑛0
∑𝑑𝑖0

𝑛0

𝑖=1

) =
𝜎0𝑏
2 + 𝜎0𝑎

2 −2𝜎0𝑎𝑏
2

𝑛0
 

where 

𝜎0𝑞
2 = 𝐸(𝑌0𝑞 − 𝜇0𝑞)

2
; 𝑞 = 𝑎, 𝑏 

𝜎0𝑎𝑏 = 𝐸(𝑌0𝑎 − 𝜇0𝑎)(𝑌0𝑏 − 𝜇0𝑏)  

 

The components of the error are estimated by  

𝑠0𝑞
2 =

1

𝑛0 − 1
∑(𝑌𝑖0𝑞 − �̅�0𝑞)

2

𝑛1

𝑖=1

, �̅�0𝑞 =
1

𝑛1
∑𝑌𝑖0𝑞

𝑛1

𝑖=1

; 𝑞 = 𝑎, 𝑏 

𝑠0𝑎𝑏 =
1

𝑛0 − 1
∑(𝑌𝑖0𝑎 − �̅�0𝑎)(𝑌𝑖0𝑏 − �̅�0𝑏)

𝑛1

𝑖=1

 

and the variance is unbiasedly estimated by 

 

𝑠2(�̂�0) =
𝑠0𝑏
2 + 𝑠0𝑎

2 −2𝑠0𝑎𝑏
2

𝑛0
 

The difference between the effect of the treatment is estimated by the DID-estimator  Δ̂ = �̂�1 − �̂�0. The 

decision maker is generally interested in evaluating the difference of Δ = 𝐸(�̂�1) − 𝐸(�̂�0).    The 

subsamples permit to estimate unbiasedly   Δ . 

The following lemma fixes the relevant results derived above: 



Lemma 1. If SRSWR is used for selecting the samples to be assigned to the control and the treatment 

Δ̂ = �̂�1 − �̂�0 is unbiased for  and its error is  

𝑉(Δ̂) =
𝜎1𝑏
2 +𝜎1𝑎

2 −2𝜎1𝑎𝑏
2

𝑛1
+

𝜎0𝑏
2 +𝜎0𝑎

2 −2𝜎0𝑎𝑏
2

𝑛0
.   

Proof.  

The results follow from the discussion developed previously and the independence of s0 and s1  

Under mild condition is possible to develop inferences using these results.  

Consider the validity of 𝐻1: 𝐸(Δ̂) > 0 . The variance is estimated unbiasedly using  

𝑠2(Δ̂ ) = 𝑠2(�̂�1) + 𝑠
2(�̂�0) 

The inferences may use the asymptotic normality of the estimators for performing tests. Accepting it that 

the observed effects are not due to the treatment a normal test may be used for testing  𝐻1: Δ > 0.  The T-

Student tests statistic is 

𝑇 =
�̂�1 − �̂�0

√
𝑠1𝑏
2 + 𝑠1𝑎

2 −2𝑠1𝑎𝑏
2

𝑛1
+
𝑠0𝑏
2 + 𝑠0𝑎

2 −2𝑠0𝑎𝑏
2

𝑛0

 

The distribution is a 𝑇(𝑛1 + 𝑛0 − 2), which is roughly approximated by a N(0,1) even for moderate values 

of  𝑛1 + 𝑛0. 

Accepting 𝐻1: 𝐸(Δ̂) > 0 means that the treatment has a significant positive effect. 

Note that the experimenter may select the sample s and perform a Bernoulli experiment with probability of 

success P.  For each 𝑖 ∈ 𝑠 the experiment is performed and 𝑖 is assigned to the treatment group if the result 

is a success. Otherwise 𝑖 is assigned to the control group. In such cases the subsample sizes are random and 

the conditional expectations and variances are  

𝐸(�̂�𝑗|𝑛𝑗) = 𝐷𝑗 + 𝛾𝑗; 𝑗 = 1,0 

𝑉(�̂�𝑗) = 𝑉 (𝐸(�̂�𝑗|𝑛𝑗)) + 𝐸 [𝑉 (
1

𝑛𝑗
∑𝑑𝑖𝑗

𝑛𝑗

𝑖=1

|𝑛𝑗)] = 𝐸 (
1

𝑛𝑗
) (𝜎𝑗𝑏

2 + 𝜎𝑗𝑎
2−2𝜎𝑗𝑎𝑏

2 ); 𝑗 = 1,0 

because the first term is zero. 

Using the approximation developed by Stephan (1945)  

𝑉(�̂�𝑗) ≅ (𝜎𝑗𝑏
2 + 𝜎𝑗𝑎

2−2𝜎𝑗𝑎𝑏
2 ) (

1

𝑄𝑗
+
1

𝑄𝑗
2) , 𝑄𝑗 = {

𝑛𝑃 𝑖𝑓 𝑗 = 1

𝑛(1 − 𝑃) 𝑖𝑓 𝑗 = 0
 

Then 

𝐸(𝑉(Δ̂)) =∑(𝜎𝑗𝑏
2 + 𝜎𝑗𝑎

2−2𝜎𝑗𝑎𝑏
2 ) (

1

𝑄𝑗
+
1

𝑄𝑗
2)

1

𝑗=0

 

These results are fixed in the following lemma. 

 

2. THE CASE OF NON-RESPONSES 

 

In real life applications the experimenter selects a samples s0 and s1  and in the second visit some non-

responses may be  present. Then both populations are stratified as follows 𝑈0 = 𝑈01⋃𝑈02 𝑎𝑛𝑑 𝑈1 =
𝑈11⋃𝑈12 .  Denote 

𝑈ℎ𝑗 = {
 {𝑢𝑡 ∈ 𝑈ℎ 𝑡ℎ𝑎𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 2𝑛𝑑 𝑣𝑖𝑠𝑖𝑡} 𝑖𝑓 𝑗 = 1 

{𝑢𝑡 ∈ 𝑈ℎ  𝑡ℎ𝑎𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 2𝑛𝑑 𝑣𝑖𝑠𝑖𝑡} 𝑖𝑓 𝑗 = 2 
, ℎ = 0,1 

 

The  sampled units belonging to 𝑈ℎ1  give response to the variable of interest in both visits and those in 𝑈ℎ2 

report it only in the first visit.  The sample s is going to be denoted in the sequel as  𝑠ℎ = 𝑠ℎ1⋃𝑠ℎ2 ,

‖𝑠ℎ𝑗‖ = 𝑛ℎ1, ℎ = 0,1  Without losing in generality take 

𝑠ℎ1 = {𝑢𝑡 ∈ 𝑠ℎ = 𝑠ℎ|1 ≤ 𝑡 ≤𝑛ℎ1}, 𝑠ℎ2 = {𝑢𝑡 ∈ 𝑠ℎ = 𝑠ℎ|𝑛ℎ+1 + 1 ≤ 𝑡 ≤𝑛ℎ}  
The existence of missing observations determines that only 𝑛ℎ2∗ units respond. The need of obtaining 

information from the stratum of the no-respondents  determines selecting a subsample form sh2 .  This 

problem was treated in the seminal paper of Hansen-Hurwitz (1946). They proposed a subsampling rule. 



Srinath (1971) and Bouza (1981) have proposed alternative rules.  A unified notation is that the subsample 

size is  𝑛ℎ2∗ = 𝜃𝑛ℎ2, 𝜃 ≤ 1, see Singh (2003). 

The response-data allows computing 

∑ 𝑌𝑖1𝑏
𝑛ℎ1
𝑖=1

𝑛ℎ1
; ℎ = 0,1 

∑ 𝑌𝑖1𝑎
𝑛ℎ2∗
𝑖=1

𝑛ℎ2∗
; ℎ = 0,1 

Considering the stratum of nonresponses, the subsample means in the second visits are: 

�̅�𝑗ℎ𝑎 =
∑ 𝑌𝑖𝑗ℎ𝑎
𝑛ℎ
𝑖=1

𝑛ℎ
, ℎ = 0,1, 𝑤𝑗 =

𝑛𝑗

𝑛
 

As some missing data is observed a subsample of size 𝑛ℎ2∗ is selected among the 𝑛ℎ2 non respondents and 

is calculated 

�̅�𝑗ℎ∗ =
∑ 𝑌𝑖ℎ𝑎
𝑛ℎ2∗
𝑖=1

𝑛ℎ2∗
 

Take 

�̅�ℎ𝑎∗ =∑𝑤𝑗�̅�ℎ𝑎

2

𝑗=1

+𝑤2(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ) 

Noting that. 𝐸(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ|𝑛ℎ2) = 0 because ∑ 𝑤𝑗�̅�ℎ𝑎
2
𝑗=1 = �̅�ℎ𝑎.  In addition, 𝐸(�̅�ℎ𝑎∗|𝑛ℎ2) = �̅�ℎ𝑎 

Therefore, defining �̅�ℎ = �̅�ℎ𝑎∗ − �̅�ℎ𝑏  

𝐸(�̅�ℎ|𝑛ℎ2) = 𝐸(�̅�ℎ𝑎∗ − �̅�ℎ𝑏|𝑛ℎ2) = 𝜇ℎ𝑎+𝛾ℎ − 𝜇ℎ𝑏 = 𝐷ℎ + 𝛾ℎ;   ℎ = 0,1 

The estimator sustains the unbiasedness. Hence, the sampling error is the variance. Note that the first term 

in the proposed estimator of the mean of is the sample mean. Then, for a fixed s  

�̅�ℎ𝑎∗ =∑𝑤𝑗�̅�ℎ𝑎

2

𝑗=1

+𝑤2(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ) 

and 

𝑉(�̅�ℎ𝑎∗|𝑛ℎ2) = 𝑉 (∑𝑤𝑗�̅�ℎ𝑎

2

𝑗=1

+ 𝑤2(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ)|𝑛ℎ2) = 𝑉(�̅�ℎ𝑎|𝑛ℎ2) + 𝑤2
2𝑉(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ|𝑛ℎ2) 

because the cross product is equal to zero, see Singh (2003), Bouza (2013). 𝑉(�̅�ℎ𝑎|𝑛ℎ2) and  

𝑉(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ|𝑛ℎ2) =
𝜎ℎ2𝑎
2

𝑛ℎ𝑎∗
  . 

Therefore  

𝐸(𝑉(�̅�ℎ𝑎∗|𝑛ℎ2)) =
𝜎ℎ𝑎
2

𝑛ℎ
+ 𝐸

(

 
 
𝑛ℎ2
2

𝑛ℎ
2 

𝑛ℎ𝑎∗

)

 
 
𝜎ℎ2𝑎
2 =

𝜎ℎ𝑎
2

𝑛ℎ
+ 𝐸 (

𝑛ℎ2

𝜃𝑛ℎ
2)𝜎ℎ2𝑎

2  

The estimation of a difference under non responses has been studied by Bouza-Ajgaonkar (1993). For the 

difference in h=0,1 

 

𝐸 (𝑉(�̅�ℎ|𝑛ℎ2)) =
𝜎ℎ𝑎
2

𝑛ℎ
+ 𝐸 (

𝑛ℎ2

𝜃𝑛ℎ
2)𝜎ℎ2𝑎

2 +  
𝜎ℎ𝑏
2

𝑛ℎ
−

2𝜎ℎ𝑎𝑏

𝑛ℎ
   (A) 

becaus𝑒  

𝐸(𝐶𝑜𝑣 (�̅�ℎ𝑎∗, �̅�ℎ𝑏|𝑛ℎ2)) = 𝜎ℎ𝑎𝑏 + 𝐸 [𝐸 (�̅�ℎ𝑏(𝑤2
2(�̅�2ℎ𝑎∗ − �̅�2𝑎ℎ|𝑛ℎ2)))] 

and the conditional expectation is equal to zero due to the fact that E(�̅�2ℎ𝑎∗|𝑛ℎ2) = �̅�2𝑎ℎ. Then is proved 

the following statement: 

Lemma 2.  Consider samples s0 and s1  are selected using simple random sampling with replacement and 

𝑠ℎ ∈ 𝑈ℎ = 𝑈ℎ1⋃𝑈ℎ2 , 𝑈ℎ1⋂𝑈ℎ2 = ∅, ℎ = 0,1 where  

𝑈ℎ𝑗 = {
 {𝑢𝑡 ∈ 𝑈ℎ 𝑡ℎ𝑎𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 2𝑛𝑑 𝑣𝑖𝑠𝑖𝑡} 𝑖𝑓 𝑗 = 1 

{𝑢𝑡 ∈ 𝑈ℎ  𝑡ℎ𝑎𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 2𝑛𝑑 𝑣𝑖𝑠𝑖𝑡} 𝑖𝑓 𝑗 = 2 
, ℎ = 0,1   

 



The non-respondents subsample size is  determined by 𝑛ℎ2∗ = 𝜃𝑛ℎ2 where  

𝜃 =

{
 
 

 
 
1

𝐾
, 𝐾 > 1 (𝐻𝑎𝑛𝑠𝑒𝑛 − 𝐻𝑢𝑟𝑤𝑖𝑡𝑧´𝑠 𝑟𝑢𝑙𝑒)

𝑛2

𝐻𝑛+𝑛2
, 𝐻 > 0 (𝑆𝑟𝑖𝑛𝑎𝑡ℎ´𝑠 𝑟𝑢𝑙𝑒)

𝜃 =
𝑛ℎ2

𝑛ℎ
 (𝐵𝑜𝑢𝑧𝑎`𝑠 𝑟𝑢𝑙𝑒)

. 

a) The DiD´s estimator  

Δ̂𝑛𝑟|𝜃 = [(
∑ 𝑌𝑖1𝑎
𝑛11
𝑖=1

𝑛11
+
∑ 𝑌𝑖1𝑎
𝑛1
𝑖=1

𝑛12∗
) −

∑ 𝑌𝑖1𝑏
𝑛1
𝑖=1

𝑛1
] − [(

∑ 𝑌𝑖0𝑎
𝑛01
𝑖=1

𝑛01
+
∑ 𝑌𝑖0𝑎
𝑛0
𝑖=1

𝑛02∗
) −

∑ 𝑌𝑖0𝑏
𝑛0
𝑖=1

𝑛0
] 

is unbiased for .  

b) The expected error of Δ̂𝑛𝑟|𝜃 𝑖𝑠 

𝐸(𝑉(Δ̂𝑛𝑟|𝜃|𝑛ℎ2)) =  

{
  
 

  
 
𝜎ℎ𝑎
2

𝑛ℎ
+
𝐾𝑊2𝜎ℎ2𝑎

2

𝑛ℎ
+  

𝜎ℎ𝑏
2

𝑛ℎ
−
2𝜎ℎ𝑎𝑏
𝑛ℎ

(𝐻𝑎𝑛𝑠𝑒𝑛 − 𝐻𝑢𝑟𝑤𝑖𝑡𝑧´𝑠 𝑟𝑢𝑙𝑒)

𝜎ℎ𝑎
2

𝑛ℎ
+
(𝐻 +𝑊2)𝜎ℎ2𝑎

2

𝑛ℎ
+  

𝜎ℎ𝑏
2

𝑛ℎ
−
2𝜎ℎ𝑎𝑏
𝑛ℎ

(𝑆𝑟𝑖𝑛𝑎𝑡ℎ´𝑠 𝑟𝑢𝑙𝑒)

𝜎ℎ𝑎
2

𝑛ℎ
+
𝜎ℎ2𝑎
2

𝑛ℎ
+  

𝜎ℎ𝑏
2

𝑛ℎ
−
2𝜎ℎ𝑎𝑏
𝑛ℎ

(𝐵𝑜𝑢𝑧𝑎`𝑠 𝑟𝑢𝑙𝑒)

 

Proof: 

a) Due to the unbiasedness of �̂�1 and �̂�0 follows that 𝐸(Δ̂𝑛𝑟|𝜃) = Δ for both rules. 

b) Substituting  in the corresponding expression of 𝐸 (𝑉(�̅�ℎ|𝑛ℎ2))is derived the second result. 

3. A STUDY OF THE BEHAVIOR OF THE PROPOSALS. 

3.1. A real-life problem. 

The use of surgery is needed in the cases of patients with some kind of disease, as those related with 

coronary artery or  valvular diseases and with symptoms-signs of cardiac function impairment, see 

Castellanos et al. (2019). The study dealt with the evaluation of the recovering  of patients in terms of 

pulmonary flux, mitral flux-gram,  maximal cardiac frequency   and myocadiac efficiency 1,7. The effect of 

a change in the common protocol was the interest of the researchers. The levels of the treatment based on 

carvedilol, clopidogrel, ASA and atorvastatin where changed.  The 180 patients in the study underwent 

cardiac surgery (revascularization and valve surgery) without postoperative atrial fibrillation and free of  

diabetes. Bias was eliminated by allocating  patients based on random sequence generation. A measurement 

was made in a first visit to the cardiologist and echocardiograms and ergograms were made.  After six 

months a new visit was to be made. In the control group 44,4% did not assist to the second visit. In the 

treatment group that percent was 62,2%.  The physicians contacted the non-respondents and programmed a 

second and third visit for obtaining all the data.  Then the relative sizes of the non-response strata were 

0,444 and 0,622 respectively. 

3.2. The full-response model. 

Samples of size 30,40 and 50 were selected from this population. for each sample sh , h=1,…, 1000.  The 

accuracy of the method was evaluated computing 

𝜗𝑛 =
1

1000
∑

|Δ̂ℎ − Δ|

Δ

1000

ℎ=1

; 𝑛 = 30, 40, 50 

Table 1: the full response case: Accuracy of Δ̂ in the efficiency measures 

Efficiency Measures n=30 n=40 n=50 



Pulmonary Flux 081 0,0544 0,0477 0,0431 

Mitral Flux-Gram 86 0,0466 0,0461 0,0411 

Maximal Cardiac 

Frequency  144 

0,7936 0,7811 0,7806 

Myocardiac Efficiency 

1,7. 

0,0855 0,0838 0,0812 

Table 1 suggests that the estimator is very accurate for all the measures. The increase of the sample sizes 

has not a significative effect in reducing the estimator`s error. 

The use of the developed estimator for testing was evaluated using the test statistic 

𝑇 =
(�̂�1 − �̂�0) − ∆

√
𝑠1𝑏
2 + 𝑠1𝑎

2 −2𝑠1𝑎𝑏
2

𝑛1
+
𝑠0𝑏
2 + 𝑠0𝑎

2 −2𝑠0𝑎𝑏
2

𝑛0

 

was computed for each sample sh , h=1,…, 1000 and was tested  

𝐻0: 𝐸( �̂�1) − 𝐸(�̂�0) = ∆ 𝑣𝑠 𝐻1: ( �̂�1) − 𝐸(�̂�0) ≠ ∆  

The experiment was evaluated using 1 − 𝛼 = 0,95 and  computing  

𝛾𝑛 =
1

1000
∑ 𝐿1ℎ𝑛; 

1000

ℎ=1

𝐿1ℎ𝑛 = {
1 𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑒𝑟𝑤𝑖𝑠𝑒

; 𝑛 = 30, 40,50. 

Table 2. Estimated probability of accepting that Δ was the population DiD  

for 1 − 𝛼 = 0,95: the full response case. 

Efficiency Measures n=30 n=40 n=50 

Pulmonary Flux 081 0,894 0,896 0,904 

Mitral Flux-Gram 86 0,938 0,943 0,943 

Maximal Cardiac 

Frequency  144 

0,948 0,948 0,948 

Myocardiac Efficiency 

1,7. 

0,936 0,941 0,948 

Table 1 suggests that the normal approximation of test statistic is not acceptable for the pulmonary flux but 

in the rest of the measures performed adequately close to 1 − 𝛼. The sample size has not a role in the 

approximation. 

 

3.3. The non-response problem. 

 

The non-response problem used the samples generated previously. For the second visit non—responses 

were generated for each selected patient. Then, the subsamples were obtained and the non-response based 

estimator calculated. Missing data were generated using Bernoulli random variables with parameters 0,444, 

for the control group, and 0,622 for the treatment one. The subsamples rules used the values K=H=2, 5, 10 

The accuracy of the estimator was evaluated computing 

𝜗𝑛𝑟|𝜃 =
1

1000
∑|Δ̂𝑛𝑟|𝜃 − Δ|ℎ

1000

ℎ=1

; 𝜃 = 𝐾,𝐻,
𝑛2
𝑛
;   𝑛 = 30, 40, 50 

Table 3: The non-response case: Accuracy of Δ̂𝑛𝑟|𝜃 in the efficiency measures. 

Efficiency Measures n=30 n=40 n=50 

Pulmonary Flux     

K=2 0,0781 0,0714 0,0712 

K=5 0,0833 0,0821 0,0813 

K=10 0,1023 0,1011 0,1001 

H=2 0,1061 0,1052 0,0975 

H=5 0,1873 0,1832 0,1819 

H=10 0,2404 0,2400 0,2397 

n2/n  0,0594 0,0594 0,0571 

Mitral Flux-Gram     



K=2 0,1383 0,1338 0,1285 

K=5 0,1494 0,1330 0,1323 

K=10 0,1524 0,1513 0,1513 

H=2 0,1928 0,1922 0,1922 

H=5 0,2172 0,1972 0,1959 

H=10 0,2289 0,1904 0,1896 

n2/n  0,1127 0,1227 0,1105 

Maximal Cardiac 

Frequency   

   

K=2 0,0899 0,0883 0,0848 

K=5 0,0947 0,0926 0,0922 

K=10 0,1054 0,1010 0,0971 

H=2 0,1735 0,1713 0,1611 

H=5 0,2578 0,1889 0,1689 

H=10 0,2945 0,2486 0,2282 

n2/n  0,0757 0,0723 0.0704 

Myocardiac Efficiency     

K=2 0,0178 0,0176 0,0169 

K=5 0,0468 0,0318 0,0236 

K=10 0,0596 0,0583 0,0401 

H=2 0,0398 0,0367 0,0355 

H=5 0,0717 0,0669 0,0604 

H=10 0,4879 0,4872 0,4765 

n2/n  0,0165 0,0162 0,0157 

As deducible from the formula of the error the use of Srinath (1971)  rule is more inaccurate and the rule of 

Bouza (1981) is the most accurate. Larger values of  K and H increase t𝜗𝑛𝑟|𝜃. From the literature we have 

that Hansen-Hurwitz rule (1946) has a smaller expected cost than the other  rules. Therefore it is commonly 

preferred as its accuracy is similar to Bouza`s. 

For performing tests 𝐻0: 𝐸(Δ̂𝑛𝑟|𝜃) = ∆ 𝑣𝑠 𝐻1: Δ̂𝑛𝑟|𝜃 ≠ ∆ is needed to use a non-parametric method, as 

normality is not a natural approximation. Resampling methods provide tools for testing hypothesis when 

dealing with complex sampling 

Resampling methods are commonly used for inference in complex survey sampling. See Booth et al.  

(1994), Antal-Tillé (2011, 2014). They allow solving  the difficulties of estimating the sampling errors.  

Resampling identifies a set  of inferential techniques as randomization-based tests, cross-validation, 

Jacknife and Bootstrap. Their principles are very similar. Efron (1979) in his seminal paper conceived 

Bootstrap to be used for inferential purposes, see also Efron-Tsibirani (1993).The initial sample s is treated 

as the population and pseudo-populations are randomly generated. A large number of resamples sb , 

b=1,..,B, of size n are selected randomly, from the original sample of size n,  with replacement. It performs 

better than some other asymptotic statistical methods. Bootstrap method also provides consistent estimates 

of the distribution of the estimator.   The complexity of the finite population sampling design poses a 

challenge for finding a valid bootstrap procedure. A good Bootstrap procedure should support that the 

Bootstrap-bias estimate be 0 . See Antal-Tillé (2011) and Booth et al.  (1994). The model developed 

previously determines a smooth function of finite population means. In such cases,  in practical situations, 

Bootstrap enables to implement adequate  tests of hypothesis. 

The Bootstrap implemented involves the following  steps: 

1. Select randomly and independently a sample sb using SRSWR from s. 

2. For b=1,…,B calculate Δ̂𝑛𝑟|𝜃(𝑏). 

3. Compute ∆̅̂𝑛𝑟|𝜃=
1

𝐵
∑𝐵𝑏=1 Δ̂𝑛𝑟|𝜃(𝑏), 𝑣𝑛𝑟|𝜃 =

1

𝐵−1
∑𝐵ℎ=1 (Δ̂𝑛𝑟|𝜃(𝑏) − ∆̅̂𝑛𝑟|𝜃)

2. 

 

For B sufficiently large the output allows using  the percentile method or the T-Student Bootstrap for 

testing hypothesis. See  for example  the confidence intervals   formula proposed in Rao et al.(1992). See 

also Tillé (2006).  



𝑇𝑛𝑟|𝜃 =
∆̅̂𝑛𝑟|𝜃 − ∆

√
1

𝐵(𝐵 − 1)
∑𝐵ℎ=1 (Δ̂𝑛𝑟|𝜃𝐻(ℎ) − ∆̅̂𝑛𝑟|𝜃)

2

~𝑁(0,1) 

It  works well for any smooth statistic. 

A Monte Carlo experiment was developed with the data and H=1000 samples were selected from the 

population of patients. 𝑇𝑛𝑟|𝜃 was computed in each generated sample and was tested 

𝐻0: 𝐸(Δ̂𝑛𝑟|𝜃) = ∆ 𝑣𝑠 𝐻1: Δ̂𝑛𝑟|𝜃 ≠ ∆  

 1 − 𝛼 = 0,95  was estimated using 

𝛾𝑛𝑟|𝜃 =
1

1000
∑ 𝐿𝑛𝑟|𝜃(ℎ); 

1000

ℎ=1

𝐿𝑛𝑟|𝜃(ℎ) = {
1 𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 

𝑛 = 30, 40,50;  𝜃 = 𝐾,𝐻,
𝑛2
𝑛
. 

The Monte Carlo experiment generated the results in table 4 below. They sustain that the parametric 

Bootstrap tests developed using  of the rules of Hansen-Hurwitz and Bouza generated are good  alternatives 

as the estimates of 1 − 𝛼 , as they are close to 0,95. The increase in the parameters of the rules of Hansen-

Hurwitz and Srinath are more important in the convergence of the test statistics then having larger sample 

sizes. 

Table 4: Estimated probability of accepting that Δ was the population DiD  

for 1 − 𝛼 = 0,95: the non- response case. 

Efficiency Measures n=30 n=40 n=50 

Pulmonary Flux     

K=2 0,9180 0,9271 0,9388 

K=5 0,8566 0,8590 0,8876 

K=10 0,8810 0,8887 0,8907 

H=2 0,8611 0,8610 0,8821 

H=5 0,8590 0,8591 0,8604 

H=10 0,8529 0,8557 0,8593 

n2/n  0,9196 0,9196 0,9297 

Mitral Flux-Gram     

K=2 0,9358 0,9379 0,9388 

K=5 0,9211 0,9276 0,9365 

K=10 0,9086 0,9123 0,9198 

H=2 0,9054 0,9074 0,9077 

H=5 0,8977 0,9021 0,9039 

H=10 0,8941 0,8966 0,8953 

n2/n  0,9300 0,9352 0,9375 

Maximal Cardiac 

Frequency   

   

K=2 0,9334 0,9387 0,9421 

K=5 0,9322 0,9342 0,9342 

K=10 0,9310 0,9327 0,9327 

H=2 0,9210 0,9289 0,9305 

H=5 0,9053 0,9071 0,9088 

H=10 0,8996 0,9009 0,9039 

n2/n  0,9305 0,9312 0,9409 

Myocardiac Efficiency     

K=2 0,9033 0,9084 0,9189 

K=5 0,8976 0,8976 0,8985 

K=10 0,8663 0,8701 0,8785 

H=2 0,8965 0,8995 0,9005 

H=5 0,8884 0,8902 0,8974 

H=10 0,8752 0,8789 0,8896 

n2/n  0,9008 0,9027 0,9085 
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