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ABSTRACT 

In the literature we can find a classification of randomized response techniques as compulsory and optional. In this work we 
present a compulsory randomized response technique with the purpose of having a double random scrambling of the sensitive 

variable Y through a Bernoulli experiment and a Ri report, and that this translates into a greater protection of the information 

it provides the interviewee.  The document specifies the properties of the population mean of the sensitive variable Y with 
simple random sampling with replacement, an extension to stratification is made, the optimal allocation and the gain in 

precision are specified. Finally, simulation is performed to evaluate the accuracy and efficiency of the proposed estimators 
using real data on the perception of violence in Mexico. 
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RESUMEN 

En la literatura podemos encontrar una clasificación de las técnicas de respuestas aleatorizadas como obligatorias y 
opcionales. En este trabajo presentamos una técnica de respuesta aleatorizada obligatoria con la finalidad de tener un doble 

enmascaramiento aleatorio de la variable sensible Y a través de un experimento Bernoulli y un reporte Ri, y que esto, se 

traduzca en una mayor protección de la información que proporciona el entrevistado.  En el documento se especifican las 
propiedades de la media poblacional de la variable sensible Y con muestreo aleatorio simple con remplazo, se hace extensión 

a estratificado, se especifica la asignación optima y la ganancia en precisión. Por último, se realiza una simulación para 

evaluar la precisión y eficiencia de los estimadores propuesto usando datos reales sobre la percepción de la violencia en 
México.   

 

PALABRAS CLAVE: Respuestas Aleatorizadas, Enmascaramiento, Muestreo Aleatorio, Violencia, México 

 

 

1. INTRODUCTION 

It is usual, when carrying out an investigation using survey sampling to obtain information on 

characteristics of a population. Therefore, it becomes a priority to access information on that characteristic 

of the population. This entails a couple of frequent drawbacks in survey sampling, which due to non-

response or bias in the information.  In addition, they will be greater bigger if the characteristic to be known 

is of a sensitive type. To solve this, Warner (1965) proposed the methods of randomized responses (RR), 

which aims to encourage the respondent to provide their true response on issues or information considered 

sensitive. This action is achieved because the RR procedures are intended not to reveal to the interviewer 

the personal information that the respondent is providing and thus keeping it private. 

 

To carry out the randomized response (RR) methods, a finite population U of N   elements is considered, is 

assumed that with some design d a random sample s of size n is drawn, with probability p(s), in which, the 

i-th respondent is of interest to the researcher needing to know his/her sensitive characteristic Y, that for 

some reason the respondent refuses to answer directly. The true value of Y will not known, but the 

estimation of the mean, for example, may unbiased. The procedure of the RR methods consists of 

scrambling the sensitive value of the respondent Y through a random mechanism (variable, experiment or 

both) M, which will have a distribution  𝜃 known to the researcher. This scrambling will generate a report 

Z for the i-th respondent so it is possible to estimate, through the report, the mean of the sensitive variable 

Y, which is 𝐸𝑀(𝑍𝑖) = �̂�𝑌, the estimator variance 𝑉𝑀(�̂�𝑌) = 𝜎𝑌
2 and noting that𝐶𝑀 = (𝑦𝑖 , 𝑦𝑗) = 0 for 𝑖 ≠ 𝑗. 



 

The study of RR techniques has been diversified since Warner’s work (1965) to the present day. Based on 

this, we can find in the literature different uses of RR techniques in different types of works, to mention a 

few:  works of RR with qualitative data, see Abdel-Latif et al. (1967), Horvitz et al. (1967), Huang (2004), 

Singh et al. (2020), Narjis and Shabbir (2021); works of RR with  quantitative data, see Greenberg et al. 

(1971), Eriksson et al. (1973), Gupta et al.(2002), Arnab (2018), Bouza et al. (2022); works dealing with  

sensitive issues such as abortion, see Perri et al. (2016), drug use, see Stubbe et al. (2013), racism, see 

Krumpal (2012), AIDS, see Bouza (2009), Arnab and Singh (2010); works applied in the Health area, see 

Bouza (2002) and Murtaza et al. (2020), Social Science, see Pal et al. (2020), Computing, see Rueda et al. 

(2016); we can also find works where classifications of the RR techniques are made, see  Arnab and Rueda 

(2016), Juárez-Moreno et al. (2023). See Chaudhuri and Mukherjee (1988) y Chaudhuri et al. (2016) for a 

wide range of RR topics.  

 

In this document, a new compulsory RR technique is proposed specifying the properties of 𝜇𝑌 when the 

sampling design is simple random sampling with replacement and its stratified extension. The proportional 

and optimal allocation is specified, in addition to the gain in precision. Finally, a simulation is performed 

to evaluate the accuracy and efficiency of the proposed estimators using real data on the perception of 

violence in Mexico.   

 

2.  PROPOSE RR SCRAMBLING PROCEDURE USING SRSWR 

 

The respondent participation to answer or not to a question depends, to a large extent, on how sensitive the 

question is and how confident he or she is in answering it. Therefore, a good RR technique increases the 

proportion of respondents who feel confident in answering despite the fact that it is a highly sensitive 

question. In other words, the RR technique that scramble the true value Y of the respondent will be in 

practice better, since the respondents will trust more, due to the degree the more confident in the scrambling 

in providing their true answer. Following the Arnab's work (2018), in which he converts two Partial 

Optional RR techniques to Full Optional RR, in the same way, the Full Optional RR techniques of Arnab 

(2018) we convert it into a Compulsory RR technique. Therefore, in this section we present a new 

compulsory RR technique in which the respondent’s response is randomly scrambled by first using a 

Bernoulli experiment with probability Q if its sensitive value is scrambled by R1 is reported or (1-Q) if you 

scramble your sensitive value with the R2 report, which are:  

𝑅1 = 𝑌𝑖
𝑋𝑖

𝜇𝑋
   or 𝑅2 = 𝑌𝑖

𝑋𝑖

𝜇𝑋
+ 𝑇𝑖  

 

Where X and T are independent random variables with mean  𝜇𝑋 and 𝜇𝑇 respectively and variance 𝜎𝑋
2 and 

𝜎𝑇
2 in the same way. Both random variables are known to the researcher. Hence, the report of i-th respondent 

will be given by:  

𝑄𝑖 = {
1;  the i − th respondent reports with   𝑅1              
0;  the i − th respondent reports with   𝑅2              

 

and is modeled by 

𝑍𝑖 = 𝑄𝑖  𝑌𝑖

𝑋𝑖

𝜇𝑋

+ (1 − 𝑄𝑖) [𝑌𝑖

𝑋𝑖

𝜇𝑋

+ 𝑇𝑖] 

which, due to the complex scrambling of the sensitive value Y, it would be “difficult” for the interviewer 

to deduce the sensitive value Y of the respondent, in addition, that he is also not aware of with which report 

𝑅𝑖(𝑖 = 1,2) scrambled his value.  

 

With the report 𝑍𝑖 and using SRSWR to select a sample s of size n from a population U, it is of interest to 

know the population characteristics of the sensitive value Y. Below in the following lemmas we present the 

properties of reports 𝑅1, 𝑅2 and of the model  𝑍. 
 

Lemma 2.1. The estimator of the mean of Y under 𝑅1 is  �̅�(𝑅1) = �̅�1 and with variance  𝑉[�̅�1] =
1

𝑛
[𝜎𝑌

2(1 + 𝐶𝑉𝑋
2) + 𝐶𝑉𝑋

2𝜇𝑌
2], where 𝐶𝑉𝑋

2 =
𝜎𝑋

2  

 𝜇𝑋
2 . 

 

Proof. 



The conditional expectation of 𝑅1 on  the model is  𝐸𝑅1
(𝑅1𝑖|𝑖) = 𝐸𝑅1

(𝑌𝑖
𝑋𝑖

𝜇𝑋
|𝑖) =  𝑌𝑖 and the conditional  

variance of 𝑅1 under the model is  𝑉𝑅1 (𝑅1𝑖|𝑖) = 𝑉𝑅1 (𝑌𝑖
𝑋𝑖

𝜇𝑋
|𝑖) =  

𝑌𝑖
2

𝜇𝑋
2  𝜎𝑋

2. Then 𝑅1 is 𝐸[𝑅1𝑖|𝑖] =

𝐸𝑑 [𝐸𝑅1 (𝑌𝑖
𝑋𝑖

𝜇𝑋
|𝑖)] = 𝐸𝑑[𝑌𝑖] = 𝜇𝑌,  hence,  �̅�1 is an adequate estimator of �̅�𝑅1

. 

 

 

Unbiasedness of the estimator in 𝑹𝟏 

 𝐸[�̅�1] = 𝐸𝑑 [
1

𝑛
∑ 𝐸𝑅1

(𝑅1𝑖|𝑖)𝑖∈𝑠 ] = 𝐸𝑑 [
1

𝑛
∑ 𝐸𝑅1

(𝑌𝑖
𝑋𝑖

𝜇𝑋
|𝑖)𝑖∈𝑠 ] = 𝐸𝑑 [

1

𝑛
∑ 𝑌𝑖𝑖∈𝑠 ] =

1

𝑛
∑ 𝐸𝑑[𝑌𝑖]𝑖∈𝑠 = 𝜇𝑌, with 

this the unbiasedness of the estimator is demonstrated. 

Variance of the estimator 

𝑉[�̅�1] = 𝑉𝑑 [
1

𝑛
∑ 𝐸𝑅(𝑅1𝑖)𝑖∈𝑠 ] + 𝐸𝑑 [

1

𝑛2
∑ 𝑉𝑅(𝑅1𝑖)𝑖∈𝑠 ] =  𝑉𝑑 [

1

𝑛
∑ 𝑌𝑖𝑖∈𝑠 ] + 𝐸𝑑 [

1

𝑛2
∑

𝑌𝑖
2

𝜇𝑋
2  𝜎𝑋

2
𝑖∈𝑠 ] =

1

𝑛2
∑ 𝑉𝑑(𝑌𝑖)𝑖∈𝑠 +

𝜎𝑋
2

𝑛2𝜇𝑋
2 ∑ 𝐸𝑑(𝑌𝑖

2)𝑖∈𝑠 =
1

𝑛
𝜎𝑌

2 +
𝜎𝑋

2

𝑛 𝜇𝑋
2 (𝜎𝑌

2 + 𝜇𝑌
2) =

1

𝑛
[𝜎𝑌

2 +
𝜎𝑋

2𝜎𝑌
2

 𝜇𝑋
2 +

𝜎𝑋
2𝜇𝑌

2

 𝜇𝑋
2 ] =

1

𝑛
[𝜎𝑌

2(1 + 𝐶𝑉𝑋
2) +

𝐶𝑉𝑋
2𝜇𝑌

2]. 

Then the lemma is proved. 

Lemma 2.2. The estimator of the mean of Y in 𝑅2 𝑖𝑠  �̅�(𝑅2) = �̅�2-𝜇𝑇 and with variance  𝑉[�̅�2 − 𝜇𝑇] =
1

𝑛
[𝜎𝑌

2(1 + 𝐶𝑉𝑋
2) + 𝐶𝑉𝑋

2𝜇𝑌
2 + 𝜎𝑇

2], where  𝐶𝑉𝑋
2 =

𝜎𝑋
2  

 𝜇𝑋
2 . 

 

Proof. 

The expectation of  𝑅2 under the model is 𝐸𝑅2
(𝑅(2) 𝑖|𝑖) = 𝐸𝑅2

((𝑌𝑖
𝑋𝑖

𝜇𝑋
+ 𝑇𝑖) |𝑖) =  𝑌𝑖 + 𝜇𝑇 , the variance 

of 𝑅2under the model is  𝑉𝑅2 (𝑅(2)𝑖|𝑖) = 𝑉𝑅2 ((𝑌𝑖
𝑋𝑖

𝜇𝑋
+ 𝑇𝑖) |𝑖) =  

𝑌𝑖
2

𝜇𝑋
2  𝜎𝑋

2 + 𝜎𝑇
2 and conditional expectation 

of  𝑅2 is  𝐸[𝑅(2)𝑖|𝑖] = 𝐸𝑑 [𝐸𝑅2
((𝑌𝑖

𝑋𝑖

𝜇𝑋
+ 𝑇𝑖) |𝑖)] =  𝐸𝑑[𝑌𝑖] + 𝐸𝑑[𝜇𝑇] = 𝜇𝑌 + 𝜇𝑇, hence, �̅�2-𝜇𝑇 is  a good 

estimator of  𝜇𝑌. 

Unbiasedness of the estimator in 𝑹𝟐 

 𝐸[�̅�2 − 𝜇𝑇] = 𝐸𝑑 [
1

𝑛
∑ 𝐸𝑅2

(𝑅(2)𝑖|𝑖)𝑖∈𝑠 ] − 𝐸𝑑[𝐸𝑅2
(𝜇𝑇|𝑖)] = 𝐸𝑑 [

1

𝑛
∑ 𝐸𝑅2

(𝑌𝑖
𝑋𝑖

𝜇𝑋
+ 𝑇𝑖)𝑖∈𝑠 ] − 𝜇𝑇 =

𝐸𝑑 [
1

𝑛
∑ 𝑌𝑖 + 𝜇𝑇𝑖∈𝑠 ] − 𝜇𝑇 = 𝜇𝑌 + 𝜇𝑇 − 𝜇𝑇 = 𝜇𝑌 

Variance of the estimator 

 𝑉[�̅�2] = 𝑉𝑑 [
1

𝑛
∑ 𝐸𝑅(𝑅2𝑖)𝑖∈𝑠 ] + 𝐸𝑑 [

1

𝑛2
∑ 𝑉𝑅(𝑅2𝑖)𝑖∈𝑠 ] = 𝑉𝑑 [

1

𝑛
∑ 𝑌𝑖𝑖∈𝑠 + 𝜇𝑇] + 𝐸𝑑 [

1

𝑛2
∑

𝑌𝑖
2

𝜇𝑋
2  𝜎𝑋

2 + 𝜎𝑇
2

𝑖∈𝑠 ] =

1

𝑛2
∑ 𝑉𝑑(𝑌𝑖)𝑖∈𝑠 +

1

𝑛2
∑ [

𝜎𝑋
2

𝜇𝑋
2 𝐸𝑑(𝑌𝑖

2) + 𝐸𝑑(𝜎𝑇
2) ]𝑖∈𝑠 =

1

𝑛
𝜎𝑌

2 +
1

𝑛
[(

𝜎𝑋
2

 𝜇𝑋
2 (𝜎𝑌

2 + 𝜇𝑌
2)) + 𝜎𝑇

2] =
1

𝑛
[𝜎𝑌

2 +
𝜎𝑋

2𝜎𝑌
2

 𝜇𝑋
2 +

𝜎𝑋
2𝜇𝑌

2

 𝜇𝑋
2 + 𝜎𝑇

2] =
1

𝑛
[𝜎𝑌

2(1 + 𝐶𝑉𝑋
2) + 𝐶𝑉𝑋

2𝜇𝑌
2 + 𝜎𝑇

2] 

Then the lemma is proved. 

Lastly, we present the report Z, where the properties of the parameter Y are given by the following lemma.  



Lemma 2.3.  The 𝑍 report has the following characteristics:  

 

i)  �̂�𝑌 = �̅� − 𝜇𝑇(1 − 𝑄), which is the estimator of the population mean of Y.  

ii) 𝑉[�̂�𝑌] =
1

𝑛
[𝜎𝑌

2 + 𝑄2 𝐶𝑉𝑋
2(𝜎𝑌

2 + 𝜇𝑌
2) + (1 − 𝑄)2((𝜎𝑌

2 + 𝜇𝑌
2)𝐶𝑉𝑋

2 + 𝜎𝑇
2)], which is the variance of the 

estimator, where 𝐶𝑉𝑋
2 =

𝜎𝑋
2  

 𝜇𝑋
2 . 

iii) �̂�[�̂�𝑌] =
1

𝑛
[�̂�𝑌

2 + 𝑄2 𝐶𝑉𝑋
2(�̂�𝑌

2 + �̂�𝑌
2) + (1 − 𝑄)2((�̂�𝑌

2 + �̂�𝑌
2)𝐶𝑉𝑋

2 + 𝜎𝑇
2)] , which is the estimator of the 

variance, where �̂�𝑌
2 =

𝑆𝑧
2−[𝑄2 𝐶𝑉𝑋

2 �̂�𝑌
2+(1−𝑄)2(�̂�𝑌

2𝐶𝑉𝑋
2+ 𝜎𝑇

2)]

[1+𝐶𝑉𝑋
2 (𝑄2 +(1−𝑄)2 )]

, and  𝑆𝑧
2 =

∑ (𝑧𝑖−�̅�)2𝑖∈𝑠

𝑛−1
 

 

Proof. 

The expectation of 𝑍𝑖 under the model is  𝐸𝑍𝑖
[𝑍𝑖|𝑖] = 𝐸𝑅1

[(𝑄 𝑌𝑖
𝑋𝑖

𝜇𝑋
) |𝑖] + 𝐸𝑅2

[((1 − 𝑄) (𝑌𝑖
𝑋𝑖

𝜇𝑋
+

𝑇𝑖)) |𝑖] = 𝑄 𝑌𝑖 + (1 − 𝑄) (𝑌𝑖 + 𝜇𝑇)=𝑌𝑖 + 𝜇𝑇(1 − 𝑄). The variance of  𝑍𝑖 under the model is  𝑉𝑍𝑖
[𝑍𝑖|𝑖] =

𝑉𝑅1 [𝑄 (𝑌𝑖
𝑋𝑖

𝜇𝑋
) |𝑖] + 𝑉𝑅2 [(1 − 𝑄) (𝑌𝑖

𝑋𝑖

𝜇𝑋
+ 𝑇𝑖) |𝑖] = 𝑄2  

𝑌𝑖
2

𝜇𝑋
2  𝜎𝑋

2 + (1 − 𝑄)2 [
𝑌𝑖

2

𝜇𝑋
2  𝜎𝑋

2 + 𝜎𝑇
2] =

𝑄2 (𝑌𝑖
2𝐶𝑉𝑋

2) + (1 − 𝑄)2[𝑌𝑖
2𝐶𝑉𝑋

2 + 𝜎𝑇
2], where 𝐶𝑉𝑋

2 =
𝜎𝑋

2  

 𝜇𝑋
2   

The conditional expectation of 𝑍𝑖 is 𝐸[𝑍𝑖|𝑖] = 𝐸𝑑 {𝐸𝑍𝑖
[[𝑄 𝑌𝑖

𝑋𝑖

𝜇𝑋
+ (1 − 𝑄) (𝑌𝑖

𝑋𝑖

𝜇𝑋
+ 𝑇𝑖)] |𝑖]} = 𝐸𝑑[𝑌𝑖 +

𝜇𝑇(1 − 𝑄)] = 𝜇𝑌 + 𝜇𝑇(1 − 𝑄), hence, �̅� − 𝜇𝑇(1 − 𝑄) is the estimator of  𝜇𝑌. 

Unbiasedness of the estimator in 𝒁𝒊  

𝐸[�̂�𝑌] = 𝐸𝑑[𝐸𝑍𝑖
(�̅� − 𝜇𝑇(1 − 𝑄))|𝑖] = 𝐸𝑑 [

1

𝑛
∑ 𝐸𝑍𝑖

(𝑍𝑖|𝑖)𝑖∈𝑠 ] − 𝜇𝑇(1 − 𝑄) =
1

𝑛
∑ 𝐸𝑑[𝑌𝑖 + 𝜇𝑇(1 − 𝑄)] −𝑖∈𝑠

𝜇𝑇(1 − 𝑄) = 𝜇𝑌 + 𝜇𝑇(1 − 𝑄) − 𝜇𝑇(1 − 𝑄) =  𝜇𝑌  

Variance of the estimator 

 𝑉[�̂�𝑌] = 𝑉[�̅�] = 𝑉𝑑 [
1

𝑛
∑ (𝐸𝑍𝑖

(𝑍𝑖|𝑖))𝑖∈𝑠 ]   + 𝐸𝑑 [
1

𝑛2  ∑ (𝑉𝑍𝑖
(𝑍𝑖|𝑖))𝑖∈𝑠 ] = 𝑉𝑑 [

1

𝑛
∑ 𝑌𝑖 + 𝜇𝑇(1 − 𝑄)𝑖∈𝑠 ] +

𝐸𝑑 [
1

𝑛2
∑ [𝑄2 (𝑌𝑖

2𝐶𝑉𝑋
2) + (1 − 𝑄)2(𝑌𝑖

2𝐶𝑉𝑋
2 + 𝜎𝑇

2)]𝑖∈𝑠 ] =
1

𝑛2
∑ 𝑉𝑑(𝑌𝑖)𝑖∈𝑠 +

1

𝑛2
∑ [𝑄2 (𝐸𝑑[𝑌𝑖

2]𝐶𝑉𝑋
2) + (1 −𝑖∈𝑠

𝑄)2(𝐸𝑑[𝑌𝑖
2]𝐶𝑉𝑋

2 + 𝜎𝑇
2)] =

1

𝑛
[𝜎𝑌

2 + 𝑄2 𝐶𝑉𝑋
2(𝜎𝑌

2 + 𝜇𝑌
2) + (1 − 𝑄)2((𝜎𝑌

2 + 𝜇𝑌
2)𝐶𝑉𝑋

2 + 𝜎𝑇
2)]  

Estimator of the variance  

The natural estimator for the variance is: �̂�[�̂�𝑌] =
1

𝑛
[�̂�𝑌

2 + 𝑄2 𝐶𝑉𝑋
2(�̂�𝑌

2 + �̂�𝑌
2) + (1 − 𝑄)2((�̂�𝑌

2 +

�̂�𝑌
2)𝐶𝑉𝑋

2 + 𝜎𝑇
2)], where, �̂�𝑌

2 =
𝑆𝑧
2−[𝑄2 𝐶𝑉𝑋

2 �̂�𝑌
2+(1−𝑄)2(�̂�𝑌

2𝐶𝑉𝑋
2+ 𝜎𝑇

2)]

[1+𝐶𝑉𝑋
2 (𝑄2 +(1−𝑄)2 )]

, and 𝑆𝑧
2 =

∑ (𝑧𝑖−�̅�)2𝑖∈𝑠

𝑛−1
 

 Then the lemma is proved. 

3. STRATIFIED MODEL EXTENSION 

 

In the previous section, under simple random sampling with replacement, we present the characteristics of 

the estimators of the mean of Y for the reports R1, R2 and the model Z, which together make up the new 

proposed RR technique. Here, in the same way, we present the characteristics of the estimators, under 

stratified random sampling with replacement (SSRSWR).  In a stratified design, the population U of size N 

is divided into H strata, where ∑ 𝑁𝑖 = 𝑁𝐻
𝑖=1  . Using a random draw, in each of the strata L a sample is 

chosen in such a way that the sizes 𝑛𝑖 of the samples 𝑠𝑖 satisfy ∑ 𝑛𝑖 = 𝑛𝐻
𝑖=1 .  



The reason for doing this extension from simple random to stratified is to compare the efficiency and 

precision of both strategies, since theoretically the estimators under stratification are more precise and have 

minimum variance compared to those with simple random sampling.  

3.1. R1 with SSRSWR 

For R1 and the following reports, using stratified random sampling, the population U is divided into L strata. 

Therefore, in the R1 report, each individual i in stratum h, must general a random value 𝑋ℎ𝑖 with probability  

𝑃[𝑋ℎ𝑖] = 𝜃ℎ𝑖, mean 𝜇ℎ𝑋 and variance 𝜎ℎ𝑋
2 , both parameters defined by the researcher. The respondent's 

response i in stratum h is scrambled by:  

𝑅(1)ℎ𝑖 = 𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋

 

As the previous section, in the following lemma we define the estimator and its properties of R1 under the 

SSRSWR design. 

Lemma 3.1. For R1 and using SSRSWR, an estimator of the mean of Y per stratum is  �̅�ℎ (𝑅1) = �̅�(1)ℎ  and 

its stratified global estimator �̅�𝑆𝑇,𝑅1 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅1)

𝐿
ℎ=1 .  The variance of the estimator per stratum is 

𝑉(�̅�ℎ (𝑅1)) =
1

𝑛ℎ
[𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 ]  and the variance of the global estimator  is given by 

𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 (1+𝐶𝑉ℎ𝑋
2 )+𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

𝑛ℎ

𝐿
ℎ=1  

Proof  

The expectation and variance of  𝑅1under the model are 𝐸𝑅1
(𝑅(1)ℎ𝑖|𝑖) = 𝐸𝑅1

(𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
|𝑖) =  𝑌ℎ𝑖 and 

 𝑉𝑅1 (𝑅(1)ℎ𝑖|𝑖) = 𝑉𝑅1 (𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
|𝑖) =  

𝑌ℎ𝑖
2

𝜇ℎ𝑋
2  𝜎ℎ𝑋

2 , respectively. The conditional expectation of 𝑅1 is 

𝐸[𝑅(1)ℎ𝑖|𝑖] = 𝐸𝑑 [𝐸𝑅1 (𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
|𝑖)] = 𝐸𝑑[𝑌ℎ𝑖] = 𝜇ℎ𝑌,  and �̅�(1)ℎ is the proposed estimator of  �̅�ℎ (𝑅1). 

Unbiasedness of the estimator per stratum in 𝑹𝟏  

𝐸[�̅�(1)ℎ] = 𝐸𝑑 [
1

𝑛ℎ
∑ 𝐸𝑅1

(𝑅(1)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] = 𝐸𝑑 [

1

𝑛ℎ
∑ 𝐸𝑅1

(𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
|𝑖) 

𝑛ℎ
𝑖=1 ] = 𝐸𝑑 [

1

𝑛ℎ
∑ 𝑌ℎ𝑖  

𝑛ℎ
𝑖=1  ] = 𝐸𝑑[𝑌ℎ𝑖] =

𝜇ℎ𝑌. With this, the unbiasedness of the estimator for each stratum is proved. 

Stratified global estimator  

Using theorem 5.1 in Cochran (1971) and the stratum mean �̅�ℎ (𝑅1), the global estimator for the SSRSWR 

is �̅�𝑆𝑇,𝑅1 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅1)

𝐿
ℎ=1  

Variance of the estimator per stratum 

 𝑉[�̅�(1)ℎ] = 𝑉𝑑 [
1

𝑛ℎ
∑ 𝐸𝑅1

(𝑅(1)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] + 𝐸𝑑 [

1

𝑛ℎ
2 ∑ 𝑉𝑅1

(𝑅(1)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] = 𝑉𝑑 [

1

𝑛ℎ
∑ 𝑌ℎ𝑖  

𝑛ℎ
𝑖=1 ] +

𝐸𝑑 [
1

𝑛ℎ
2 ∑

𝑌ℎ𝑖
2

𝜇ℎ𝑋
2  𝜎ℎ𝑋

2𝑛ℎ
𝑖=1 ] =

1

𝑛ℎ
2 ∑  𝑉𝑑(𝑌ℎ𝑖)

𝑛ℎ
𝑖=1 +

𝜎ℎ𝑋
2

𝑛ℎ
2  𝜇ℎ𝑋

2 ∑  𝐸𝑑(𝑌ℎ𝑖
2 ) 

𝑛ℎ
𝑖=1 =

1

𝑛ℎ
𝜎ℎ𝑌

2 +
𝜎ℎ𝑋

2

𝑛ℎ 𝜇ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) =

1

𝑛ℎ
[𝜎ℎ𝑌

2 +
𝜎ℎ𝑋

2 𝜎ℎ𝑌
2

 𝜇ℎ𝑋
2 +

𝜎ℎ𝑋
2 𝜇ℎ𝑌

2

 𝜇ℎ𝑋
2 ] =

1

𝑛ℎ
[𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 ] 

Variance of the global estimator. Using the variance of the estimator by stratum 𝑉[�̅�ℎ (𝑅1)] and Cochran’s 

theorem 5.2. which is  𝑉(�̅�𝑠𝑡) =
1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̅�ℎ )
𝐿
ℎ=1 , where �̅�ℎ must be an unbiased estimator of  �̅�ℎ , which 

has already been proven and the independent sample, applying the previous theorem we have: 



𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̅�ℎ (𝑅1))

𝐿

ℎ=1

=
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

𝑛ℎ

𝐿

ℎ=1

 

Then the lemma is proved. 

 

3.2. R2 with SSRSWR 

In this R2 report, the i-th respondent in the h-th stratum must generate two values of two random variables. 

The first is 𝑋ℎ𝑖 with probability 𝑃[𝑋ℎ𝑖] = 𝜃ℎ𝑖, mean   𝜇ℎ𝑋 and variance 𝜎ℎ𝑋
2 , and the second is 𝑇ℎ𝑖  with 

probability 𝑃[𝑇ℎ𝑖] = 𝛿ℎ𝑖, mean  𝜇ℎ𝑇 and variance 𝜎ℎ𝑇
2 ,  parameters known by the researcher for both 

variables. The response of the i-th respondent in the h-th stratum is generated by:  

𝑅(2)ℎ𝑖 = 𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋

+ 𝑇ℎ𝑖  

Lemma 3.2. For R2 and using SSRSWR, an estimator of the mean of Y per stratum is �̅�ℎ (𝑅2) = �̅�(2)ℎ-𝜇ℎ𝑇   

and its stratified global estimator is �̅�𝑆𝑇,𝑅2 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅2)

𝐿
ℎ=1 .  The variance of the estimator per stratum 

is 𝑉(�̅�ℎ (𝑅2)) =
1

𝑛ℎ
[𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋 

2 𝜇ℎ𝑌
2 + 𝜎ℎ𝑇

2 ]  and the variance of the global estimator is given by 

𝑉(�̅�𝑆𝑇,𝑅2 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 (1+𝐶𝑉ℎ𝑋
2 )+𝐶𝑉ℎ𝑋 

2 𝜇ℎ𝑌
2 +𝜎ℎ𝑇

2 )

𝑛ℎ

𝐿
ℎ=1  

 

Proof  

The expectation of 𝑅2 under the model is 𝐸𝑅2
(𝑅(2)ℎ𝑖|𝑖) = 𝐸𝑅2

((𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖) |𝑖) =  𝑌ℎ𝑖 + 𝜇ℎ𝑇 and its 

variance is  𝑉𝑅2 (𝑅(2)ℎ𝑖|𝑖) = 𝑉𝑅2 ((𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖) |𝑖) =  

𝑌ℎ𝑖
2

𝜇ℎ𝑋
2  𝜎ℎ𝑋

2 + 𝜎ℎ𝑇
2 . The conditional expectation of 𝑅2 

is  𝐸[𝑅(2)𝑖|𝑖] = 𝐸𝑑 [𝐸𝑅2
((𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖) |𝑖)] = 𝐸𝑑[𝑌ℎ𝑖] + 𝐸𝑑[𝜇ℎ𝑇] = 𝜇ℎ𝑌 + 𝜇ℎ𝑇, hence, �̅�(2)ℎ-𝜇ℎ𝑇 is the 

estimator of  𝜇ℎ𝑌. 

Unbiasedness of the estimator per stratum in 𝑹𝟐  

With the next procedure we proof the unbiasedness of the estimator per stratum. 𝐸[�̅�(2)ℎ − 𝜇ℎ𝑇] =

𝐸𝑑 [
1

𝑛ℎ
∑ 𝐸𝑅2

(𝑅(2)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] − 𝐸𝑑[𝐸𝑅2

(𝜇ℎ𝑇|𝑖)] = 𝐸𝑑 [
1

𝑛ℎ
∑ 𝐸𝑅2

(𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇𝑖|𝑖) 

𝑛ℎ
𝑖=1 ] − 𝜇ℎ𝑇 =

𝐸𝑑 [
1

𝑛ℎ
∑ 𝑌ℎ𝑖 + 𝜇ℎ𝑇  

𝑛ℎ
𝑖=1  ] − 𝜇𝑇 = 𝜇𝑌 + 𝜇𝑇 − 𝜇𝑇 = 𝜇ℎ𝑌 

Stratified global estimator  

As the above report, we have in this 𝑅2 report the mean per stratum  �̅�ℎ (𝑅2), so that, the global estimator for 

SSRSWR design is  �̅�𝑆𝑇,𝑅2 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅2)

𝐿
ℎ=1  

Variance of the estimator per stratum 

𝑉[�̅�(2)ℎ] = 𝑉𝑑 [
1

𝑛ℎ
∑ 𝐸𝑅2

(𝑅(2)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] + 𝐸𝑑 [

1

𝑛ℎ
2 ∑ 𝑉𝑅2

(𝑅(2)ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] = 𝑉𝑑 [

1

𝑛ℎ
∑ 𝑌ℎ𝑖 + 𝜇ℎ𝑇

𝑛ℎ
𝑖=1 ] +

𝐸𝑑 [
1

𝑛ℎ
2 ∑

𝑌ℎ𝑖
2

𝜇ℎ𝑋
2  𝜎ℎ𝑋

2𝑛ℎ
𝑖=1 + 𝜎ℎ𝑇

2 ] =
1

𝑛ℎ
2 ∑  𝑉𝑑(𝑌ℎ𝑖)

𝑛ℎ
𝑖=1 +

1

𝑛ℎ
2  

∑ [
𝜎ℎ𝑋

2

𝜇ℎ𝑋
2  𝐸𝑑(𝑌ℎ𝑖

2 ) + 𝐸𝑑(𝜎ℎ𝑇
2 )] 

𝑛ℎ
𝑖=1 =

1

𝑛ℎ
𝜎ℎ𝑌

2 +

1

𝑛ℎ
[(

𝜎ℎ𝑋
2

 𝜇ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )) + 𝜎ℎ𝑇

2 ] =
1

𝑛ℎ
[𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 + 𝜎ℎ𝑇

2 ]  



Variance of the global estimator. In the same way as the previous report, we know the variance per 

stratum 𝑉[�̅�ℎ (𝑅2)], therefore, the variance of the global estimator is:   

𝑉(�̅�𝑆𝑇,𝑅2 ) =
1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̅�ℎ (𝑅2))

𝐿

ℎ=1

=
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 + 𝜎ℎ𝑇

2 )

𝑛ℎ

𝐿

ℎ=1

. 

Then the lemma is proved. 

 

 

3.3. Z procedure with SSRSWR 

As a last extension to stratified, we present the Z report. The objective of this report is scrambling the 

sensitive value of the respondent, in a random way, through either the report R1 with probability 𝑄ℎ or R2 

report with probability (1 − 𝑄ℎ). That is, the i-th respondent in stratum h performs a Bernoulli try  and will 

report his sensitive value Y by: 

𝑍ℎ𝑖 = {
𝑅(1)ℎ𝑖     𝑖𝑓     𝛼ℎ𝑖 = 1 

𝑅(2)ℎ𝑖     𝑖𝑓     𝛼ℎ𝑖 = 0
 

the Z report is modeled by 

𝑍ℎ𝑖 = 𝑄ℎ𝑖  𝑅(1)ℎ𝑖 + (1 − 𝑄ℎ𝑖) 𝑅(2)ℎ𝑖 

= 𝑄ℎ𝑖  𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋

+ (1 − 𝑄ℎ𝑖) [𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋

+ 𝑇ℎ𝑖]  

The following lemma presents the properties of the population mean of the sensible value Y.  

Lemma 3.3. The 𝑍 report has the following characteristics:  

 

i)  �̂�ℎ𝑌 = �̅�ℎ − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖), which is the estimator of the mean of Y per stratum. 

ii) �̅�𝑆𝑇,𝑍 =
1

𝑁
 ∑ 𝑁ℎ �̂�ℎ𝑌

𝐿
ℎ=1 , is the global stratified estimator of the population mean.   

iii) 𝑉[�̂�ℎ𝑌] =
1

𝑛ℎ
[𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )], which is the 

variance of the estimator per stratum, where 𝐶𝑉ℎ𝑋
2 =

𝜎ℎ𝑋
2  

 𝜇ℎ𝑋
2 . 

iv) �̂�[�̂�ℎ𝑌] =
1

𝑛ℎ
[�̂�ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (�̂�ℎ𝑌
2 + �̂�ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2((�̂�ℎ𝑌

2 + �̂�ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )], is the proposed 

estimator for the variance per stratum, where �̂�ℎ𝑌
2 =

𝑆ℎ𝑧
2 −(𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2  �̂�ℎ𝑌

2 +(1−𝑄ℎ𝑖)
2(�̂�ℎ𝑌

2 𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 ))

[1+𝐶𝑉ℎ𝑋
2  (𝑄ℎ𝑖

2  +(1−𝑄ℎ𝑖)
2 )]

, 𝑆ℎ𝑧
2 =

∑ (𝑧ℎ𝑖−�̅�ℎ)2
𝑛ℎ
𝑖=1

 

𝑛ℎ−1
 

 

v) 𝑉(�̅�𝑆𝑇,𝑍 ) =
1

𝑁2
∑

𝑁ℎ
2 [𝜎ℎ𝑌

2 +𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 +𝜇ℎ𝑌

2 )+(1−𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 +𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 +𝜎ℎ𝑇
2 )]

𝑛ℎ

𝐿
ℎ=1 , is the global variance of 

the estimator … (3.3.1) 

vi) �̂�(�̅�𝑆𝑇,𝑍 ) =
1

𝑁2
∑

𝑁ℎ
2 [�̂�ℎ𝑌

2 +𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (�̂�ℎ𝑌
2 +�̂�ℎ𝑌

2 )+(1−𝑄ℎ𝑖)
2((�̂�ℎ𝑌

2 +�̂�ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 +𝜎ℎ𝑇
2 )]

𝑛ℎ

𝐿
ℎ=1 , which is a naive 

estimator of 𝑉(�̅�𝑆𝑇,𝑍 )  

vii) 𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ) =
1

𝑛
∑ 𝑊ℎ  [𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]𝐿

ℎ=1 , is 

the proportional variance of the global estimator … (3.3.2) 

viii) 𝑉𝑜𝑝𝑡(�̅�𝑆𝑇,𝑍 ) =
1

𝑛𝑁2 (∑ 𝑁ℎ  √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2

(𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2
((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]𝐿

ℎ=1 )

2

, optimal 

variance of the global estimator given a fixed   n … (3.3.3) 

 



Proof  

The expectation of  𝑍ℎ𝑖 under the model is 𝐸𝑍ℎ𝑖
[𝑍ℎ𝑖|𝑖] = 𝐸𝑅1

[(𝑄ℎ𝑖  𝑌ℎ𝑖
𝑋𝑖

𝜇𝑋
) |𝑖] +  𝐸𝑅2

[((1 −

𝑄ℎ𝑖) (𝑌ℎ𝑖
𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖)) |𝑖]  = 𝑄ℎ𝑖  𝑌ℎ𝑖 + (1 − 𝑄ℎ𝑖) (𝑌ℎ𝑖 + 𝜇ℎ𝑇) = 𝑌ℎ𝑖 + 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) and its variance is 

𝑉𝑍ℎ𝑖
[𝑍ℎ𝑖|𝑖] = 𝑉𝑅1 [𝑄ℎ𝑖 (𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋
) |𝑖] + 𝑉𝑅2 [(1 − 𝑄ℎ𝑖) (𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖) |𝑖] =   𝑄ℎ𝑖

2  (𝑌ℎ𝑖
2 𝐶𝑉ℎ𝑋

2 ) + (1 −

𝑄ℎ𝑖)
2[𝑌ℎ𝑖

2 𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 ], where 𝐶𝑉ℎ𝑋
2 =

𝜎ℎ𝑋
2  

 𝜇ℎ𝑋
2 . Also, we have the conditional expectation of 𝑍ℎ𝑖 which is 

𝐸[𝑍ℎ𝑖|𝑖] = 𝐸𝑑 {𝐸𝑍ℎ𝑖
[[𝑄ℎ𝑖  𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋
+ (1 − 𝑄ℎ𝑖) (𝑌ℎ𝑖

𝑋ℎ𝑖

𝜇ℎ𝑋
+ 𝑇ℎ𝑖)] |𝑖]} = 𝐸𝑑[𝑌ℎ𝑖 + 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖)] = 𝜇ℎ𝑌 +

𝜇ℎ𝑇(1 − 𝑄ℎ𝑖), therefore, �̅�ℎ − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) is the estimator of  𝜇ℎ𝑌. 

Unbiasedness of the estimator in stratum h for 𝒁𝒉𝒊.  

𝐸[�̂�ℎ𝑌] = 𝐸𝑑[𝐸𝑍ℎ𝑖
(�̅�ℎ − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖))|𝑖] = 𝐸𝑑 [

1

𝑛ℎ
∑ 𝐸𝑍ℎ𝑖

(𝑍ℎ𝑖|𝑖) 
𝑛ℎ
𝑖=1 ] − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) = 𝐸𝑑[𝑌ℎ𝑖 +

𝜇ℎ𝑇(1 − 𝑄ℎ𝑖)] − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) = 𝜇ℎ𝑌 + 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) − 𝜇ℎ𝑇(1 − 𝑄ℎ𝑖) =  𝜇ℎ𝑌.  With this, the 

unbiasedness of the estimator by stratum is demonstrated. 

Stratified global estimator. Knowing the mean per stratum, we have as a global estimator for the SSRWR 

design is  �̅�𝑆𝑇,𝑍 =
1

𝑁
 ∑ 𝑁ℎ �̂�ℎ𝑌

𝐿
ℎ=1  

Variance of the estimator per stratum  

𝑉[�̂�ℎ𝑌] =  𝑉[�̅�ℎ] = 𝑉𝑑 [
1

𝑛ℎ
∑ 𝐸𝑍ℎ𝑖

(𝑍ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ]   + 𝐸𝑑 [

1

𝑛ℎ
∑ 𝑉𝑍ℎ𝑖

(𝑍ℎ𝑖|𝑖)
𝑛ℎ
𝑖=1 ] = 𝑉𝑑 [

1

𝑛ℎ
∑ 𝑌ℎ𝑖 + 𝜇ℎ𝑇(1 −

𝑛ℎ
𝑖)1

𝑄ℎ𝑖)] + 𝐸𝑑 [
1

𝑛ℎ
2 ∑ [𝑄ℎ𝑖

2  (𝑌ℎ𝑖
2 𝐶𝑉ℎ𝑋

2 ) + (1 − 𝑄ℎ𝑖)
2(𝑌ℎ𝑖

2 𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )]
𝑛ℎ
𝑖=1 ] =

1

𝑛ℎ
2 ∑ 𝑉𝑑(𝑌ℎ𝑖)

𝑛ℎ
𝑖=1 +

1

𝑛ℎ
2 ∑ [𝑄ℎ𝑖

2  (𝐸𝑑[𝑌ℎ𝑖
2 ]𝐶𝑉ℎ𝑋

2 ) + (1 − 𝑄ℎ𝑖)
2(𝐸𝑑[𝑌ℎ𝑖

2 ]𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )]
𝑛ℎ
𝑖=1 =

1

𝑛ℎ
[𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 −

𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]  

Variance of the global estimator. The deduction of the variance of the global estimator is the same as 

the previous ones. 

𝑉(�̅�𝑆𝑇,𝑍 ) =
1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̂�ℎ𝑌)
𝐿
ℎ=1 =

1

𝑁2
∑

𝑁ℎ
2[𝜎ℎ𝑌

2 +𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 +𝜇ℎ𝑌

2 )+(1−𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 +𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 +𝜎ℎ𝑇
2 )]

𝑛ℎ

𝐿
ℎ=1 . 

Then the lemma is proved. 

 

4. OPTIMAL ALLOCATION AND GAINS IN ACCURACY OF MODEL FOR SSRSWR 

 

The researcher, when performing survey sampling with a p design, will depend on how robust it can be and 

the budget allocated to carry it out. To help solving these possible problems and using SSRSWR, it is 

necessary to determine the best sample size in stratum h to minimize the variance (V) given a fixed cost 

(C= 𝑐0 + ∑𝑐ℎ 𝑛ℎ) (4.1) or minimize a cost (C) given a fixed variance (V). This is known as the optimal 

allocation of the 𝑛ℎ and n.    

4.1. 𝒏𝒉 and n optimal for 𝑽(�̅�𝑺𝑻,𝑹𝟏 ) 

Lemma 4.1. Using SSRSWR and a simple cost function = 𝑐0 + ∑𝑐ℎ 𝑛ℎ , the variance of the estimator of 

the population mean of procedure 𝑅1is a minimized when  𝑛ℎ  ∝  𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ
  



Proof 

We must minimize  𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 (1+𝐶𝑉ℎ𝑋
2 )+𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

𝑛ℎ

𝐿
ℎ=1  , subject to 𝐶 =  𝑐0 + ∑𝑐ℎ 𝑛ℎ.  

Using the Lagrange multipliers method, we choose  𝑛ℎ  and the multiplier 𝜆 to minimize:  

𝑓(𝑦, 𝜆) =  𝑉(�̅�𝑆𝑇,𝑅1 ) +  𝜆 (∑ 𝑐ℎ 𝑛ℎ − 𝐶 + 𝑐0 ) = ∑
𝑁ℎ

2 (𝜎ℎ𝑌
2 (1+𝐶𝑉ℎ𝑋

2 )+𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 )

𝑁2   𝑛ℎ

𝐿
ℎ=1 + 𝜆 (𝑐1𝑛1 + ⋯+ 𝑐𝐿𝑛𝐿 −

𝐶 + 𝑐0 ) . 

Partially differentiating  𝑓(𝑦, 𝜆) with respect to   𝑛ℎ′𝑠, h=1, 2, …, L, are 

  
𝜕 𝑓(𝑦,𝜆)

𝜕 𝑛1
= −

𝑁1
2 (𝜎1𝑌

2 (1+𝐶𝑉1𝑋
2 )+𝐶𝑉1𝑋

2 𝜇1𝑌
2 )

𝑁2𝑛1
2 + 𝜆𝑐1, … , 

𝜕 𝑓(𝑦,𝜆)

𝜕 𝑛𝐿
= −

𝑁𝐿
2 (𝜎𝐿𝑌

2 (1+𝐶𝑉𝐿𝑋
2 )+𝐶𝑉𝐿𝑋

2 𝜇𝐿𝑌
2 )

𝑁2𝑛𝐿
2 + 𝜆𝑐𝐿; 

 we have:  −
𝑁ℎ

2 (𝜎ℎ𝑌
2 (1+𝐶𝑉ℎ𝑋

2 )+𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 )

𝑁2𝑛ℎ
2 + 𝜆𝑐ℎ = 0, for  h=1,2, …, L.  Working the previous expression: 

𝜆𝑐ℎ =
𝑁ℎ

2 (𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 )

𝑁2𝑛ℎ
2  ⇒ √𝜆√𝑐ℎ =

√𝑁ℎ
2 √(𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

√𝑁2√𝑛ℎ
2

 

⇒ 𝑛ℎ√𝜆 =
𝑁ℎ  √(𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

𝑁 √𝑐ℎ

 … (4.1.1) 

summing in the L strata in (4.1.1), ∑ 𝑛ℎ√𝜆𝐿
ℎ=1 = ∑

𝑁ℎ √(𝜎ℎ𝑌
2 (1+𝐶𝑉ℎ𝑋

2 )+𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 )

𝑁 √𝑐ℎ

𝐿
ℎ=1 ⇒ 𝑛√𝜆 =

∑
𝑁ℎ √(𝜎ℎ𝑌

2 (1+𝐶𝑉ℎ𝑋
2 )+𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 )

𝑁 √𝑐ℎ

𝐿
ℎ=1 … (4.1.2) 

From (4.1.1) and  (4.1.2) we have: 

𝑛ℎ = 𝑛

𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ

∑ 𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ

 𝐿
ℎ=1  

 … (4.1.3) 

hence 

𝑛ℎ ∝ 𝑁ℎ  √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ

 

Then the previous lemma is proved. 

To complete the optimal allocation, since in (4.1.3) 𝑛ℎ depends on n, we have to find the optimal n when 

there is a fixed cost (C), so substituting 𝑛ℎ from (4.1.3) in the cost function (4.1) and working for n, it 

results: 

𝑛 =

(𝐶 − 𝑐0) ∑ (𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ

) 𝐿
ℎ=1  

∑ (𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) √𝑐ℎ) 𝐿
ℎ=1

 

On the other hand, if V is fixed we substitute 𝑛ℎ in 𝑉(�̅�𝑆𝑇,𝑅1 ) and solving for n we have: 



𝑛 =
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑅1 )
 ∑ [ 𝑁ℎ   √(𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 ) √𝑐ℎ ]

𝐿

ℎ=1

  

 ∑ [𝑁ℎ  √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 ) 
1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

And with this, the optimal allocation of 𝑛ℎ for 𝑅1 using SSRSWR is completed. 

 

4.2 𝒏𝒉 and n optimal for 𝑽(�̅�𝑺𝑻,𝑹𝟐 ) 

Lemma 4.2. Using SSRSWR and the cost function (4.1), the variance of the estimator of the population 

mean of the procedure 𝑅2 is a minimum when 𝑛ℎ  ∝  𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ
  

 Proof. 

The proof is similar to the previous method. The resulting proportion for 𝑅2 is: 

𝑛ℎ = 𝑛

𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ

∑ 𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ

 𝐿
ℎ=1  

  … (4.2.1) 

so that, 𝑛ℎ ∝ 𝑁ℎ  √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ
 

n optimal when there is a fixed cost (C),   

𝑛 =

(𝐶 − 𝑐0) ∑ (𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ

) 𝐿
ℎ=1  

∑ (𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) √𝑐ℎ) 𝐿

ℎ=1

 

The n optimal when you have a fixed variance, is 

𝑛 =  
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑅2 )
 ∑ [ 𝑁ℎ  √(𝜎ℎ𝑌

2 (1 + 𝐶𝑉ℎ𝑋
2 ) + 𝐶𝑉ℎ𝑋

2 𝜇ℎ𝑌
2 + 𝜎ℎ𝑇

2 ) √𝑐ℎ ]

𝐿

ℎ=1

 

  ∑ [𝑁ℎ √(𝜎ℎ𝑌
2 (1 + 𝐶𝑉ℎ𝑋

2 ) + 𝐶𝑉ℎ𝑋
2 𝜇ℎ𝑌

2 + 𝜎ℎ𝑇
2 ) 

1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

And with this, the optimal allocation of 𝑛ℎ for 𝑅2 using SSRSWR is completed. 

4.3 𝒏𝒉 and n optimal for 𝑽(�̅�𝑺𝑻,𝒁 ) 

Lemma 4.3. Using SSRSWR and the cost function (4.1), the variance of the estimator of the population 

mean of the procedure 𝑍 is a minima when 𝑛ℎ  ∝

 𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ
  

 Proof. 

It is proved, by following the reasoning of Lemma 4.1. The resulting proportion for Z is: 



𝑛ℎ = 𝑛

𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ

∑ 𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ

 𝐿
ℎ=1  

  … (4.3.1) 

hence,  

𝑛ℎ ∝ 𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ

    

n optimal when there is a fixed cost (C),   

𝑛 =

(𝐶 − 𝑐0)∑ (𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ

) 𝐿
ℎ=1  

∑ (𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] √𝑐ℎ) 𝐿
ℎ=1

 

n optimal when you have a fixed variance,  

𝑛 =  
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑍 )
 ∑ [ 𝑁ℎ  √[𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2 ((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )] √𝑐ℎ ]

𝐿

ℎ=1

 

  ∑ [𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )] 
1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

  

The above is the optimal allocation of  𝑛ℎ  for Z using SSRSWR.  

As and the last results, we substitute 𝑛ℎ =
𝑛𝑁ℎ

𝑁
  in (3.3.1) to obtain the global proportional variance of the 

estimator 𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ), see (3.3.2). Also, if we substitute 𝑛ℎ of (4.3.1) with unitary cost in (3.3.1) for to get 

the variance minima with a n fix, we have: 

𝑉(�̅�𝑆𝑇,𝑍 ) =
1

𝑁2 ∑

[
 
 
 
 
 
 
 
 

𝑁ℎ
2  [𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2 ((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]

𝑛
𝑁ℎ √[𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2 ((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]  

∑ 𝑁ℎ √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )]   𝐿
ℎ=1  

]
 
 
 
 
 
 
 
 

𝐿

ℎ=1

=
1

𝑛𝑁2
[∑ 𝑁ℎ  √[𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2 ((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]

𝐿

ℎ=1

]

2

 

 

4.4. Gains in accuracy 

Next, we will prove the efficiency of using one variance over another as: 𝑉(�̂�𝑌) with  𝑉(�̅�𝑆𝑇,𝑍 ), 𝑉(�̅�𝑆𝑇,𝑍 ) 

with  𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ) and 𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ) with  𝑉𝑜𝑝𝑡(�̅�𝑆𝑇,𝑍 ). 

𝑽[�̂�𝒀] with  𝑽(�̅�𝑺𝑻,𝒁 ) 

First, the variance under SRSWR is will developed to stratified.  



Simplifying 𝑉(�̂�𝑌), we have 
1

𝑛
[𝜎𝑌

2 + 𝜎𝑋
2𝜎𝑌

2Α +  𝜎𝑋
2  𝜇𝑌

2Α + (1 − 𝑄)2𝜎𝑇
2], where Α = [

𝑄2

𝜇𝑋
2 +

(1−𝑄)

 𝜇𝑋
2

2

] owing to 

these variables are fixed by the researcher, then, we express the variance in its stratified form as next,  

𝑽(�̂�𝒀) =
1

𝑛
[𝜎𝑌

2 + 𝜎𝑋
2𝜎𝑌

2Α +  𝜎𝑋
2  𝜇𝑌

2Α + (1 − 𝑄)2𝜎𝑇
2] ⇒ 𝑛𝑁 𝑉(�̂�𝑌) =  

= ∑ (𝑌𝑖 − 𝜇𝑌)2
𝑖∈𝑈 + Α 𝜎𝑋

2  ∑ (𝑌𝑖 − 𝜇𝑌)
2

𝑖∈𝑈 + 𝜇𝑌
2  Α ∑ (𝑋𝑖 − 𝜇𝑋)

2
𝑖∈𝑈 + (1 − 𝑄)2 ∑ (𝑇𝑖 −𝑖∈𝑈

𝜇𝑇)
2
∑

1

𝑛
𝑊ℎ (𝜇𝑇(ℎ) − 𝜇𝑇)

2
𝐿
ℎ=1 =

1

𝑛
∑ 𝑊ℎ

𝐿
ℎ=1 [𝜎𝑌ℎ

2 + Α 𝜎𝑋
2  𝜎𝑌ℎ

2 + 𝜇𝑌
2  Α 𝜎𝑋ℎ

2 + (1 − 𝑄)2𝜎𝑇ℎ
2 ] +

1

𝑛
∑ 𝑊ℎ

𝐿
ℎ=1 [(𝜇𝑌(ℎ) − 𝜇𝑌)

2
+ Α 𝜎𝑋

2 (𝜇𝑌(ℎ) − 𝜇𝑌)
2
+ 𝜇𝑌

2  Α (𝜇𝑋(ℎ) − 𝜇𝑋)
2
+ (1 − 𝑄)2 (𝜇𝑇(ℎ) − 𝜇𝑇)

2
]  

 

Gain in accuracy of 𝑽(�̂�𝒀) with  𝑽(�̅�𝑺𝑻,𝒁 ) 

𝐺[(𝑉(�̂�𝑌), 𝑉(�̅�𝑆𝑇,𝑍 )] = 𝑉(�̂�𝑌) − 𝑉(�̅�𝑆𝑇,𝑍 ) 

=
1

𝑛
[𝜎𝑌

2 + 𝑄2 𝐶𝑉𝑋
2(𝜎𝑌

2 + 𝜇𝑌
2) + (1 − 𝑄)2((𝜎𝑌

2 + 𝜇𝑌
2)𝐶𝑉𝑋

2 + 𝜎𝑇
2)] −

∑
𝑊ℎ

2 [𝜎ℎ𝑌
2 +𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 +𝜇ℎ𝑌
2 )+(1−𝑄ℎ𝑖)

2((𝜎ℎ𝑌
2 +𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 +𝜎ℎ𝑇

2 )]

𝑛ℎ

𝐿
ℎ=1   

=
1

𝑛
∑ 𝑊ℎ

𝐿
ℎ=1 [𝜎𝑌ℎ

2 + Α 𝜎𝑋
2 𝜎𝑌ℎ

2 + 𝜇𝑌
2 Α 𝜎𝑋ℎ

2 + (1 − 𝑄)2𝜎𝑇ℎ
2 ] +

1

𝑛
∑ 𝑊ℎ

𝐿
ℎ=1 [(𝜇𝑌(ℎ) − 𝜇𝑌)

2
+ Α 𝜎𝑋

2(𝜇𝑌(ℎ) −

𝜇𝑌)
2
+ 𝜇𝑌

2 Α(𝜇𝑋(ℎ) − 𝜇𝑋)
2
+ (1 − 𝑄)2(𝜇𝑇(ℎ) − 𝜇𝑇)

2
] −

∑
𝑊ℎ

2 [𝜎ℎ𝑌
2 +𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 +𝜇ℎ𝑌
2 )+(1−𝑄ℎ𝑖)

2((𝜎ℎ𝑌
2 +𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 +𝜎ℎ𝑇

2 )]

𝑛ℎ

𝐿
ℎ=1   

This expression will be positive if the means in the strata are heterogeneous. If this happens, it is 

recommended to use SSRSWR, otherwise the means are almost homogeneous between the strata, the 

squared difference of the above expressions will be close to zero and therefore, it is recommended to use 

SRSWR.  

4.4.1 Gain in accuracy of 𝑽(�̅�𝑺𝑻,𝒁 ) with  𝑽𝒑𝒓𝒐(�̅�𝑺𝑻,𝒁 ) 

From expressions (3.3.1) and (3.3.2) we have the stratified variance and the proportional stratified variance, 

respectively. The gain in accuracy is given by:    

𝐺[(𝑉(�̅�𝑆𝑇,𝑍 ), 𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 )] 

= ∑
𝑊ℎ

2 [𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )]

𝑛ℎ

𝐿

ℎ=1

− ∑
𝑊ℎ [𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2 (𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 ) + (1 − 𝑄ℎ𝑖)
2((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]

𝑛

𝐿

ℎ=1

 

= ∑
𝑊ℎ

2�̈�ℎ
2 

𝑛ℎ

𝐿
ℎ=1 − ∑

𝑊ℎ �̈�ℎ
2

𝑛
𝐿
ℎ=1 = ∑ [𝑊ℎ �̈�ℎ

2 (
𝑊ℎ

𝑛ℎ
−

1

𝑛
)]𝐿

ℎ=1 . The following inequality will hold 
𝑊ℎ

𝑛ℎ
>

1

𝑛
, 

whenever 
𝑛

𝑁
>

𝑛ℎ

𝑁ℎ
, hence  𝑉(�̅�𝑆𝑇,𝑍 ) > 𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ).  

4.4.2 Gain in accuracy of 𝑽𝒑𝒓𝒐(�̅�𝑺𝑻,𝒁 ) with 𝑽𝒐𝒑𝒕(�̅�𝑺𝑻,𝒁 ) 

Using the  𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ) in (3.3.2) and the  𝑉𝑜𝑝𝑡(�̅�𝑆𝑇,𝑍 ) in (3.3.3), Following the usual procedure, the gain in 

precision is: 



𝐺[(𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ), 𝑉𝑜𝑝𝑡(�̅�𝑆𝑇,𝑍 )] 

= 
∑ 𝑁ℎ   [𝜎ℎ𝑌

2 + 𝑄ℎ𝑖
2  𝐶𝑉ℎ𝑋

2
(𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2
((𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 )𝐶𝑉ℎ𝑋

2 + 𝜎ℎ𝑇
2 )]𝐿

ℎ=1

𝑛𝑁

− 

(∑ 𝑁ℎ  √[𝜎ℎ𝑌
2 + 𝑄ℎ𝑖

2  𝐶𝑉ℎ𝑋
2 (𝜎ℎ𝑌

2 + 𝜇ℎ𝑌
2 ) + (1 − 𝑄ℎ𝑖)

2 ((𝜎ℎ𝑌
2 + 𝜇ℎ𝑌

2 )𝐶𝑉ℎ𝑋
2 + 𝜎ℎ𝑇

2 )]𝐿
ℎ=1 )

𝑛𝑁2

2

 

=
1

𝑛𝑁
[∑ 𝑁ℎ�̈�ℎ

2𝐿
ℎ=1 −

(∑ 𝑁ℎ�̈�ℎ
𝐿
ℎ=1 )

2

𝑁
] =  

1

𝑛
[∑ 𝑊ℎ�̈�ℎ

2𝐿
ℎ=1 − 𝜎2] =

1

𝑛
∑ 𝑊ℎ(�̈�ℎ

2 − 𝜎)2𝐿
ℎ=1 , hence,  𝑉𝑝𝑟𝑜(�̅�𝑆𝑇,𝑍 ) > 

𝑉𝑜𝑝𝑡(�̅�𝑆𝑇,𝑍 ). Where 𝜎 = ∑ 𝑁ℎ�̈�ℎ
𝐿
ℎ=1 /𝑁 

As a partial conclusion to using stratified sampling to minimize variance, it is better to use SSRSWR when 

the standard deviations are more different between strata.  

5. A SIMULATION STUDY. 

 

To evaluate and visualize the performance of the proposed estimators, both in SRSWR and SSRSWR, a 

simulation was carried out in terms of precision and efficiency. For the simulation, real data obtained from 

the National Survey of Victimization and Perception of Public Security (2021) developed by INEGI were 

considered, in which Y was chosen as a sensitive variable (question): “In terms of crime, tell me, How safe 

do you feel walking alone at night around your home?” with an ordinal scale of : Very Secure = 1, Secure 

= 2, Insecure = 3 y Very Insecure = 4, with  𝑁 = 80508, 𝜇 = 2.678 and  𝜎2 = 0.642.  The selection of 

this sensitive variable was due to the national context of Mexico, where crime has a negative impact in both 

the social and economic aspects and, therefore, it is of interest to characterize this type of information. In 

SSRS, the total population was stratified using the age range of the respondents as a criterion, resulting in 

7 strata. To evaluate the precision of the estimator of the mean of the sensitive variable Y we have (4.1), 

which is the ratio of the relative errors under SRSWR and SSRSWR. To evaluate the efficiency we present 

(4.2), which is the ratio of two estimators of the variance of the estimated mean.𝐸𝑟𝑟𝑜𝑟[𝑅𝐸(𝑑𝑗)/

𝑅𝐸(𝑑𝑘)]𝑠 = [(
|�̂�𝑗−�̅�𝑗|

�̅�𝑗
)

𝑑𝑗

(
|�̂�𝑘−�̅�𝑘|

�̅�𝑘
)

𝑑𝑘

⁄ ]

𝑠

… (4.1), where  d is a design,  𝑗 ≠ 𝑘 and  RE is the error relative 

with respect to 𝜇𝑌.  𝐸[𝑉𝑙/𝑉𝑚]𝑠 = (
𝑉(�̅�𝑙)

𝑉(�̅�𝑚)
)

𝑠
…(4.2), where 𝑙 ≠ 𝑚.  

For the simulation process, a sample size of n= 9081 was calculated, given a population sampling error for 

SRSWR. Fixing this sample size, the sample size 𝑛ℎ was calculated for each stratum proportionally 

following Cochran (1971) for the global variance (3.3.1) and the proportional global variance (3.3.2). From 

(4.3.1) the optimal sample for the optimal global variance (3.3.3) was calculated. A simulation of 1000 

iterations was carried out. Following other works, Greenberg et al. (1971) and Bouza et al. (2022), similar 

values to the population values 𝑌𝑖 were set for the auxiliary variables 𝑋𝑖 and 𝑇𝑖 .Two simulations were 

performed to compare the accuracy and efficiency of the estimators doing greater use of the scrambling 

model 𝑅1 or 𝑅2.  The first simulation was assigned probability Q=0.7 to select the scrambling model 𝑅1 

and the second simulation was assigned Q=0.3 to select the same model.  

The simulated results of the statistics to evaluate the precision and efficiency of the proposed estimators 

are presented in Table 1 and Table 2. 

 
Table 1. Accuracy of the estimators of 

               SRSWR and SSRSWR 

 
 Q=0.7 Q=0.3 

𝐸𝑟𝑟𝑜𝑟 (
 𝑆𝑅𝑆

𝑆𝑆𝑅𝑆
) = 

1.0611 1.0071 

 

 
 

 

 
 

 

 

Table 2. Efficiency of the estimators of 

               the mean 

 

 
Q=0.7 Q=0.3 

𝐸 (
 𝑉(𝑆𝑅𝑆)

𝑉(𝑆𝑆𝑅𝑆)
) = 0.60034 0.62126 

𝐸 (
 𝑉(𝑆𝑆𝑅𝑆)

𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆)
) = 

1.00896 1.00001 

𝐸 (
𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆)

𝑉𝑜𝑝𝑡(𝑆𝑆𝑅𝑆)
) = 1.00019 1.00018 

 



The precision of the estimators under each design is shown in Table 1, in which it is observed that when 

the probability of using the scrambling model 𝑅1 is 0.7, it is more precise to use SSRS to estimate the 

population mean of Y. Similarly, when there is a greater probability of using 𝑅2, it is more accurate to use 

SSRS than SRS. Between the models 𝑅1and 𝑅2, it is better to assign a higher probability to use 𝑅1since the 

estimator is of higher precision than 𝑅2. The results in Table 2 indicate that the variance of the estimator 

under SRS is smaller than the variance using SSRS regardless of which scrambling model is used. This 

could be explained with the sensitive variable Y used for the simulation, in which the population means of 

the strata are very similar, with the consequence that the use of SSRS loses efficiency. Finally, 𝑉(𝑆𝑆𝑅𝑆) >

𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆) and  𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆) > 𝑉𝑜𝑝𝑡(𝑆𝑆𝑅𝑆), although with a very minimal difference. 

 

To visualize the behavior of the estimators �̂�𝑦𝑠
, 𝐸𝑟𝑟𝑜𝑟[𝑅𝐸(𝑑𝑗)/𝑅𝐸(𝑑𝑘)]𝑠 and 𝐸[𝑉𝑙/𝑉𝑚]𝑠 were simulated 

under SRS sample sizes which were increased with  𝑛 = 250, 500, … , 10000. Using SSRS, the sample 

sizes for each stratum were proportional, resulting in a total sample with  𝑛 = 250, 506, … , 10073. 
 
 Figure 1. Estimators under SRS and SSRS, when Q=0.7 and Q=0.3 

 

 
In the previous figure, the graphs presented in the first row show the values taken by the estimator of the 

mean of Y, when the sample increases when using SRS and SSRS for Q=0.7 or Q=0.3. In the second row, 

the graphs show is the relative error with respect to 𝜇𝑌 under the same previous conditions. The last line 

shows the precision when comparing SRS with SSRS with the Error statistic (4.1) for Q=0.7 or Q=0.3. In 

these last graphs, a regression line is drawn with which we can visualize that the more the sample size 

grows, the more precise it is to use SSRS than SRS since the straight line exceeds one. 

 

 
        Figure 2. Comparation efficiency  

 

 

 



 
To observe under which design and which report presents minimum variance, the ratios between 𝑉(𝑆𝑅𝑆), 

𝑉(𝑆𝑆𝑅𝑆), 𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆)   and 𝑉𝑜𝑝𝑡(𝑆𝑆𝑅𝑆)  were calculate, when the sample size 𝑛 increased until it reached 

10000. In the first column of Figure 2, whether assigning Q=0.7 or Q=0.3,  𝑉(𝑆𝑅𝑆) is smaller than 𝑉(𝑆𝑆𝑅𝑆) 

as seen in the numerical results; in the graphs in column two, the smaller the sample, the smaller the variance 

when using  𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆) than 𝑉(𝑆𝑆𝑅𝑆), but as the sample increases, the efficiency of 𝑉𝑜𝑝𝑡(𝑆𝑆𝑅𝑆) is reduced 

over 𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆). The same happens in the last graphic column, where 𝑉𝑜𝑝𝑡(𝑆𝑆𝑅𝑆) is smaller than 𝑉𝑝𝑟𝑜(𝑆𝑆𝑅𝑆). 

 As a conclusion of the simulation, it is better to use SRS when you have a small sample size or when in 

the stratification design the strata have homogeneous means. It is more accurate to use 𝑅1, but if greater 

scrambling of the respondent's sensitive value Y is desired, it is better to use 𝑅2. 

RECEIVED: OCTOBER, 2024. 
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