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ABSTRACT	
The		estimation	of	Differences-in-Differences	(DiD)	using		a	simple	random	sampling	with	
replacement	(SRSWR)	sample	is	developed.	The	cases	in	which	the	sample	s	is	selected	and	
subsamples		s1	and	s0	are	determined	deterministically	or	randomly	are	considered,	as	well	as	the	
case	in	which	non-responses	are	present.	Different	alternative	models	are	developed.	Their	
behaviour	in	a	real-life	problem	is	discussed.	
	
KEYWORDS:	Difference-in-Difference	estimation,	simple	random	sampling,	expected	error,	non-
responses,	subsampling	rules.	
	
MSC:	62D05,	62P12.	
	
RESUMEN	
Se	desarrolla	la			estimación	de	las	Diferencias	existentes	entre	Diferencias	(Differences-in-
Differences	,	DiD)	usando	muestreo	simple	aleatorio		con	reemplazo.	Los		casos	en	los	que		la	
muestral	s	es	seleccionada	y	submuestras		s1	y	s0	son	determinadas	,deterministamente	o	
aleatoriamente,	son	considerados.,	así	como	el	caso	en	que	hay	no	respuestas.	Diferentes	modelos		
alternativos	son	desarbolados	.	Su	desempeño	en	problemas	de	la	vida	real	es	discutido.	
	
	
PALABRAS	CLAVE:	estimación	de	las	Diferencias	entre	Diferencias,	muestreo	símple	aleatorio	,	error	
esperado,	no	respuestas,	reglas	de	submuestreo	
	
1.	INTRODUCTION	
	
Econometricians	are	using	frequently		Difference-in-Differences	(DiD)	methods	for	developing	
evaluations	of	the	impact	of	new	policies.	The	studies	are	based	on	evaluating	the	effect	of	them	by	
comparing	how	they	increase	the	response.	These	methods	allow	estimating	the	causal		effects	of	a	
policy,	program	or	treatment.	See	as	examples		Ashenfelter	(1978)	,	Card	(1990).	Recent	discussion	
on	DiD	methods	are	provided	by	Abadie-	Cattaneo	(2018),	Wing	et	al.	(2018).	Its	application	is	
generating	a	growing	literature	.	See	for	example	Aggarwal-Hsu	(2014),	Distelhorst	et	al.	(2016),		
Conyon	et	al.	.	(2019),	Holm	(2018),		Kumar	et	al.	(2016)	and	He-Zhang	(2018).		
The	basic	idea	of	DiD	is	that	a	group	of	similar	units	is	observed.		It	is	divided	in	two	subgroups.	In	a	
subgroup	the	policy	is	implemented	and	in	the	other	one	no.	They	are	denominated	treatment	and	
control	groups	respectively.		DiD	methods	have	been	used	not	only	in	economics	but	in	studies	on		
management.		The	evaluation	looks	for	estimating		the	effect	in	the	response	of	the	observed	units	to	
the	policy	.	It	is	non	randomly	implemented	and	will	be		denominated	in	the	sequel	as	“treatment”.	
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The	goal	is	to	compare	the	treatment	and	control	groups.	The	observed		difference	is	possibly		due	to	
the	policy.		Non	controlled	factors	may	be	present.	They	may	be	observable	or	not.		The	factors	may	
be	affecting		the	level	of	the	outcomes	both	in		the	treatment	and	control	groups.	The	aims	of	the	
decision	maker	is	to	establish	if	the	observed	difference	is	the	effect	of	treatment.	
The	use	of	sampling	modelling	is	not	considered	in	the	studies.	This	paper	considers	a	survey	
sampling	study	where	is	needed	to	develop	inferences	of	DID.	A	randomly	selected	sample	s	is	
partitioned	into	two	subsamples	and	the	treatment	is	assigned	to	one	of	them.	A	variable	Y	is	
evaluated	in	the	selected	units	before	and	after	applying	the	treatment.		The	difference	of	the	
estimated	means	is	estimated	in	both	groups	and	the	difference	between	them	is	estimated.	The	
question	is	if	the	observed	DiD	sustains	that	the	effect	of	the	treatment	is	significatively	different	for	
zero.	
The	next	section	presents	the	estimation	of	DiD	of		a	simple	individual-level	DID	model	is	presented.	
Simple	random	sampling	with	replacement	(SRSWR)	is	used	for	selecting	the	sample.	Estimators	of	
the		population	DID	are	developed.	Two	alternatives	are	studied.	The	cases	in	which	s	is	selected	and	
it	is	s1	and	s0	are	determined	deterministically	or	randomly	are	considered.	Section	3	is	devoted	to	
study	the	case	in	which	non-responses	are	present.	The	subsampling	rules	of	Hansen-Hurwitz	
(1946),	Srinath	(1971)	and	Bouza	(1981)	are	used	for	determining	alternative	models.	Finally,	a	real-
life	problem	is	analysed.	The	data	comes	from	a	study	of	the	effect	of	an	after	heart-stroke		new	
treatment.	
	
2.	ESTIMATION	OF	DIffERENCES-IN-DIffERENCES		
	
Differences-in-Differences	(DID)	is	widely	used	in	applied	economics.		
a	simple	individual-level	DID	model	is	given	by	

𝑌"#$ = 𝛼𝛿#$ + 𝜃# + 𝛾$ + 𝜈#$ + 𝜀"#$	
Yijt	is	the	outcome	of	individual	i	belonging	to	the	j-th	group.	

𝜃#	𝑖𝑠	𝑡ℎ𝑒	𝑔𝑟𝑜𝑢𝑝	𝑒𝑓𝑓𝑒𝑐𝑡	
𝛾$		𝑖s	a	fixed	time	effect			
νjt	is	the	interaction	of	the	j-th	group	with	the	time	error	term	.	
𝜀"#$	is	an	individual	random	error	term	
The	development	of	inferences	is	rather	complicated	due	to	the	fact	that	errors	are	affected	by	the	
possible	existence	of		intra-group	and	serial	correlations.	Underestimation	of	DID`s	standard	errors	is	
expected	if	these	effects	are	not	considered,	see	Bertrand	et	al.	(2004).	Still,	there	is	as	yet	no	unified	
approach	to	dealing	with	this	problem.	
We	are	going	to	consider	a	problem	arising	in	many	survey	sampling	studies	where	is	needed	to	
develop	inferences	of	DID.	
Take	a	finite	population	𝑈 = {𝑢L,… , 𝑢O}.	Consider	that	the	interest	is	establishing	the	effect	of	a	
certain	treatment	on	the	behaviour	of	a	variable	Y.		A	sample	s	of	size	n	is	to	be	selected.	It	is	
partitioned	into	subsamples	s1	of	size	n1,	the	individuals	assigned	to	the	treatment,	and	a	subsample	
s0	of	size	n0,	a	control	group.	The	variable	is	measured	in	two	different	moments.	For	example,	before	
introducing	the	changes	(treatment)	and	after.	Take	for	example	a	new	teaching	method.	A	test	is	
developed	at	the	beginning	of	the	course	to	both	groups	at	the	end	of	it.	The	question	of	the	teacher	is	
on	the	improvements	of	the	marks.	Similarly,	are	the	studies	of	a	physician	establishing	the	
difference	of	parameters	in	persons	recovering	from	a	heart	stroke,	the	biologist	in	evaluating	a	new	
treatment	pest	control,	the	engineering	introducing	technological	changes	in	some	factories,	etc.		
These	problems	particular	cases	where	the	decision	maker	aims	to	estimate	DiD.	Consider	only	a	
group	and	fixing:	
𝑡 = Q1	if	the	treatment	is	applied	to	the	individual0	otherwise 		
The	response	of	an	individual	may	be	modelled	as		

𝑌"$W = 𝜇$W + 𝛾$𝐼W + 𝜀"$W,	

	𝑞 = [
𝑎	𝑖𝑓	𝑡ℎ𝑒	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡	𝑖𝑠	𝑚𝑎𝑑𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑒𝑐𝑜𝑛𝑑	𝑚𝑜𝑚𝑒𝑛𝑡	(𝑎𝑓𝑡𝑒𝑟)
𝑏		𝑖𝑓	𝑡ℎ𝑒	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡	𝑖𝑠	𝑚𝑎𝑑𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑓𝑖𝑟𝑠𝑡	𝑚𝑜𝑚𝑒𝑛𝑡	(𝑏𝑒𝑓𝑜𝑟𝑒)	

𝐼W = [
1	𝑖𝑓	𝑞 = 𝑎
0	𝑖𝑓	𝑞 = 𝑏	
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	𝛾$	is	the	effect	of	the	treatment.	The	difference	in	the	sample	of	units	assigned	to	the	treatment	is		

𝐷dL =
1
𝑛L
ef𝑌"Lg

hi

"jL

−f𝑌"Ll

hi

"jL

m =
1
𝑛L
f𝑑"L

hi

"jL

	

If	simple	random	sampling	with	replacement	(SRSWR)	is	used	for	selecting	the	sample	
𝐸o𝑌"LWp = 𝜇LW + 𝛾L𝐼W .	

Hence		

𝐸o𝐷dLp =
1
𝑛L
ef𝐸(𝑌"Lg)

hi

"jL

−f𝐸(𝑌"Ll)
hi

"jL

m = 𝜇Lg+𝛾L − 𝜇Ll = 𝐷L + 𝛾L	

Note	that	𝛾L	is	the	effect	of	the	treatment.		The	variance	of	the	estimator	is	

𝑉o𝐷dLp = 𝑉 e
1
𝑛L
f𝑑"L

hi

"jL

m =
𝜎Lls + 𝜎Lgs −2𝜎Lgls

𝑛L
	

where	
𝜎LWs = 𝐸o𝑌LW − 𝜇LWp

s; 𝑞 = 𝑎, 𝑏	
𝜎Lgl = 𝐸(𝑌Lg − 𝜇Lg)(𝑌Ll − 𝜇Ll) 	

These	parameters	are	estimable	by	

𝑠LWs =
1

𝑛L − 1
fo𝑌"LW − 𝑦wLWp

s
hi

"jL

, 𝑦wLW =
1
𝑛L
f𝑌"Lx

hi

"jL

; 𝑞 = 𝑎, 𝑏	

𝑠Lgl =
L

hiyL
∑ (𝑌"Lg − 𝑦wLg)(𝑌"Ll − 𝑦wLl)
hi
"jL .	

	Hence	

𝑠so𝐷dLp =
𝑠Lls + 𝑠Lgs −2𝑠Lgls

𝑛L
	

is	an	unbiased	estimator	of	𝑉o𝐷dLp.	
𝐷dL	is	a	mean,	therefore	under	suitable	conditions	it	is	distributed	𝑁o𝐷L + 𝛾L, 𝑉(𝐷dL)p.		Then,	we	may	
test	the	validity	of	𝐻L:	𝐸o𝐷dLp > 0	using	T-tests	.	
A	similar	analysis	of	the	case	t=0	derives	that			

𝐷d� =
1
𝑛�
ef𝑌"�g

h�

"jL

−f𝑌"�l

h�

"jL

m =
1
𝑛�
f𝑑"�

h�

"jL

	

𝐸o𝐷d�p = 𝜇�g−𝜇�l + 𝛾� = 𝐷� + 𝛾�	
𝛾�	is	a	residual	effect	due	to	the	elapsed	time	between	the	first	and	second	moments.		The	sampling	
error	is	

𝑉o𝐷d�p = 𝑉e
1
𝑛�
f𝑑"�

h�

"jL

m =
𝜎�ls + 𝜎�gs −2𝜎�gls

𝑛�
	

where	
𝜎�Ws = 𝐸o𝑌�W − 𝜇�Wp

s; 𝑞 = 𝑎, 𝑏	
𝜎�gl = 𝐸(𝑌�g − 𝜇�g)(𝑌�l − 𝜇�l) 	

The	components	of	the	error	are	estimated	by		

𝑠�Ws =
1

𝑛� − 1
fo𝑌"�W − 𝑦w�Wp

s
hi

"jL

, 𝑦w�W =
1
𝑛L
f𝑌"�W

hi

"jL

; 𝑞 = 𝑎, 𝑏	

𝑠�gl =
1

𝑛� − 1
f(𝑌"�g − 𝑦w�g)(𝑌"�l − 𝑦w�l)
hi

"jL

	

and	the	variance	is	unbiasedly	estimated	by	

𝑠so𝐷d�p =
𝑠�ls + 𝑠�gs −2𝑠�gls

𝑛�
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The	difference	between	the	effect	of	the	treatment	is	estimated	by	the	DID-estimator		Δd = 𝐷dL − 𝐷d�.	
The	decision	maker	is	generally	interested	in	evaluating	the	difference	of	Δ = 𝐸(𝐷dL) − 𝐸(𝐷d�).				The	
subsamples	permit	to	estimate	unbiasedly			Δ	.	
The	following	lemma	fixes	the	relevant	results	derived	above:	
Lemma	1.	If	SRSWR	is	used	for	selecting	the	samples	to	be	assigned	to	the	control	and	the	treatment	
Δd = 𝐷dL − 𝐷d�	is	unbiased	for	D	and	its	error	is		
	

𝑉oΔdp = �i�
� ��i�� ys�i��

�

hi
+ ���

� ����� ys����
�

h�
.			

Proof.		
The	results	follow	from	the	discussion	developed	previously	and	the	independence	of	s0	and	s1	�	
Under	mild	condition	is	possible	to	develop	inferences	using	these	results.		
Consider	the	validity	of	𝐻L:	𝐸oΔdp > 0	.	The	variance	is	estimated	unbiasedly	using		

𝑠soΔd p = 𝑠so𝐷dLp + 𝑠so𝐷d�p	
The	inferences	may	use	the	asymptotic	normality	of	the	estimators	for	performing	tests.	Accepting	it	
that	the	observed	effects	are	not	due	to	the	treatment	a	normal	test	may	be	used	for	testing		𝐻L:	Δ >
0.		The	T-Student	tests	statistic	is	

𝑇 =
𝐷dL − 𝐷d�

�𝑠Ll
s + 𝑠Lgs −2𝑠Lgls

𝑛L
+ 𝑠�l

s + 𝑠�gs −2𝑠�gls

𝑛�

	

The	distribution	is	a	𝑇(𝑛L + 𝑛� − 2),	which	is	roughly	approximated	by	a	N(0,1)	even	for	moderate	
values	of		𝑛L + 𝑛�.	
Accepting	𝐻L:	𝐸oΔdp > 0	means	that	the	treatment	has	a	significant	positive	effect.	
Note	that	the	experimenter	may	select	the	sample	s	and	perform	a	Bernoulli	experiment	with	
probability	of	success	P.		For	each	𝑖 ∈ 𝑠	the	experiment	is	performed	and	𝑖	is	assigned	to	the	
treatment	group	if	the	result	is	a	success.	Otherwise	𝑖	is	assigned	to	the	control	group.	In	such	cases	
the	subsample	sizes	are	random	and	the	conditional	expectations	and	variances	are		

𝐸o𝐷d#�𝑛#p = 𝐷# + 𝛾#; 𝑗 = 1,0	

𝑉o𝐷d#p = 𝑉 �𝐸o𝐷d#�𝑛#p� + 𝐸 �𝑉 e
1
𝑛#
f𝑑"#

h�

"jL

�𝑛#m� = 𝐸 �
1
𝑛#
� o𝜎#ls + 𝜎#gs −2𝜎#gls p; 𝑗 = 1,0	

because	the	first	term	is	zero.	
Using	the	approximation	developed	by	Stephan	(1945)		

𝑉o𝐷d#p ≅ o𝜎#ls + 𝜎#gs −2𝜎#gls p �
1
𝑄#
+
1
𝑄#s
� , 𝑄# = [

𝑛𝑃	𝑖𝑓	𝑗 = 1
𝑛(1 − 𝑃)	𝑖𝑓	𝑗 = 0	

Then	

𝐸o𝑉(Δd)p =fo𝜎#ls + 𝜎#gs −2𝜎#gls p�
1
𝑄#
+
1
𝑄#s
�

L

#j�

	

These	results	are	fixed	in	the	following	lemma.	
	
2.	THE	CASE	OF	NON-RESPONSES	
	
In	real	life	applications	the	experimenter	selects	a	samples	s0	and	s1		and	in	the	second	visit	some	
non-responses	may	be		present.	Then	both	populations	are	stratified	as	follows	𝑈� =
𝑈�L ⋃𝑈�s	𝑎𝑛𝑑	 𝑈L = 𝑈LL ⋃𝑈Ls	.		Denote	

𝑈x# = [
	{𝑢$ ∈ 𝑈x	𝑡ℎ𝑎𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠	𝑖𝑛	𝑡ℎ𝑒	2𝑛𝑑	𝑣𝑖𝑠𝑖𝑡}	𝑖𝑓	𝑗 = 1	

{𝑢$ ∈ 𝑈x	𝑡ℎ𝑎𝑡	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑑	𝑖𝑛	𝑡ℎ𝑒	2𝑛𝑑	𝑣𝑖𝑠𝑖𝑡}	𝑖𝑓	𝑗 = 2	, ℎ = 0,1	

The		sampled	units	belonging	to	𝑈xL		give	response	to	the	variable	of	interest	in	both	visits	and	those	
in	𝑈xs	report	it	only	in	the	first	visit.		The	sample	s	is	going	to	be	denoted	in	the	sequel	as		𝑠x =
𝑠xL ⋃𝑠xs , �𝑠x#� = 𝑛xL, ℎ = 0,1		Without	losing	in	generality	take	

𝑠xL = {𝑢$ ∈ 𝑠x = 𝑠x|1 ≤ 𝑡 ≤𝑛xL}, 𝑠xs = {𝑢$ ∈ 𝑠x = 𝑠x|𝑛x�L + 1 ≤ 𝑡 ≤𝑛x}		
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The	existence	of	missing	observations	determines	that	only	𝑛xs∗	units	respond.	The	need	of	obtaining	
information	from	the	stratum	of	the	no-respondents		determines	selecting	a	subsample	form	sh2	.		
This	problem	was	treated	in	the	seminal	paper	of	Hansen-Hurwitz	(1946).	They	proposed	a	
subsampling	rule.	Srinath	(1971)	and	Bouza	(1981)	have	proposed	alternative	rules.		A	unified	
notation	is	that	the	subsample	size	is		𝑛xs∗ = 𝜃𝑛xs, 𝜃 ≤ 1,	see	Singh	(2003).	
The	response-data	allows	computing	

∑ 𝑌"Ll
h�i
"jL
𝑛xL

; ℎ = 0,1	

∑ 𝑌"Lg
h��∗
"jL
𝑛xs∗

; ℎ = 0,1	

Considering	the	stratum	of	nonresponses,	the	subsample	means	in	the	second	visits	are:	

𝑦w#xg =
∑ 𝑌"#xg
h�
"jL
𝑛x

, ℎ = 0,1, 𝑤# =
𝑛#
𝑛 	

As	some	missing	data	is	observed	a	subsample	of	size	𝑛xs∗	is	selected	among	the	𝑛xs	non	
respondents	and	is	calculated	

𝑦w#x∗ =
∑ 𝑌"xg
h��∗
"jL
𝑛xs∗

	

Take	

𝑦wxg∗ =f𝑤#𝑦wxg

s

#jL

+ 𝑤s(𝑦wsxg∗ − 𝑦wsgx)	

Noting	that.	𝐸(𝑦wsxg∗ − 𝑦wsgx|𝑛xs) = 0	because	∑ 𝑤#𝑦wxgs
#jL = 𝑦wxg.		In	addition,	𝐸(𝑦wxg∗|𝑛xs) = 𝑌wxg	

Therefore,	defining	𝑑̅x = 𝑦wxg∗ − 𝑦wxl	
𝐸o𝑑̅x|𝑛xsp = 𝐸(𝑦wxg∗ − 𝑦wxl|𝑛xs) = 𝜇xg+𝛾x − 𝜇xl = 𝐷x + 𝛾x; 		ℎ = 0,1	

The	estimator	sustains	the	unbiasedness.	Hence,	the	sampling	error	is	the	variance.	Note	that	the	
first	term	in	the	proposed	estimator	of	the	mean	of	is	the	sample	mean.	Then,	for	a	fixed	s		

𝑦wxg∗ =f𝑤#𝑦wxg

s

#jL

+ 𝑤s(𝑦wsxg∗ − 𝑦wsgx)	

and	

𝑉(𝑦wxg∗|𝑛xs) = 𝑉ef𝑤#𝑦wxg

s

#jL

+ 𝑤s(𝑦wsxg∗ − 𝑦wsgx)|𝑛xsm = 𝑉(𝑦wxg|𝑛xs) + 𝑤ss𝑉(𝑦wsxg∗ − 𝑦wsgx|𝑛xs)	

because the cross product is equal to zero, see Singh (2003), Bouza (2013).	𝑉(𝑦wxg|𝑛xs) and  
𝑉(𝑦wsxg∗ − 𝑦wsgx|𝑛xs) =

����
�

h��∗
  . 

Therefore  

𝐸o𝑉(𝑦wxg∗|𝑛xs)p =
𝜎xgs

𝑛x
+ 𝐸

⎝

⎜
⎛
𝑛xss
𝑛xs	

𝑛xg∗
⎠

⎟
⎞
𝜎xsgs =

𝜎xgs

𝑛x
+ 𝐸 �

𝑛xs
𝜃𝑛xs

� 𝜎xsgs  

The estimation of a difference under non responses has been studied by Bouza-Ajgaonkar (1993). For the 
difference in h=0,1 
 

𝐸 �𝑉o𝑑̅x|𝑛xsp� =
���
�

h�
+ 𝐸 ¦h��

§h�
�¨ 𝜎xsgs +		���

�

h�
− s����

h�
			(A)	

becaus𝑒		
𝐸o𝐶𝑜𝑣	(𝑦wxg∗, 𝑦wxl|𝑛xs)p = 𝜎xgl + 𝐸 «𝐸 �𝑦wxlo𝑤ss(𝑦wsxg∗ − 𝑦wsgx|𝑛xs)p�¬	

and	the	conditional	expectation	is	equal	to	zero	due	to	the	fact	that	E(𝑦wsxg∗|𝑛xs) = 𝑦wsgx.	Then	is	
proved	the	following	statement:	
Lemma	2.		Consider	samples	s0	and	s1		are	selected	using	simple	random	sampling	with	replacement	
and	𝑠x ∈ 𝑈x = 𝑈xL ⋃𝑈xs	, 𝑈xL ⋂𝑈xs = ∅, ℎ = 0,1	where		
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𝑈x# = [
	{𝑢$ ∈ 𝑈x	𝑡ℎ𝑎𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠	𝑖𝑛	𝑡ℎ𝑒	2𝑛𝑑	𝑣𝑖𝑠𝑖𝑡}	𝑖𝑓	𝑗 = 1	

{𝑢$ ∈ 𝑈x	𝑡ℎ𝑎𝑡	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑑	𝑖𝑛	𝑡ℎ𝑒	2𝑛𝑑	𝑣𝑖𝑠𝑖𝑡}	𝑖𝑓	𝑗 = 2	, ℎ = 0,1			

The	non-respondents	subsample	size	is		determined	by	𝑛xs∗ = 𝜃𝑛xs	where		

𝜃 =

⎩
⎪
⎨

⎪
⎧
L
³
, 𝐾 > 1	(𝐻𝑎𝑛𝑠𝑒𝑛 − 𝐻𝑢𝑟𝑤𝑖𝑡𝑧´𝑠	𝑟𝑢𝑙𝑒)

h�
¸h�h�

, 𝐻 > 0	(𝑆𝑟𝑖𝑛𝑎𝑡ℎ´𝑠	𝑟𝑢𝑙𝑒)

𝜃 = h��
h�
	(𝐵𝑜𝑢𝑧𝑎`𝑠	𝑟𝑢𝑙𝑒)

.	

a) The DiD´s estimator  

Δdh¼|§ = ½�
∑ 𝑌"Lg
hii
"jL
𝑛LL

+
∑ 𝑌"Lg
hi
"jL
𝑛Ls∗

� −
∑ 𝑌"Ll
hi
"jL
𝑛L

¾ − ½�
∑ 𝑌"�g
h�i
"jL
𝑛�L

+
∑ 𝑌"�g
h�
"jL
𝑛�s∗

� −
∑ 𝑌"�l
h�
"jL
𝑛�

¾	

is	unbiased	for	D.		
b) The expected error of Δdh¼|§	𝑖𝑠 

  

𝐸o𝑉(Δdh¼|§|𝑛xs)p = 	

⎩
⎪⎪
⎨

⎪⎪
⎧𝜎xg

s

𝑛x
+
𝐾𝑊s𝜎xsgs

𝑛x
+		

𝜎xls

𝑛x
−
2𝜎xgl
𝑛x

(𝐻𝑎𝑛𝑠𝑒𝑛 − 𝐻𝑢𝑟𝑤𝑖𝑡𝑧´𝑠	𝑟𝑢𝑙𝑒)

𝜎xgs

𝑛x
+
(𝐻 +𝑊s)𝜎xsgs

𝑛x
+		

𝜎xls

𝑛x
−
2𝜎xgl
𝑛x

(𝑆𝑟𝑖𝑛𝑎𝑡ℎ´𝑠	𝑟𝑢𝑙𝑒)

𝜎xgs

𝑛x
+
𝜎xsgs

𝑛x
+		

𝜎xls

𝑛x
−
2𝜎xgl
𝑛x

(𝐵𝑜𝑢𝑧𝑎`𝑠	𝑟𝑢𝑙𝑒)

	

Proof:	
a) Due to the unbiasedness of 𝐷dL	and	𝐷d� follows that 𝐸oΔdh¼|§p = Δ for both rules. 
b) Substituting q in the corresponding expression of 𝐸 �𝑉o𝑑̅x|𝑛xsp�is derived the second result.� 

 

3. A STUDY OF THE BEHAVIOR OF THE PROPOSALS. 

3.1. The real-life problem. 

The use of surgery is needed in the cases of patients with some kind of disease, as those related with 
coronary artery or  valvular diseases and with symptoms-signs of cardiac function impairment, see 
Castellanos et al. (2019). The study dealt with the evaluation of the recovering  of patients in terms of 
pulmonary flux, mitral flux-gram,  maximal cardiac frequency   and myocadiac efficiency 1,7. The effect of 
a change in the common protocol was the interest of the researchers. The levels of the treatment based on 
carvedilol, clopidogrel, ASA and atorvastatin where changed.  The 180 patients in the study underwent 
cardiac surgery (revascularization and valve surgery) without postoperative atrial fibrillation and free of  
diabetes.	Bias was eliminated by allocating  patients based on random sequence generation. A measurement 
was made in a first visit to the cardilog and echocardiograms and ergograms were made.  After six months 
a new visit was to be made. In the control group 44,4% did not assist to the second visit. In the treatment 
group that percent was 62,2%.  The physicians contacted the non-respondents and programmed a second 
and third visit for obtaining all the data.  Then the relative sizes of the non-response strata were 0,444 and 
0,622 respectively. 

3.2. The full-response model. 

Samples of size 30,40 and 50 were selected from this population. for each sample sh , h=1,…, 1000.  The 
accuracy of the method was evaluated computing 

𝜗h =
1

1000 f
�Δdx − Δ�

Δ

L���

xjL

; 𝑛 = 30, 40, 50 
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Table 1: the full response case: Accuracy of Δd in the efficiency measures 

Efficiency Measures n=30 n=40 n=50 
Pulmonary Flux 081 0,0544 0,0477 0,0431 
Mitral Flux-Gram 86 0,0466 0,0461 0,0411 

Maximal Cardiac 
Frequency  144 

0,7936 0,7811 0,7806 

Myocardiac Efficiency 
1,7. 

0,0855 0,0838 0,0812 

Table 1 suggests that the estimator is very accurate for all the measures. The increase of the sample sizes 
has not a significative effect in reducing the estimator`s error. 

The use of the developed estimator for testing was evaluated using the test statistic 

𝑇 =
o𝐷dL − 𝐷d�p − ∆

�𝑠Ll
s + 𝑠Lgs −2𝑠Lgls

𝑛L
+ 𝑠�l

s + 𝑠�gs −2𝑠�gls

𝑛�

 

was computed for each sample sh , h=1,…, 1000 and was tested  

𝐻�: 𝐸o	𝐷dLp − 𝐸o𝐷d�p = ∆	𝑣𝑠	𝐻L:	o	𝐷dLp − 𝐸o𝐷d�p ≠ ∆	 

The experiment was evaluated using 1 − 𝛼 = 0,95 and  computing  

𝛾Çh =
1

1000 f 𝐿Lxh;	
L���

xjL

𝐿Lxh = Q1	𝑖𝑓	𝐻�	𝑖𝑠	𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑0	𝑜𝑡ℎ𝑒𝑒𝑟𝑤𝑖𝑠𝑒 ; 𝑛 = 30, 40,50. 

Table 2. Estimated probability of accepting that Δ was the population DiD  
for 1 − 𝛼 = 0,95: the full response case. 

Efficiency Measures n=30 n=40 n=50 
Pulmonary Flux 081 0,894 0,896 0,904 
Mitral Flux-Gram 86 0,938 0,943 0,943 

Maximal Cardiac 
Frequency  144 

0,948 0,948 0,948 

Myocardiac Efficiency 
1,7. 

0,936 0,941 0,948 

Table 1 suggests that the normal approximation of test statistic is not acceptable for the pulmonary flux but 
in the rest of the measures performed adequately close to 1 − 𝛼. The sample size has not a role in the 
approximation. 

3.3. The non-response problem. 

The non-response problem used the samples generated previously. For the second visit non—responses 
were generated for each selected patient. Then, the subsamples were obtained and the non-response based 
estimator calculated. Missing data were generated using Bernoulli random variables with parameters 0,444, 
for the control group, and 0,622 for the treatment one. The subsamples rules used the values K=H=2, 5, 10-                        
The accuracy of the estimator was evaluated computing 
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𝜗h¼|§ =
1

1000 f�Δdh¼|§ − Δ�x

L���

xjL

; 𝜃 = 𝐾,𝐻,
𝑛s
𝑛 ; 		𝑛 = 30, 40, 50 

Table 3: The non-response case: Accuracy of Δdh¼|§ in the efficiency measures. 

Efficiency Measures n=30 n=40 n=50 
Pulmonary Flux     

K=2 0,0781 0,0714 0,0712 
K=5 0,0833 0,0821 0,0813 
K=10 0,1023 0,1011 0,1001 
H=2 0,1061 0,1052 0,0975 
H=5 0,1873 0,1832 0,1819 
H=10 0,2404 0,2400 0,2397 
n2/n  0,0594 0,0594 0,0571 

Mitral Flux-Gram     
K=2 0,1383 0,1338 0,1285 
K=5 0,1494 0,1330 0,1323 
K=10 0,1524 0,1513 0,1513 
H=2 0,1928 0,1922 0,1922 
H=5 0,2172 0,1972 0,1959 
H=10 0,2289 0,1904 0,1896 
n2/n  0,1127 0,1227 0,1105 

Maximal Cardiac 
Frequency   

   

K=2 0,0899 0,0883 0,0848 
K=5 0,0947 0,0926 0,0922 
K=10 0,1054 0,1010 0,0971 
H=2 0,1735 0,1713 0,1611 
H=5 0,2578 0,1889 0,1689 
H=10 0,2945 0,2486 0,2282 
n2/n  0,0757 0,0723 0.0704 

Myocardiac Efficiency     
K=2 0,0178 0,0176 0,0169 
K=5 0,0468 0,0318 0,0236 
K=10 0,0596 0,0583 0,0401 
H=2 0,0398 0,0367 0,0355 
H=5 0,0717 0,0669 0,0604 
H=10 0,4879 0,4872 0,4765 
n2/n  0,0165 0,0162 0,0157 

As deducible from the formula of the error the use of Srinath (1971)  rule is more inaccurate and the rule of 
Bouza (1981) is the most accurate. Larger values of  K and H increase t𝜗h¼|§. From the literature we have 
that Hansen-Hurwitz rule (1946) has a smaller expected cost than the other  rules. Therefore it is commonly 
preferred as its accuracy is similar to Bouza`s. 
 For performing tests 𝐻�: 𝐸(Δdh¼|§) = ∆	𝑣𝑠	𝐻L:	Δdh¼|§ ≠ ∆ is needed to use a non-parametric method, as 
normality is not a natural approximation. Resampling methods provide tools for testing hypothesis when 
dealing with complex sampling 
Resampling methods are commonly used for inference in complex survey sampling. See Booth et al.  
(1994), Antal-Tillé (2011, 2014). They allow solving  the difficulties of estimating the sampling errors.  
Resampling identifies a set  of inferential techniques as randomization-based tests, cross-validation, 
Jacknife and Bootstrap. Their principles are very similar. Efron (1979) in his seminal paper conceived 
Bootstrap to be used for inferential purposes, see also Efron-Tsibirani (1993).The initial sample s is treated 
as the population and pseudo-populations are randomly generated. A large number of resamples sb , 
b=1,..,B, of size n are selected randomly, from the original sample of size n,  with replacement. It performs 
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better than some other asymptotic statistical methods. Bootstrap method also provides consistent estimates 
of the distribution of the estimator.   The complexity of the finite population sampling design poses a 
challenge for finding a valid bootstrap procedure. A good Bootstrap procedure should support that the 
Bootstrap-bias estimate be 0 . See Antal-Tillé (2011) and Booth et al.  (1994). The model developed 
previously determines a smooth function of finite population means. In such cases,  in practical situations, 
Bootstrap enables to implement adequate  tests of hypothesis. 
The Bootstrap implemented involves the following  steps: 
1. Select randomly and independently a sample sb using SRSWR from s. 
2. For b=1,…,B calculate Δdh¼|§(l). 
3. Compute ∆Éwh¼|§=

L
Ê
∑ÊljL Δdh¼|§(l), 𝑣h¼|§ =

L
ÊyL

∑ÊxjL (Δdh¼|§(l) − ∆Éwh¼|§)s. 
For B sufficiently large the output allows using  the percentile method or the T-Student Bootstrap for 
testing hypothesis. See  for example  the confidence intervals   formula proposed in Rao et al.(1992). See 
also Tillé (2006).  

𝑇h¼|§ =
∆Éwh¼|§ − ∆

Ë 1
𝐵(𝐵 − 1)∑

Ê
xjL (Δdh¼|§¸(x) − ∆Éwh¼|§)s

~𝑁(0,1) 

It  works well for any smooth statistic. 
A Monte Carlo experiment was developed with the data and H=1000 samples were selected from the 
population of patients.	𝑇h¼|§ was computed in each generated sample and was tested	
𝐻�: 𝐸(Δdh¼|§) = ∆	𝑣𝑠	𝐻L:	Δdh¼|§ ≠ ∆	, 
 1 − 𝛼 = 0,95  was estimated using 

𝛾Çh¼|§ =
1

1000 f 𝐿h¼|§(x);	
L���

xjL

𝐿h¼|§(x) = Q1	𝑖𝑓	𝐻�	𝑖𝑠	𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ; 

𝑛 = 30, 40,50; 	𝜃 = 𝐾,𝐻, h�
h
.The Monte Carlo experiment generated the results in table 4 below. They 

sustain that the parametric Bootstrap tests developed using  of the rules of Hansen-Hurwitz and Bouza 
generated are good  alternatives as the estimates of 1 − 𝛼 , as they are close to 0,95.  
The increase in the parameters of the rules of Hansen-Hurwitz and Srinath are more important in the 
convergence of the test statistics then having larger sample sizes. 

Table 4: Estimated probability of accepting that Δ was the population DiD  
for 1 − 𝛼 = 0,95: the non- response case. 

Efficiency Measures n=30 n=40 n=50 
Pulmonary Flux     

K=2 0,9180 0,9271 0,9388 
K=5 0,8566 0,8590 0,8876 
K=10 0,8810 0,8887 0,8907 
H=2 0,8611 0,8610 0,8821 
H=5 0,8590 0,8591 0,8604 
H=10 0,8529 0,8557 0,8593 
n2/n  0,9196 0,9196 0,9297 

Mitral Flux-Gram     
K=2 0,9358 0,9379 0,9388 
K=5 0,9211 0,9276 0,9365 
K=10 0,9086 0,9123 0,9198 
H=2 0,9054 0,9074 0,9077 
H=5 0,8977 0,9021 0,9039 
H=10 0,8941 0,8966 0,8953 
n2/n  0,9300 0,9352 0,9375 

Maximal Cardiac 
Frequency   

   

K=2 0,9334 0,9387 0,9421 
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K=5 0,9322 0,9342 0,9342 
K=10 0,9310 0,9327 0,9327 
H=2 0,9210 0,9289 0,9305 
H=5 0,9053 0,9071 0,9088 
H=10 0,8996 0,9009 0,9039 
n2/n  0,9305 0,9312 0,9409 

Myocardiac Efficiency     
K=2 0,9033 0,9084 0,9189 
K=5 0,8976 0,8976 0,8985 
K=10 0,8663 0,8701 0,8785 
H=2 0,8965 0,8995 0,9005 
H=5 0,8884 0,8902 0,8974 
H=10 0,8752 0,8789 0,8896 
n2/n  0,9008 0,9027 0,9085 

 
RECEIVED: JULY, 2023. 

REVISED: JANUARY, 2024. 
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