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ABSTRACT 
In this paper, we introduce two new rank set sampling schemes namely, joint rank set sampling (JRSS) and joint modified rank 
set sampling (JMRSS), based on two samples come from two different production lines. We use exponential models for the two 
samples. This study leads to the estimation of the parameters of the models using classical and Bayesian approaches. For Bayes 
estimation, importance sampling method is implemented. A comparison of the proposed estimators obtained under JRSS and 
JMRSS is made with the estimators obtained based on joint simple random sample through simulation. A real example is cited to 
illustrate the procedures. 
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RESUMEN 
En este  paper introducimos dos nuevos esquemas de muestreo por conjuntos ordenados  denominados , muestreo por rangos 
ordenados (JMRSS), basados en dos muestras que provienen de dos  diferentes líneas de  producción. Usamos  modelos  
exponenciales para las dos muestras .  Este estudio lleva a la estimación de los parámetros del modelo usando  enfoques clásicos 
y  Bayesiano. Para la estimación  Bayes, un método de muestreo por  importancia es implementado. Una comparación de los  
estimadores propuestos obtenidos bajo  JRSS y JMRSS es desarrollada usando muestro simple conjunto a través de  simulación. 
Un ejemplo  real es citado para ilustrar los  procedimientos. 
 
PALABRAS CLAVE: Muestreo por conjuntos ordenados conjunto, estimación máximo verosímil, estimación Bayesiana, 
pérdida cuadrática,  gamma prior invertida, muestro simple conjunto. 

 

1. INTRODUCTION 

Estimation of parameters based on a sample collected from the given population is the most important 
research in all branches of sciences such as engineering, medical, biological, agricultural.  The data collection 
is an important aspect to make efficient estimation of the unknown parameters of the given population. 
McIntyre [14] introduced a concept of rank set sampling (RSS) that utilizes additional information from 
individual population units providing a more representative sample from the population under consideration. 
RSS improves the efficiency of the estimators compared to simple random sample. Various type of RSS 
schemes are available in literature, like, moving rank set sampling, modified rank set sampling, median rank 
set sampling, moving extreme rank set sampling and so on. Recently AL-Nasser and AL-Omari [2] 
consideredMinimax ranked set sampling. A detail review up to 2013 on rank set sampling did by Al-Omari 
and Bouza [3].  Bouzaand AL-Omari [10]presented 65 years of history in improving the accuracy in data 
gathering using ranked set sampling. 
The problem of making inferences based on ranked set sample from a particular distribution hasreceived 
attention of many researchers. For literature on this topic one can refer to Lam, Sinha, and Wu [12] in 
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whichunbiased estimators of the parameters of two-parameter exponential distribution with their variances 
were derived based on RSS. They made a comparison between these estimators with the estimators obtained 
based on simple random sampling. Sarikavanij et al.[21] studied the location and scale estimators of two-
parameter exponentialdistribution using simple random sample and ranked set sample in terms of generalized 
variance. Al-Saleh and Al-Hadrami[4] considered estimation of mean of exponential distribution using 
moving extreme rank set sampling.  Chen, Bai, and Sinha[11] discussed applications of RSS. Abu-Dayyeh 
and Al-Sawi[1] obtained modified maximum likelihood estimator of mean of exponential distribution based 
on moving extreme rank set sampling.  Dong et al. [12]proposed reliability estimates in case of exponential 
distribution using rank set sampling with unequal samples. Mahdizadeh and Zamanzade [16] used multistage 
ranked set sampling for estimation of a symmetric distribution function. 
Most of the rank set sampling schemes reported in the literature are based on the samples from a single 
production line only. When the product comes from more than one product line, then the joint sampling 
scheme appears.  
Recently, in life testing experiments recently the trend is to use joint censoring instead of single sample 
censoring scheme. There are situations in which one wishes to compare different populations. Suppose the 
products are being manufactured by two different lines under the same conditions. Two independent samples 
of sizes �� and ��selected from these two lines respectively, and are put simultaneously on a life testing 
experiment. Such a scheme is called joint testing scheme. Recently, two sample joint censoring schemes 
become more popular for a life testing experiment mainly to optimize time and cost. 
Bhattacharya [9] reviewed the developments in parametric and non-parametric methods based on joint type-II 
censoring scheme. Balakrishnan and Rasouli [8] first considered the likelihood inference for two exponential 
populations under a joint type-II censoring scheme and compared the performance of estimators with those 
based on approximate Bayesian method.  
Rasouli and Balakrishnan [19] derived exact likelihood inference for two exponential distributions based on 
joint progressive type- II censoring scheme. Shafay, Balakrishnan, and Abdel-Aty [22] considered Bayesian 
inference based on joint type-II censored sample from two exponential populations with the use of squared-
error, linear-exponential and general entropy loss functions. Balakrishnan and Feng [7] generalized the work 
done by Balakrishnan and Rasouli[8] by considering joint type-II censoring scheme in case of � independent 
exponential distributions. Ashour and Abo-Kasem [5] employed classical and Bayesian estimation in case of 
two generalized exponential distributions based on joint type-II censoring scheme.  
To the best of our knowledge, inference based on joint rank set sampling scheme is not available in the 
literature. Because of the importance of joint sample in making inference for the products from different 
production lines, we propose two new rank set sampling schemes based on joint sample so called joint rank 
set sampling (JRSS) and joint modified rank set sampling (JMRSS) schemes.We have considered perfect 
ranking, i.e. no error in ranking. We use two independent samples from two exponential distributions and 
these samples are jointly used to obtain a rank set sample.We propose maximum likelihood estimators and 
Bayes estimators to estimate the parameters of the two joint exponential populations. 
The rest of the paper is organized as follows. In Section 2, joint rank set sampling scheme is developed. The 
maximum likelihood (ML) estimation and Bayes estimation of the parameters of the two exponential 
distributions are considered. Joint modified rank set sampling scheme is proposed and the parameters of the 
joint model are estimated using the method of ML and Bayes estimation in Section 3.  Section 4 deals with 
ML estimation and Bayes estimation of the parameters using joint simple random samples.  To investigate 
and compare the performance of the propose estimators presented in this paper, a simulation study is carried 
out.  A real life example is also considered to illustrate the estimation methods discussed in the previous 
sections. The outcomes of the study are presented in Section 5. Finally, some conclusions are provided in 
Section 6. 
 

2. JOINT RANK SET SAMPLING SCHEME  

In this section we develop the joint rank set sampling scheme and estimation of the parameters of the model 
based on JRSS. 
Suppose there are two lines of similar products and it is important to compare the relative merits of these two 
products. A sample of size �� is drawn from one product line (say A) and another sample of size �� is drawn 
from the other product line (say B).  
Let � and � be random variables under study for the product type A and type B respectively.  
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We assume that random variables � and � follow exponential distribution with mean ��, ��>0  and ��, ��> 0 
respectively. Their pdf and cdf are respectively given below, 
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��;     ��(�) =  1 − � 
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��,       � > 0                                                            (1) 
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We use the following process to obtain joint ranked set sample of size � =  ��.  
Algorithm to obtain joint ranked set sample: 

Step 1: Randomly select �� elements (��, ��, … , ���
)from product type A and �� 

elements(��, ��, … , ���
) from product type Band combine them to create a joint sample of � = �� + �� 

elements.  
Step 2: Arrange all � elements of the joint sample in ascending order, visually or by based  
on actual measurements. 
Step 3: Repeat the above two steps � times, so that we have � sets each of with m ordered  
elements. 
Step 4: Select and quantify the �-th minimum from the �-th set having � elements, 
� = 1, 2, … , � to get a new set of size �, which is called the joint ranked set sample. 
Step 5: Repeat steps 1 – 4, for � times (cycles) to increase the size of joint ranked set sample to � =
 ��. Thus, we get k joint ranked set samples each of size m. 

Denote ���  as the �-th element of �-th joint ranked set sample in �-th cycle,  � = 1,2, … , �; � =  1,2, … , �. 

Maximum Likelihood Estimation under JRSS 
The likelihood function based on the observations  ���  ;  � = 1,2, … , �;  � =  1,2, … , �,obtained in joint 

ranked set sample, is constructed as 
� =  �(��, ��, �, �)  
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where ��� =  �
1, if ���is from X − sample 

0,   if ��� is from Y − sample 
 , � = 1,2, … , �; � = 1, 2, … , �. 

���  = Number of � observations less than or equal to ���  in ��� set of combined samples in ���  cycle. 

���  = Number of � observations greater than��� in ��� set of combined samples in ���cycle. 

���  = � − 1 − ���= Number of Y observations less than or equal to ��� in ��� set of combined 

samples in ���cycle 
���  = � − 1 − ���  = Number of � observations greater than or equal to��� in ��� set of combined 

samples in���cycle 
 
From (3), with (1) and (2), the log-likelihood function is given by  
l = log� = ����(��, ��, �, �) 
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Now, by taking partial derivatives of the log-likelihood function with respect to �� and ��, the 
likelihood equations can be obtained as follows, 
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By simplifying, (5) and (6) we get the equations 
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Hence, the maximum likelihood estimates of the parameters �� and �� can be obtained by solving the 
equations (7) and (8) by the numerical method of iteration such as the Newton-Raphson method.  
Now, to obtain asymptotic variance of the ML estimators, we consider second derivatives with respect to �� 
and ��of log likelihood function given in (4) as 
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Hence the observed asymptotic variance of ML estimators of �� and �� are given by 
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2.1.  Bayes Estimation Using JRSS 
 
One of the widely used method of estimation of the parameters of a distribution is the Bayes estimation.In this 
method, for estimating the parameter θ, by the estimator ��,the researcher needs a prior distribution, �(�) for 

θ, as well as a loss function,�(�, ��) for estimation process. The Bayes estimate of θ is obtained by minimizing 

the posterior risk �[�(�, ��)��]with respect to θ. In literature, for simplicity, the squared error loss 

function(SELF) ���, ��� = �� − ���
�
 is used for estimation problems. Under the SE loss function, the Bayes 

estimatorof θ is given by the mean of the posterior distribution. This loss function is convex and symmetric, 
and assigns equal losses to the overestimation and underestimation. 
In this section, we provide the Bayes estimation under squared error loss function (SELF) for unknown 
parameters �� and �� . To compute the Bayes estimators of the unknown parameters, we need to consider 
some prior distributions of parameters �� and ��. We assume inverted gamma priors (������(��, ��)) for 
two parameters having pdf  is given by 
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From the likelihood function of joint rank set sampling given in (3) and using (1), (2) and (13), the joint 
posterior distribution of �� and ��given � can be derived as, 
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Here, ℎ����|�� and ℎ����|�� are considered as marginal posterior distributions of parameters �� and �� 

respectively. They can be represented as, 
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Hence, the Bayes estimates of ��and �� under SELF will be 
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and 
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As, ℎ����|�� and ℎ����|��are complex functions, Bayes estimates of �� and ��cannot be obtained in a 

closed form. Many approximation methods are available in the literature. We use the importance 
sampling method to obtain Bayes estimates of ��and ��. Among others, some further applications of this 
method can also be found in Kundu and Pradhan [13], Rastogi and Tripathi [20], Sultana et al. [23]. 
The algorithm of the method is as follows: 
Step 1: Decide the values of  �(= �� + ��) and �. 
Step 2: Generate two independent samples of sizes ��and �� respectively from exponential distribution 
with parameter ��and ��. 
Step 3: Repeat the steps 1 and 2 for m times.  
Step 4: Determine the ranked set sample  ���, ���, … , ���. 
Step 5: Repeat the steps 1 to 4 for k times to get joint ranked set samples   ���, ���, … , ���; � =

1,2, … , � for � cycles. 
Step 6: Generate �values,  say ���, ���, … , ��� of �� from inverted gamma 

distribution �������∑ ∑ ���
�
���

�
��� + ��, �� + ���. 

Step 7: Generate � values,say���, ���, … , ���of �� from inverted gamma 

distribution �������∑ ∑ (1 − ���
�
��� )�

��� + ��, �� + ���. 

Step 8: Based on � values of �� and ��, compute � values of functions ℎ��(��) and  ℎ��(��) 
respectively from  (20) and (21). 
Step 9: Under SELF, the Bayes estimate of �� and �� can be obtained as 
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3. JOINT MODIFIED RANK SET SAMPLING 
 
In this section we develop the joint modified rank set sampling and estimation of the parameters of the model 
based on ML estimation and Bayes estimation. The detailed process of generating JMRSS is described as 
follows. 
Step 1: Randomly select �� elements ( ��, ��, … , ���

) from product type A and �� elements (��, ��, … , ���
) 

from product type B and combine them to create a joint sample of  
� = �� + �� elements.  
Step 2: Arrange all � elements of the joint sample in ascending order, visually or by based on actual 
measurements. 
Step 3: Repeat the above two steps � times so that we have m sets each of with m ordered elements. 
Step 4: Select and quantify the smallest element from all �sets, each having � elements to get a  
new set of size �, which is called the jointmodified ranked set sample. 
Step 5.Repeat steps 1– 4, for � times (cycles) to increase the size of joint rank set sample to  
� =  ��. Thus, we have � joint modified ranked set samples each of size �. 
Denote �(�)�� as the smallest element of �-th joint ranked set sample in �-th cycle,  � = 1,2, … , �;  � =

 1,2, … , �. 
 
3.1. Maximum Likelihood Estimation under JMRSS 
 
The likelihood function based on observations �(�)��  ;   � = 1,2, … , �;  � =  1,2, … , �, can be constructed as 

� = �(��, ��, �, �) = ∏ ∏
�!
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��� .�
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Note that the above likelihood function will be a particular case of the likelihood function in (3)   
for  ��� =  ��� = 0 for all � = 1,2, … , �;  � =  1,2, … , �. 

Using (1) and (2) in (26), the log likelihood function can be obtained as 
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Differentiating (27) with respect to �� and �� and comparing them with zero, maximum likelihood estimates 
of the parameters  �� and ��can be derived as  
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To obtain observed asymptotic variances of the estimators we differentiae log likelihood function in (27) two 
times with respect �� and �� separately,the results are 
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Hence the observed asymptotic variances of MLEs of �� and ��in case of JMRSS can be computed as 
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3.2. Bayes Estimation under JMRSS 
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As discussed in Section3.1, the likelihood function under the joint MRSS becomes a particular case of the 
likelihood function under the joint RSS; the marginal posterior distributions of �� and �� can be directly 
obtained by substituting  ��� = 0 and ��� = 0 in (18) and (19) as 

ℎ����|�� = �������∑ ∑ ���
�
���

�
��� + ��,  �� + ���,                                               (34) 

and  
ℎ����|�� = �������∑ ∑ (1 − ���

�
��� )�

��� + ��, �� + ���.                                      (35) 

As the Bayes estimates����� ��� �����of �� and �� under SELF are nothing but their posterior means, the 
estimators are given by 
����� = ���(��) = Mean of inverted gamma distribution in (34) 

                            =  
 �����

∑ ∑ ���
�
���

�
��� �����

 ,                                                                           (36) 

and  
����� = ���(��) = Mean of inverted gamma distribution in (35) 

                            = 
�����

∑ ∑ (�����
�
��� )�

��� �����
 .                                                                                                (37) 

 
 
4. JOINT SIMPLE RANDOM SAMPLING(JSRS) 
 
To compare the performance of proposed estimators obtained under joint RSS and joint MRSS with the 
estimators obtained under joint simple random sampling, we derive MLE and Bayes estimates of the 
parameters in case of joint simple random sampling. 
 
4.1. MaximumLikelihood Estimationunder JSRS 
 
Consider a joint simple random sample of size � = �� where � = �� + �� is the size of a set and � is 
number of cycles. Thus, we have two independent random samples of sizes �� = ��� and  �� = ��� 
respectively from, product type A (X- Sample) and product type B (Y-sample). 
The likelihood function under JSRS becomes 

� =  � �(��; ��)

��

���

� �(��; ��)

��

���

 

Using (1) and (2) it reduces to 

 � =
�

��
�� �

�
∑ ��

��
���
��

�

��
�� �

�
∑ ��

��
���

��  .                                                                                    (38) 

Hence the log likelihood equation will be 

� = ���� = −�� log(��) −
∑ ��

��
���

��

− ��log (��) −
∑ ��

��
���

��

 

The maximum likelihood estimates of the parameters can be easily derived as 

������ =
∑ ��

��
���

��
,                                                                                                             (39) 

and 

������ =
∑ ��

��
���

��
.                                                                                                              (40) 

The asymptotic variances of the estimators are given by  

��������� = −
�

���

���
��

���������

,                                                                                            (41) 

and 

��������� = −
�

���

���
��

���������

.                                                                                             (42) 

where 
���

���
� =

��

��
� −

� ∑ ��
��
���

��
� .                                                                                                                                (43) 
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and 
���

���
� =

��

��
� −

� ∑ ��
��
���

��
� .                                                                                                                         (44) 

 
4.2. Bayes Estimation 
Considering the same inverted gamma priors used in (13) for the parameters of the exponential distributions 
and the likelihood function in (38),the joint posterior distribution of ��and �� can be constructed as 

ℎ� ���, ��|� , �� ∝ � ��(��)��(��)  ∝
1

��
��

�
�

∑ ��
��
���

��
��

��

Γ��

��
�(����)�

�
��
��

1

��
��

�
�

∑ ��
��
���

��
��

��

Γ��

��
�(����)�

�
��
��  

=
��

��

Γ��

��
�(�������)�

�
�∑ ��

��
���

����

��
��

��

Γ��

��
�(�������)�

�
�∑ ��

��
���

����

�� = ℎ����|��ℎ� ���|�� 

which is the product of two marginal posterior distributions of �� and �� where, 

ℎ����|�� = ��������� + ��, ∑ ��
��
��� + ���,                                                          (45)  

and  

ℎ� ���|�� = ��������� + ��, ∑ ��
��
��� + ���.                                                                                (46)   

HenceBayes estimates of parameters��and ��under SELF,are respectively given by the mean of the inverted 
gamma distributions in (45) and (46) as  

���� =
�∑ ��

��
��� ����

�������
 ,                                                                                                       (47)   

and  

���� =
�∑ ��

��
���

����

�������
.                                                                                                                                  (48)     

5. NUMERICAL STUDY 

In this section, a simulation study is conducted to examine the performances of proposed estimators obtained 
under JRSS and JMRSS schemes. A real example is presented to illustrate the methods described in the paper. 

5.1. Simulation Study 

We fix the values of the parameters ��  = 1.5 and �� = 3.5. Two independent random samples of sizes 
(��,  ��) = (3, 4), (4, 4), and (4, 3) are generated from the exponential distributions with parameters 
��and �� respectively. The experiment is repeated for � = 4, 5, 6 cycles (times). Based on the algorithm 
described in the earlier sections, joint RSS, joint MRSS and joint SRS are obtained and we compute the 
MLEs and Bayes estimates under the squared error loss function. The process is repeated for 1000 runs and 
average values of all the estimators and means squared errors (MSEs) are determined. 
The values of hyper parameters of the prior distributions are determined so that the prior means and variances 
are equal to the values of means and variances obtained by MLE respectively for the parameters of the 
underlying distribution. 
All of the computations are performed using the R language. We tabulate the results of the simulation study in 
Tables 1-10. In Table 1, we summarize the results based on different values of ��, �� and �. The results 
under Bayes estimation are presented in Table 2 to Table 10 for different values of ��, ��, � and hyper 
parameters.    
In all the tables the first, second and third entry denote estimate, bias and MSE respectively.  

Table 1.Results for MLE 
�� �� � JRSS JMRSS JSRS 

�� �� �� �� �� �� 

3 4 4 1.533 3.5459 1.5446 3.8243 1.4891 3.4401 

0.033 0.0459 0.0446 0.3243 -0.0109 -0.0599 

0.0743 0.2281 2.8504 4.689 0.1765 0.6194 

5 1.4832 3.5397 1.5496 3.7529 1.4071 3.4312 

-0.017 0.0397 0.0496 0.2529 -0.0929 -0.0688 

0.0442 0.207 2.6739 3.8807 0.1776 0.586 
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6 1.5058 3.488 1.528 3.6004 1.521 3.5012 

0.0058 -0.012 0.028 0.1004 0.021 0.0012 

0.0403 0.1445 2.2179 2.914 0.1061 0.576 

4 3 4 1.5146 3.5172 1.5506 3.8733 1.4148 3.6382 
 

0.0146 0.0172 0.0506 0.3733 -0.0852 0.1382 
 

0.0485 0.2781 2.9988 4.8178 0.1389 1.0424 

5 1.4884 3.6659 1.4956 3.7889 1.4839 3.5893 
 

-0.012 0.1659 -0.0044 0.2889 -0.0161 0.0893 
 

0.0267 0.281 2.6894 5.7809 0.0886 0.8074 

6 1.482 3.5044 1.5524 3.9596 1.489 3.5426 
 

-0.018 0.0044 0.0524 0.4596 -0.011 0.0426 
 

0.0291 0.2364 3.0346 5.1307 0.1027 0.5575 

4 4 4 1.4778 3.5743 1.5078 3.7468 1.4666 3.355 
 

-0.022 0.0743 0.0078 0.2468 -0.0334 -0.145 
 

0.0389 0.219 2.5929 3.5217 0.1543 0.6231 

5 1.5081 3.4981 1.4664 3.8776 1.5057 3.4951 
 

0.0081 -0.002 -0.0336 0.3776 0.0057 -0.0049 
 

0.025 0.1722 3.0641 5.0489 0.088 0.6951 

6 1.5045 3.4624 1.5089 3.57 1.4607 3.5896 
 

0.0045 -0.038 0.0089 0.07 -0.0393 0.0896 
 

0.0276 0.1498 2.2289 2.9091 0.1037 0.513 

Table 2.Results for Bayes estimation for (��, ��) = (3, 4) and� = 4 
�� �� �� �� JRSS JMRSS JSRS 

�� �� �� �� �� �� 

175 300 140 550 1.6825 3.8551 1.7056 3.9229 1.7073 3.9136 

0.1825 0.3551 0.2056 0.4229 0.2073 0.4136 

0.0037 0.0278 0.0013 0.0075 0.0008 0.0068 

200 300 160 550 1.5193 3.4954 1.5021 3.461 1.5044 3.4563 

0.0193 -0.0046 0.0021 -0.039 0.0044 -0.044 

0.0019 0.0178 0.0012 0.0047 0.0004 0.0052 

225 300 180 550 1.3676 3.1721 1.3536 3.1038 1.3462 3.1093 

-0.132 -0.3279 -0.1464 -0.396 -0.1538 -0.391 

0.0014 0.0115 0.0007 0.003 0.0005 0.0051 

200 250 160 500 1.3005 3.2448 1.277 3.1574 1.2669 3.1779 

-0.2 -0.2552 -0.223 -0.343 -0.2331 -0.322 

0.0017 0.0152 0.001 0.0038 0.0006 0.0082 

200 300 160 550 1.5193 3.4954 1.5021 3.461 1.5092 3.4639 

0.0193 -0.0046 0.0021 -0.039 0.0092 -0.036 

0.0019 0.0178 0.0012 0.0047 0.0006 0.0053 

200 350 160 600 1.7207 3.7463 1.7414 3.7538 1.7433 3.7529 

0.2207 0.2463 0.2414 0.2538 0.2433 0.2529 

0.0024 0.0241 0.0011 0.0047 0.0006 0.0049 

 
Table 3.Results for Bayes estimation for (��, ��) = (3, 4) and � = 5 

�� �� �� �� JRSS           JMRSS           JSRS 
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�� �� �� �� �� �� 

175 300 140 550 1.6761 3.8891 1.6996 3.9213 1.7066 3.8911 

0.1761 0.3891 0.1996 0.4213 0.2066 0.3911 

0.0039 0.0213 0.0014 0.01 0.001 0.0109 

200 300 160 550 1.5001 3.51 1.5107 3.4579 1.5087 3.4644 

0.0001 0.01 0.0107 -0.042 0.0087 -0.036 

0.0034 0.0245 0.0011 0.0053 0.0007 0.0056 

225 300 180 550 1.3704 3.2102 1.3516 3.0963 1.3505 3.1128 

-0.13 -0.2898 -0.1484 -0.404 -0.1495 -0.387 

0.0015 0.0155 0.0008 0.004 0.0006 0.0061 

200 250 160 500 1.3081 3.2968 1.2815 3.176 1.2702 3.203 

-0.192 -0.2032 -0.2185 -0.324 -0.2298 -0.297 

0.0023 0.0208 0.0011 0.0052 0.0007 0.0072 

200 300 160 550 1.5001 3.51 1.5107 3.4579 1.5065 3.4541 

0.0001 0.01 0.0107 -0.042 0.0065 -0.046 

0.0034 0.0245 0.0011 0.0053 0.0008 0.0086 

200 350 160 600 1.7103 3.7661 1.7295 3.7566 1.7351 3.7371 

0.2103 0.2661 0.2295 0.2566 0.2351 0.2371 

0.0026 0.0278 0.0011 0.0054 0.0007 0.0086 

 
Table 4.Results for Bayes estimation for (��, ��) = (3, 4) and � = 6 

�� �� �� �� JRSS           JMRSS           JSRS 

�� �� �� �� �� �� 

175 300 140 550 1.6765 3.9441 1.6894 3.9303 1.7033 3.8953 

0.1765 0.4441 0.1894 0.4303 0.2033 0.3953 

0.0042 0.0485 0.0017 0.0079 0.0013 0.0102 

200 300 160 550 1.52 3.5614 1.5074 3.4542 1.5041 3.4599 

0.02 0.0614 0.0074 -0.0458 0.0041 -0.0401 

0.0034 0.0305 0.0012 0.0066 0.0009 0.0064 

225 300 180 550 1.38 3.2467 1.3559 3.1145 1.3493 3.1184 

-0.12 -0.2533 -0.144 -0.3855 -0.151 -0.3816 

0.0019 0.0214 0.0009 0.0054 0.0009 0.0076 

200 250 160 500 1.3249 3.3529 1.2807 3.1801 1.276 3.203 

-0.175 -0.1471 -0.219 -0.3199 -0.224 -0.297 

0.0031 0.0273 0.0009 0.0065 0.0007 0.0082 

200 300 160 550 1.52 3.5614 1.5074 3.4542 1.5008 3.465 

0.02 0.0614 0.0074 -0.0458 0.0008 -0.035 

0.0034 0.0305 0.0012 0.0066 0.0012 0.0076 

200 350 160 600 1.7124 3.7752 1.7326 3.748 1.7439 3.743 

0.2124 0.2752 0.2326 0.248 0.2439 0.243 

0.0028 0.0358 0.0014 0.0079 0.0009 0.0073 

 
Table 5.Results for Bayes estimation for(��, ��) = (4, 3) and � = 4 

�� �� �� �� JRSS           JMRSS           JSRS 

�� �� �� �� �� �� 
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175 300 140 550 1.6749 3.898 1.7073 3.9316 1.706 3.9257 

0.1749 0.398 0.2073 0.4316 0.206 0.4257 

0.0033 0.0216 0.0014 0.0052 0.0011 0.0084 

200 300 160 550 1.5132 3.4864 1.5055 3.4575 1.5064 3.4682 

0.0132 -0.0136 0.0055 -0.0425 0.0064 -0.0318 

0.0029 0.0154 0.0011 0.0027 0.0007 0.0068 

225 300 180 550 1.3754 3.1477 1.3495 3.0892 1.3526 3.0911 

-0.125 -0.3523 -0.151 -0.4108 -0.147 -0.4089 

0.0023 0.0073 0.0008 0.0024 0.0006 0.004 

200 250 160 500 1.3142 3.2183 1.2797 3.156 1.2732 3.1749 

-0.186 -0.2817 -0.22 -0.344 -0.227 -0.3251 

0.0031 0.0149 0.0011 0.0024 0.0007 0.0057 

200 300 160 550 1.5132 3.4864 1.5055 3.4575 1.5064 3.4682 

0.0132 -0.0136 0.0055 -0.0425 0.0064 -0.0318 

0.0029 0.0154 0.0011 0.0027 0.0007 0.0068 

200 350 160 600 1.7241 3.7381 1.7263 3.7595 1.7435 3.764 

0.2241 0.2381 0.2263 0.2595 0.2435 0.264 

0.0031 0.0142 0.0014 0.0049 0.0009 0.0054 

 
Table 6.Results for Bayes estimation for (��, ��) = (4, 3) and � = 5 

�� �� �� �� JRSS           JMRSS           JSRS 

�� �� �� �� �� �� 

175 300 140 550 1.6856 3.8514 1.6997 3.9421 1.698 3.9075 

0.1856 0.3514 0.1997 0.4421 0.198 0.4075 

0.0046 0.0238 0.002 0.0093 0.0013 0.0077 

200 300 160 550 1.5156 3.4858 1.5107 3.4644 1.5068 3.467 

0.0156 -0.014 0.0107 -0.036 0.0068 -0.033 

0.0039 0.0173 0.0013 0.0046 0.0007 0.0043 

225 300 180 550 1.3796 3.1849 1.3571 3.0891 1.3565 3.1062 

-0.1204 -0.315 -0.143 -0.411 -0.1435 -0.3938 

0.0024 0.0133 0.0008 0.0037 0.0008 0.0065 

200 250 160 500 1.3283 3.2261 1.2855 3.1641 1.277 3.1754 

-0.1717 -0.274 -0.215 -0.336 -0.223 -0.3246 

0.0033 0.015 0.0013 0.0032 0.0009 0.005 

200 300 160 550 1.5156 3.4858 1.5107 3.4644 1.5068 3.467 

0.0156 -0.014 0.0107 -0.036 0.0068 -0.033 

0.0039 0.0173 0.0013 0.0046 0.0007 0.0043 

200 350 160 600 1.7103 3.7467 1.7308 3.7629 1.7379 3.7424 

0.2103 0.2467 0.2308 0.2629 0.2379 0.2424 

0.0035 0.0169 0.0012 0.0048 0.0008 0.006 

  
Table 7. Results for Bayes estimation for (��, ��) = (4, 3) and � = 6 

�� �� �� �� JRSS           JMRSS           JSRS 

�� �� �� �� �� �� 

 300 140 550 1.6943 3.8876 1.6863 3.9266 1.7012 3.9016 
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0.1943 0.3876 0.1863 0.4266 0.2012 0.4016 

0.0064 0.0219 0.0019 0.0075 0.0015 0.0071 

200 300 160 550 1.5331 3.4921 1.5101 3.469 1.5068 3.4717 

0.0331 -0.008 0.0101 -0.031 0.0068 -0.0283 

0.0034 0.0226 0.0016 0.0044 0.0011 0.009 

225 300 180 550 1.3964 3.1843 1.3615 3.0944 1.3582 3.1252 

-0.1036 -0.316 -0.139 -0.406 -0.1418 -0.3748 

0.0023 0.0176 0.0011 0.0032 0.0009 0.0059 

200 250 160 500 1.3456 3.2628 1.2904 3.1677 1.2836 3.2097 

-0.1544 -0.237 -0.21 -0.332 -0.2164 -0.2903 

0.0025 0.0276 0.0013 0.0037 0.0013 0.008 

200 300 160 550 1.5331 3.4921 1.5101 3.469 1.5068 3.4717 

0.0331 -0.008 0.0101 -0.031 0.0068 -0.0283 

0.0034 0.0226 0.0016 0.0044 0.0011 0.009 

200 350 160 600 1.7282 3.7484 1.7221 3.7662 1.7367 3.7285 

0.2282 0.2484 0.2221 0.2662 0.2367 0.2285 

0.0049 0.0229 0.0018 0.0056 0.0011 0.0077 

 
Table 8.Results for Bayes estimation for (��, ��) = (4, 4) and � = 4 

�� �� �� �� RSS MRSS SRS 

�� �� �� �� �� �� 

175 300 140 550 1.6815 3.898 1.7006 3.9346 1.7034 3.8987 

0.1815 0.398 0.2006 0.4346 0.2034 0.3987 

0.0038 0.0313 0.0014 0.0066 0.001 0.009 

200 300 160 550 1.5095 3.525 1.5078 3.4509 1.5084 3.4681 

0.0095 0.025 0.0078 -0.0491 0.0084 -0.0319 

0.0026 0.0258 0.0013 0.0046 0.0008 0.0064 

225 300 180 550 1.3755 3.1831 1.3533 3.0836 1.3502 3.108 

-0.1245 -0.3169 -0.1467 -0.4164 -0.1498 -0.392 

0.0021 0.0191 0.0007 0.0036 0.0006 0.0064 

200 250 160 500 1.3213 3.2459 1.2798 3.1812 1.2723 3.1747 

-0.1787 -0.2541 -0.2202 -0.3188 -0.2277 -0.3253 

0.0029 0.0184 0.0009 0.005 0.0007 0.0074 

200 300 160 550 1.5095 3.525 1.5078 3.4509 1.5084 3.4681 

0.0095 0.025 0.0078 -0.0491 0.0084 -0.0319 

0.0026 0.0258 0.0013 0.0046 0.0008 0.0064 

200 350 160 600 1.7142 3.7525 1.729 3.77 1.7345 3.7575 

0.2142 0.2525 0.0014 0.0046 0.2345 0.2575 

0.0035 0.0208 0.229 0.27 0.0006 0.0077 

 
Table 9.Results for Bayes estimation for(��, ��) = (4, 4) and � = 5 

�� �� �� �� RSS MRSS SRS 

�� �� �� �� �� �� 

175 300 140 550 1.6984 3.9542 1.6915 3.934 1.7031 3.9065 

0.1984 0.4542 0.1915 0.434 0.2031 0.4065 
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0.0068 0.0315 0.0017 0.0091 0.0012 0.0085 

200 300 160 550 1.5283 3.5575 1.5076 3.464 1.4998 3.4702 

0.0283 0.0575 0.0076 -0.036 -0.0002 -0.0298 

0.0033 0.0232 0.001 0.005 0.0011 0.0087 

225 300 180 550 1.3911 3.2498 1.3547 3.0965 1.3514 3.1243 

-0.1089 -0.2502 -0.1453 -0.4035 -0.1486 -0.3757 

0.004 0.0132 0.001 0.0034 0.0008 0.0056 

200 250 160 500 1.3387 3.2995 1.2901 3.173 1.2788 3.1877 

0.0031 0.0245 -0.2099 -0.327 -0.2212 -0.3123 

-0.1613 -0.2005 0.0013 0.0046 0.0008 0.0075 

200 300 160 550 1.5283 3.5575 1.5076 3.464 1.4998 3.4702 

0.0283 0.0575 0.0076 -0.036 -0.0002 -0.0298 

0.0033 0.0232 0.001 0.005 0.0011 0.0087 

200 350 160 600 1.7183 3.7822 1.731 3.7451 1.7398 3.7441 

0.2183 0.2822 0.231 0.2451 0.2398 0.2441 

0.0049 0.0242 0.0014 0.0073 0.0009 0.0058 

 
Table 10.Results for Bayes estimation for (��, ��) = (4, 3) and � = 6 
�� �� �� �� RSS MRSS SRS 

�� �� �� �� �� �� 

175 300 140 550 
1.7089 3.9603 1.6853 3.9097 1.6983 3.8739 

0.2089 0.4603 0.1853 0.4097 0.1983 0.3739 

0.006 0.0394 0.0015 0.0123 0.0011 0.0119 
200 300 160 550 

1.5359 3.6025 1.5076 3.4626 1.5078 3.4715 

0.0359 0.1025 0.0076 -0.037 0.0078 -0.029 

0.005 0.0298 0.0018 0.0043 0.001 0.0098 
225 300 180 550 

1.3988 3.2872 1.3598 3.1032 1.36 3.1332 

-0.101 -0.213 -0.14 -0.397 -0.14 -0.367 

0.0026 0.0287 0.0013 0.004 0.0008 0.0062 
200 250 160 500 

1.3509 3.3997 1.2912 3.1792 1.2814 3.1825 

-0.149 -0.1 -0.209 -0.321 -0.219 -0.318 

0.0033 0.0327 0.0012 0.0046 0.0008 0.0078 
200 300 160 550 

1.5359 3.6025 1.5076 3.4626 1.5078 3.4715 

0.0359 0.1025 0.0076 -0.037 0.0078 -0.029 

0.005 0.0298 0.0018 0.0043 0.001 0.0098 
200 350 160 600 

1.74 3.8534 1.7319 3.7465 1.727 3.7345 

0.24 0.3534 0.2319 0.2465 0.227 0.2345 

0.0055 0.0312 0.0021 0.0084 0.001 0.0081 

 
From these tables, it can be observed that that all of the estimates of the parameters have satisfactory 
performances. From the simulation results, it is seen that the Bayes estimates of ��and ��perform better than 
those obtained by using MLEs in terms of minimum MSEs for both the types of joint RSS as well as for joint 
SRS schemes. The MLEs obtained under joint RSS have smaller MSE than that of under joint MRSS and 
joint SRS. In case of Bayes estimation, JMRSS performs well compared to JRSS.  We can observe that as the 
values of hyper parameters �� and �� increase, the MSE for ��and �� decrease in case of JRSS, JMRSS and 
JSRS. Increase in the values of �� and ��has a negative effect on bias of ��and �� but increase in the values 
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of �� and ��has an erratic effect on bias. Increase in number of cycles(�) does not have much effect on MSE 
or bias of ��and ��. 
 
5.2. Real Example 
To exemplify the results obtained in the paper, we use the data presented by Proschan [18] on intervals 
between failures (in hours) of the air-conditioning system of a fleet of 13 Boeing 720 jet airplanes. He has 
shown that the failure time distribution of the air-conditioning system for each of the planes was well fitted by 
exponential distributions. For the purpose of illustration, we chose the planes “7913” and “7914,” and the 
corresponding failure time data are presented in Table 11.This data set is also used by Rasouli and 
Balakrishnan[19]. We assume two exponential distributions with means �� and �� for the 24 and 27 
observations in the data of planes “7914” and “7913” respectively. 

Table11.Failure times of air-conditioning systems in two airplanes 
Plane Failure times 
7914 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97, 102, 139,188, 197, 210 

 
7913 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106,111, 141, 142, 163, 191, 206, 216 

 
Now, suppose that two independent random samples of sizes��= 3 and�� = 4 are generated from the data set 
of planes “7914” and “7913” respectively. The experiment is repeated for � = 6 cycles (times). A joint rank 
set sample and joint modified rank set sample are obtained by combining both the samples observations using 
the algorithm described in the appropriate sections. The process is repeated for 1000 runs and average values 
of all the estimators and mean squared errors (MSEs) are calculated. The results in case of proposed 
estimators are shown in the Table 12 and Table 13 respectively. 

Table 12. Results for MLE for (��, ��) = (3, 4) and � = 6  
JRSS JMRSS JSRS 

 
�� �� �� �� �� �� 

Estimate 62.2123 80.5885 63.9823 85.9069 64.0602 76.8497 

Bias -1.9127 3.7737 -0.1427 9.0921 -0.0648 0.0349 

MSE 3.9931 14.5941 1.2331 86.0181 0.7231 0.2243 

 
Table 13. Results for Bayes estimation for (��, ��) = (3, 4) and � = 6 

�� �� �� �� JRSS JMRSS JSRS 

�� �� �� �� �� �� 

5710 347443 26478 1933022 60.8559 73.0352 60.8534 73.0220 60.8661 73.0116 

-3.2691 -3.7796 -3.2716 -3.7928 -3.2589 -3.8032 

0.0197 0.0027 0.0084 0.0019 0.0006 0.0000 

5710 365730 26478 2034760 64.0256 76.8489 64.0666 76.8507 64.0621 76.8502 

-0.0994 0.0341 -0.0584 0.0359 -0.0629 0.0354 

0.0153 0.0035 0.0106 0.0028 0.0005 0.0000 

5710 384016 26478 2136498 67.2092 80.6872 67.2421 80.6964 67.2581 80.6894 

3.0842 3.8724 3.1171 3.8815 3.1331 3.8746 

0.0154 0.0034 0.0100 0.0023 0.0006 0.0000 

5425 365730 25154 2034760 67.3677 80.9012 67.4082 80.9032 
67.4162 

80.8912 

3.2427 4.0864 3.2832 4.0883 3.2912 4.0764 

0.0163 0.0033 0.0106 0.0031 0.0007 0.0000 

5996 365730 27802 2034760 61.0111 73.2095 60.9985 73.1975 61.0165 73.1934 

-3.1139 -3.6053 -3.1265 -3.6174 -3.1085 -3.6214 

0.0122 0.0024 0.0084 0.0021 0.0006 0.0000 
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In case of real data, from Table 12 and Table 13, It can be seen that we have similar conclusions as observed 
in a simulation study. 

6. CONCLUSIONS 

In this paper, joint RSS and joint MRSS are proposed for estimating the unknown parameters of two the 
exponential distributions. Maximum likelihood estimation and Bayes estimation under squared error loss 
function has been considered.  Performances of the proposed estimators have been compared with that of 
based on joint SRS in terms of their MSEs. The computational results show that the Bayesian estimation 
based on the squared error loss function performs better than the ML estimation. Performance of the Bayes 
estimators depend on the values of the hyper parameter �� and ��, but not on the values of �� and ��. 
Although we have provided the results mainly for squared error loss function in case of Bayes estimation, our 
method can be applied for asymmetric loss functions too, namely linear exponential  loss function, general 
entropy loss function. More work is needed along this direction. 
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