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    ABSTRACT 

We introduced generalized random variables of discrete type, studied some of their properties and 

then related these to continuous random variable which has been studied by Ganji and Gharari ‎‎ ‎ 

[8]‎. With this introduction, we obtained a new relationship between discrete fractional calculus and 

statistics. Also, the fractional versions of the discrete uniform distribution are developed and their 

statistical properties are discussed. 
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RESUMEN 

Hemos introducido variables aleatorias generalizadas de tipo discreto, estudiamos algunas de sus 

propiedades y, a continuación relacionamos éstos a la variable aleatoria continua que ha sido 

estudiado por Ganji y Gharari [8]. Con esta introducción, se obtuvo una nueva relación entre el 

cálculo fraccional discreto y estadísticas. Además, las versiones fraccionarias de la distribución 

uniforme discreta se desarrollan y sus propiedades estadísticas se discuten. 

 

1. INTRODUCTION 

The discrete fractional calculus deals with the study of fractional order sums and differences and their 

diverse applications ‎ ([1], ‎[2], ‎[3], ‎[4], ‎[5], [10])‎‎.  

As continuous fractional calculus that has widespread applications in different fields of science and 

engineering, applications of discrete fractional calculus will be ideal, too.‎‎ 

In this work, we follow our previous works, ‎[6], [7]‎ ‎ and ‎ [8], about applications of fractional calculus in 

statistics, we present an application of discrete fractional calculus in statistics. Having delta and nabla 

fractional sum and difference operators, we introduce two types of generalized random variables with their 

properties and we obtained a new relationship between discrete fractional calculus and statistics. By 

considering this relationship, we represent the discrete uniform distributions in term of fractional versions, 

which are called fractional discrete uniform distributions. The parameter space of these distributions, in the 

analogy with the ordinary discrete uniform             ‎‎is extended from ‎ ‎  ‎‎to    ‎.  ‎‎‎This‎ is exactly 

like to our recent work, [8], in the generalized continuous random variable‎                ‎ ‎in ‎which‎ the 

parameter space has been extended from ‎      to           
In such fractional distributions, our work is forming subclasses of family of distributions, in which we get 

different results by considering statistical properties of one of these subclasses.‎ 
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The article is organized as follows: The rest of this section contains summary of some notations and 

definitions in delta and nabla calculus. The second section contains the definitions of delta and nabla 

Riemann left fractional sums and differences. The third section contains the generalized discrete random 

variable type I and fractional discrete uniform distributions ‎of‎ type I. The fourth section contains the 

generalized discrete random variable type II and fractional discrete uniform distribution‎ type II‎.‎‎ 

For a natural number     ‎‎the ‎fractional ‎polynomial ‎is ‎defined ‎by, ‎ 
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where   denotes the special gamma function and the product is zero when       for some    More 

generally, for arbitrary     define 
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where the convention is that, division at pole is zero. The forward and backward difference operators are 

defined by 

                                                       (3) 

respectively and we define iteratively the operators            and              for a natural 

number     
For a natural number    the rising (ascending) factorial of   is defined by 
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For any real number the   rising function of   is defined by 
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For our purposes we list down the following properties, 
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where          and           are the forward and backward jumping operators, respectively. 

Also, if 

       
    

      then for       
  we have 
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and if     
    

      then for     
  we have 
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where              and   
             for real numbers    and    

 

2. ESSENTIAL DEFINITION 

 

DEFINITION 2.1.  Let b be a real number and     
       

The (delta) Riemann left fractional sum of order     is defined by Abdeljawad [1] as 

         

    
         

   
  

                                  
               

(10) 

The (nabla) Riemann left fractional sum of order     is defined by 

        
 

    
          

 
   

 

   

                           
   

                  

(11) 

The (delta) Riemann left fractional difference of order      is defined by Abdeljawad [1] as 
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for            
    and        where     is the greatest integer less than    

The (nabla) Riemann left fractional difference of order      is defined by 
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3. THE GENERALIZED DISCRETE RANDOM VARIABLE TYPE I 
 

Suppose   be a discrete random variable and   be the parameter of distribution. The generalized discrete 

random variable type I          is represented as the function    
 
     and defined by  

 
   
 

    
   The        

appears in most of distributions and we can rewrite these distributions in terms of it. For example, the 

Binomial distribution can be rewritten as following: 

              
 
                                          

 

where           ,               and         
      

        
  is the beta function. The generalized 

discrete random variable type I, has the properties as: 

In the special case, when     ; it becomes ordinary discrete random variable     We state the later 

property of the        as a theorem, i.e. 

THEOREM 3.1. The expectation of the        ,    
 
      coincides with (delta) Riemann left fractional 

sum of the probability function at    for       and (delta) Riemann left fractional difference of the 

probability function at    for     ,               i.e. 
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is (delta) Riemann left fractional sum of order    such that 

        
 
    

 

     

     

      

          

is (delta) Riemann left fractional difference of order    
In order to prove the theorem 3.1, we state and prove the following lemma. 

LEMMA 3.1. Let     
     and      be given, with          The following two definitions for 

the fractional difference   
         

      are equivalent: 
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and 
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PROOF: Let     and   be given as in the statement of the lemma 3.1 and we are showing that (16) is 

equivalent to (15) on the       
    

If      then (15) and (16) are equivalent, since 

                                                                                                                                                                                                   
If          then a direct application of (15) implies that 

                                  
 

      
         

     
 

 

         

    

 
         

      
           

     
 

 

         

       

by using (6) and (8) we get it as 
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and by repeating this action       times, which yields to 
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 Now, by using the lemma 3.1 we prove the theorem 3.1. 

PROOF: For        substitute          in the expression (10) and also for        
           in the expression (16).■ 

The Laplace transform of the       is         
 
              and the discrete Laplace transform, 

defined by Atici and Eloe [2] as 

             
 

   
 
   

 

   

      

Let           and      be given. The relationship between the        and      is given by 

                      
 
    

          

          
  

Where     is the right Riemann- Liouville fractional derivative (see [9]), that by consideration      

 
 
      and multiplying it by  

 

                    
 we get 

     
 
             

 

      
 

          

              
  

now, by a suitable simplification, we obtain our result. The similar result can be obtained by the right 

Riemann- Liouville fractional integral. 

In property (b) of the       in [8], it can be seen that the bounds of integration equal to the support of 

ordinary random variable. By considering this point, in our present work, the bounds of summation in 

second property allow us to introduce the generalized type of the probability distributions. The example 

presented in this work is fractional discrete uniform distribution, such that its special case is the ordinary 

discrete uniform distribution. In the subsection, we discuss this new distribution and its statistical properties. 

 

3.1 The fractional discrete uniform distribution type I 

 

DEFINITION 3.1.1. The random variable   is said to have a fractional discrete uniform distribution type I 

with parameters            and        if its probability function is given by 

      
 

   
                                                                                        (17)    

and denoted as                    .  
We classified this family of distributions      into                and                   
distributions. When                          then the expectation, variance and moment 

generating function of this distribution are given by 
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respectively. 

The      for                  yields the             distribution and for          
           the              distribution. This result can be obtained separately for (18), (19) and (20). 

 

3.1.1     for parameters of the       distribution 

 

The Likelihood function for the       distribution equals to 

                             

 

   

       

when   is constant, it equals to 

                                        

this is a decreasing function of    and it will be maximized if             On the other hand, the 

Likelihood function 

                  
  
                    ( )  

will be maximized if              

Therefore, generally the     estimators for   and    of         distribution equals to 

 

                                                                                       (21)    

 

3.1.2 The relationship with other distributions 

 

Suppose that            such that           Then, it can be easily proved that         have the       

distribution with parameters    and       where     is the greatest integer less than or equal to     
 

3.2 The generalized fractional discrete uniform distribution 

 

The random variable        that we introduced it in previous subsection, variants at both sides by different 

parameters, in such a way that one takes real values and the other one takes a subset of correct numbers. 

Moreover, the measure of variation of   is one. In this subsection, we introduce other fractional uniform 

discrete distribution, such that like before case, its random variable variants at both sides by different 

parameters. But in this case, the measure of variation of   is variable. We call it the generalized fractional 

discrete uniform distribution         and will show that, this distribution contain all of discrete uniform 

distributions that are introduced up now. 

DEFINITION 3.2.1. The random variable   is said to have a fractional discrete uniform distribution type I 

with parameters (     ),             and    > 0 when its probability function is given by 

      
 

             
          

 
      

 
     

 
                                                          (22)    

and denoted as            

 
        

 
 ,  where            and      also      is the integer 

part. 

We classified this family of distributions       into              ) and                 ) 

distributions. When                

 
        

 
   the expectation, variance and moment generating 

function of this distribution are given by 
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respectively, where 

A=4     
                   

                        
                          

                      
The      distribution for      yields the      distribution and for      and               
   yields the              distribution and for          and            ), the 

             distribution. This result can be obtained separately for (23), (24) and (25). 

 

3.2.1     for parameters of the      distribution 

 

Suppose that   is known. The Likelihood function for the      distribution is 

L (      
 

             
    

   
 
        

 
  

 
         

If   be constant, it is equal to  

 
 

             
                                    

this function is a power of the integer part of a function of  . For considering its monotony, we know that 

the function inside the integer part is differentiable if it is continuous in its local minimum point.  By 

considering domain of    we see that           is only continuous point for this function. On the other 

hand, the derivative of function in this point is zero, namely the Likelihood function is constant function of 

   Therefore, the estimator of parameter   is               On the other hand, the Likelihood function 

         
 

          
     

                         ( ), 

 is a power of the integer part of a function of   and point          is only continuous point of this 

function and derivative of function in this point is zero. That is, the Likelihood function is constant function 

of     Then the     for   parameter is          and in general we have 

                                                                                         (26)    

 

4. THE GENERALIZED DISCRETE RANDOM VARIABLE TYPE II 
 

Suppose that   is a discrete random variable and   is the parameter of distribution. The generalized discrete 

random variable type    (      ) is represented as the function    
 
      and defined by  

  
 

   

    
   The        

Appears in some of distributions and we can rewrite these distributions in terms of it. For example, the 

Negative Binomial distribution can be written as following: 

           
   

                                        

 

Where           ,          and        The generalized discrete random variable type II, has the 

properties as: 

In the special case for       it becomes ordinary discrete random variable   . We state the later property of 

the        as a theorem, i.e. 

THEOREM 4.1. The expectation of the           
 
       coincides with (nabla) Riemann left fractional 

sum of the probability function at   for    > 0 and (nabla) Riemann left fractional difference of the 

probability function at and we have at   for     ,               i.e. 
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where 

         
  

 
   

    
 

     

   

          

is (nabla) Riemann left fractional sum of order   and  
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is (nabla) Riemann left fractional difference of order  .  

In order to prove the theorem 4.1, we state and prove the following lemma. 

LEMMA 4.1. Let     
     and        be given, with          The following two definitions for 

the fractional difference   
       

      are equivalent: 

                                                                                 (28)    

and      

        

 

     
         

 
     

                            
  

                                  

                                                    

   (29)    

PROOF: Let     and   be given as in the statement of the lemma 4.1 and we are showing that (29) is 

equivalent to (28) on the     
    

If      then (28) and (29) are obviously equivalent, since in this case 

                                                     
If          then a direct application of (28) implies that 

                                   

      
         

 
      

         
         

      
          

   

  
 

                                                                                                                                            
and by using of (7) and (9) we get it as 

              
         

      
                  

 
      

                     
        

 
     

        
 
         

and by repeating this action       times, which yields to 
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 Now by using the above statement, we can prove the theorem 4.1.  

PROOF: For        substitute          in the expression (11) and also for        
           in the expression (29).■ 

The Laplace transform of the        is given by       
 
              such that the discrete Laplace 

transform, defined by Atici and Eloe [3], as 

                    
 

   

      

Let       and     be given. The relationship between the         and      is given by 

                         
   

    
          

          
  

and by consideration              
 
       and multiplying it by  

 

                    
 we get 

        
   

             
 

      
 

          

              
  

now, by a suitable simplification, we have our result. Also, the relationship between the        and 

      is given by 

   
   

         
 
         

Similar to previous cases, by using a property of the          here the bounds of summation let us introduce 

the other type of discrete uniform distribution. In the following subsection, we discuss this new distribution 

and its statistical properties. 

 

4.1 The fractional discrete uniform distribution type II  

 

DEFINITION 4.1.1. The random variable   is said to have a fractional discrete uniform distribution type II 

with parameters            and      
 when its probability function is given 
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which can be denoted by                   .  
Suppose that                   , then the expectation, variance and moment generating function of 

this distribution are given by 

       
   

 
                                                       (31)    
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   (33)    

respectively. 

 

The       distribution for               gives the             distribution. It can be yield this 

results separately for (31), (32) and (3). 

 

5. RESULTS 
 

In this work, by introduction of two type of discrete generalized random variables, we showed that the 

expected value of its first type equals to (delta) Riemann left fractional sum of the probability function at  
   for   > 0 and (delta) Riemann left fractional difference of the probability function at      for     , 

            and the expected value of its second type equals to (nabla) Riemann left fractional sum of 

the probability function at   f for   > 0 and (nabla)  Riemann left fractional difference of the probability 

function at    for     ,              Finally, we introduce the fractional versions of discrete uniform 

distribution and discuss its statistical properties. 
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