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ABSTRACT 

The main objective of this paper is to show the importance of the qualitative analysis in systems defined by differential 

ordinary equations, applied to the epidemiology. In particular, mathematical models will be propose that define the dynamics 

of transmission of COVID 19, considering a single stump of the illness and simulating a vaccination process.  
This type of theoretical study, added to the process of modeling, is one of the tools that mathematics can offer to generate 

effective control strategies, as much for the specialists of applied mathematics, the doctors and epidemiologists as for those 

who decide politics in the System of Public Health. 
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RESUMEN 

El objetivo principal de este trabajo es explicar la importancia del análisis cualitativo en sistemas definidos por  ecuaciones 

diferenciales ordinarias, aplicados a la epidemiología. En particular, se mostrarán modelos matemáticos que definen la 

dinámica de transmisión de la CoVid 19 considerando una sola cepa de la enfermedad y simulando un proceso de vacunación.  
Este tipo de estudio teórico, sumado al proceso de modelado, es una de las herramientas que la matemática puede brindar 

para generar estrategias de control efectivas, tanto para los estudiosos de las matemáticas aplicadas, los médicos y 

epidemiólogos como para los decisores del Sistema de Salud Pública. 

 

PALABRAS CLAVE: Modelos matemáticos, análisis cualitativo. 

 

1. INTRODUCTION. 

 

When modeling a practical problem through a system of ordinary differential equations, an alternative for 

the qualitative or geometric study of this system is, in addition to trying to find analytical solutions or their 

approximations, to analyze its behavior, in particular to study what happens with these solutions when the 

independent variable (usually time) tends to infinity. 

A key element in this study is finding the equilibrium points or points at which the values of the dependent 

variables do not change when the value of the independent variable is modified. Once the equilibrium points 

have been found, we are interested in knowing how the solutions behave in a neighborhood of these points: 

do they approach to, move away from, or oscillate around this point as the independent variable grows? In 

the first case, we will say that the equilibrium point is asymptotically stable. 

The study of the stability of differential equations allows us to make important predictions about the 

behavior of the mathematical models that use them, as well as provide a reference framework to validate 

the various numerical methods used to approximate the exact solutions of the model. 

The study of the equilibrium points of differential equations and the behavior of their solutions in a 

neighborhood of such points is known as analysis of the local stability of differential equations. 

The fundamental objective of this work is to present a qualitative analysis of epidemiological models that 

describe the dynamics of transmission of COVID 19 in Cuba with vaccinated populations, as part of the 

tools that mathematical modeling can provide to design effective control strategies. 

The system of differential equations has the following structure: 

𝑥̇ = 𝐹(𝑥) = (𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑛(𝑥))𝑇                                          (1) 
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with the initial condition 𝑥(𝑡0) = 𝑥0, that is, the right member is independent of 𝑡. Here we assume that 𝑥 ∈
𝑅𝑛 and that 𝐹 ⊂ 𝐶1(Ω, 𝑅𝑛) where Ω ⊂ 𝑅𝑛 is an open and connected set, which is called phase space. 

We define an equilibrium point of system (1) as a point p of the phase space Ω that meets 𝐹(𝑝) = 0. The 

point p is said to be regular if 𝐹(𝑝) ≠ 0. (Ricard., 2022) 

Using equivalence classification to catalog these balance points allows us to distinguish saddle, node, focus 

and center points.  

To do this, we consider the Jacobian matrix of system (1), which we will denote by 𝐴 and take into account 

the signature of the quadratic form generated by said matrix. For this classification it is not important 

whether A is diagonalizable or not. The characteristic equation has the following form 𝜆2 − 𝜏 𝜆 +  𝛿 = 0, 

where 𝜆 is considered to be the determinant of the matrix and 𝛿 its trace. Its roots are λ =
τ± √τ2−4𝛿

2

2
 so that 

we can build a scheme in the complement of the axis 𝛿 = 0 in the plane 𝜏𝛿. In this scheme, only the signs 

of the eigenvalues are considered and not the structure of the equivalent Jordan matrix. 

Let the plane 𝜏𝛿 and a partition defined by the curve 𝛿 =
1

4
 𝜏2 and the straight line 𝜏 = 0, taking into 

account that the plane has been cut by the straight line 𝛿 = 0. The system of equations (1) is asymptotically 

stable if and only if it is verified that 𝜏 = 𝑇𝑟(𝐴) < 0 and 𝛿 = 𝐷𝑒𝑡(𝐴) > 0. 

In the lower half-plane the phase diagram turns out to be a saddle point; in the upper half-plane and below 

the parabola there is a node that is stable if the trace is positive, and unstable if the trace is negative; in the 

upper half-plane and above the parabola, there is a focus that is stable if the trace is positive, and unstable 

if the trace is negative; on the axis of the ordinates in the upper half-plane the aspect of phases turns out to 

be that of a center. This is illustrated in the figure 1. 

 

 
 

Figure 1: Phase diagram of system (1) 

 

The rest point is Liapunov stable if 𝜏 = 0 and 𝛿 > 0, while it is unstable if 𝜏 > 0 or 𝛿 < 0. (Á.G. Estrella-

González, 2013) 

 

2. MATHEMATICAL MODELING. 

 

Since time immemorial, mathematical models have played an important role in understanding and 

predicting the spread of infectious diseases in a population. Different types of models are used to simulate 

several scenarios and to provide tools in decision making, especially with the development of 

Mathematical Epidemiology and biomedical applications (Martcheva, 2015), (Murray, 2003). However, 

ordinary differential equations remain especially useful tools in epidemiological research. Covid 19 has 

been a challenge for education, see Gaviño Ortiz .  et al.  (2023) and Moscoso-Paucarchuco et al. (2022). 

Taking as starting points the invetigations of cuban researchers (I.A. Abelló Ugalde, 2020), (A. Marrero 

Severo, 2020) as well as in diffente regiosn of the worls during the CoVid 19 pandemic de (Pinzón, 

2021), (Orús, 2023);  (V. Medina Rodríguez, 2024), we presented two mathematical models, which differ 

in the linearity of the system of differential equations that governs them, allowing us to compare results 

and verify the effectiveness of both. But to develop an in-depth study of these models, it is important to 

carry out a qualitative analysis, since this tool is illuminating in many scenarios, where the solution of 

such systems does not behave as expected or, as in many other cases, it is necessary to know what 

happens in a close neighborhood of the stability points. 



The variables that govern both model variants are 𝑆, 𝐼 which represent, respectively, the 

population of susceptible and infected unvaccinated people at time 𝑡, and 𝐻, which represents 

the population with immunity, whether natural or due to the vaccine. 

In the susceptible population, the increase of people is taken into account, whether due to births or other 

reasons; this is reflected in the term (1 −  𝑐)𝑃𝑓, where c represents the proportion of infected people 

detected from the floating population 𝑃𝑓. We take into account the vaccination of the susceptible population, 

therefore with the parameter 𝑝𝑣 we reflect the effectiveness rate of the vaccine. Once susceptible individuals 

are infected, they move to the infected group. This happens with an average infection rate 𝛽. When infected 

individuals beat the disease, they move to the susceptible group in a proportion determined by the parameter 

𝛾. We also analyze death from the disease, which is given by the parameter 𝑚, and natural immunity, by 

𝑝𝑖 . 

Below are the linear and non-linear variants of the models, as well as their respective transmission diagrams 

between subpopulations. 

 

2.1. Linear Model 

 

The transition of individuals between different populations is described by the following differential 

equations: 
𝑑𝑆

𝑑𝑡
= (1 − 𝑐)𝑃𝑓 + 𝛾𝐼 − 𝑝𝑣𝑆 − 𝛽𝑆                                              (2) 

𝑑𝐼

𝑑𝑡
= 𝑐𝑃𝑓 + 𝛽𝑆 − (𝑝𝑖 + 𝛾 + 𝑚)𝐼                                               (3) 

𝑑𝐻

𝑑𝑡
= 𝑝𝑣𝑆 + 𝑝𝑖𝐼                                                                            (4) 

 

2.2. Nonlinear model 

 

In the nonlinear variant, the variables and parameters remain similar, only the 𝑆𝐼 term is used to represent 

the interaction between susceptible and infected populations. 
𝑑𝑆

𝑑𝑡
= (1 − 𝑐)𝑃𝑓 + 𝛾𝐼 − 𝑝𝑣𝑆 − 𝛽𝑆𝐼                                           (5) 

𝑑𝐼

𝑑𝑡
= 𝑐𝑃𝑓 + 𝛽𝑆𝐼 − (𝑝𝑖 + 𝛾 + 𝑚)𝐼                                            (6) 

𝑑𝐻

𝑑𝑡
= 𝑝𝑣𝑆 + 𝑝𝑖𝐼                                                                           (7) 

 

 

Figure 2: Transmission diagram between the subpopulations of the model 

 

2.3. Qualitative analysis of models for CoVid 19 in Cuba. 

 

To carry out the analytical study of the stability of the linear model (2-4), the critical points of the system 

of equations were found. The first two equations do not depend on 𝐻 so it is enough to consider the system 

with two equations and obtain the values of 𝑆(𝑡) and 𝐼(𝑡), then the value of 𝐻(𝑡) will be obtained using 

the relationship 𝑆 + 𝐼 + 𝐻 = 𝑁.  



To consider only the equations of 𝑆 and 𝐼, and then to obtaine 𝐻, it is certainly necessary that the sum of 

the subpopulations be a constant value, so that the sums of their derivatives are zero and for that, we must 

presuppose that 𝑃𝑓 = 𝑚𝐼. This is a frequent hypothesis in this type of research when it is considered, for 

example, that the recruitment and removal rates are equal (A. D. Baez-Sánchez, 2020), (T. Tulus, 2018). 

The equilibrium point is reached when the variable that originally changes with time becomes constant, 

which means that it is obtained when   
𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
= 0. 

 
𝑑𝑆

𝑑𝑡
= (1 − 𝑐)𝑃𝑓 + 𝛾𝐼 − 𝑝𝑣𝑆 − 𝛽𝑆 = 0                                   (8) 

𝑑𝐼

𝑑𝑡
= 𝑐𝑃𝑓 + 𝛽𝑆 − (𝑝𝑖 + 𝛾 + 𝑚)𝐼 = 0                                     (9) 

Using the computational tool Wolfram, the critical point  𝐸0 = (𝑆∗, 𝐼∗) was obtained, where: 

𝑆∗ =
𝑃𝑓[(1 − 𝑐)𝑚 + (1 − 𝑐)𝑝𝑖 + 𝛾]

𝑝𝑣𝛾 + 𝑚(𝑝𝑣 + 𝛽) + 𝑝𝑖(𝑝𝑣 + 𝛽)
 

𝐼∗ =
𝑃𝑓(𝑐𝑝𝑣 + 𝛽)

𝑝𝑣𝛾 + 𝑚(𝑝𝑣 + 𝛽) + 𝑝𝑖(𝑝𝑣 + 𝛽)
 

 

2.4. Local Stability Analysis in 𝑬𝟎. 

 

The nature of the local stability at the equilibrium point 𝐸0 is determined by partially differentiating each 

function with respect to each variable, thus obtaining the following Jacobian matrix. 

 

𝐽(𝑆, 𝐼) = (
−(𝛽 + 𝑝𝑣) 𝛾

𝛽 −(𝑝𝑖 + 𝑚 + 𝛾)
) 

The eigenvalues obtained would be: 

𝜆1 =
1

2
(𝜑 − √𝜑2 − 4𝜓

2
 

𝜆2 =
1

2
(𝜑 + √𝜑2 − 4𝜓

2
 

where 

𝜑 = −(𝛽 + 𝑚 + 𝑝𝑖 + 𝑝𝑣 + 𝛾) = 𝑇𝑟(𝐽) 

𝜓 = (𝛽𝑚 + 𝑚𝑝𝑣 + 𝛽𝑝𝑖 + 𝑝𝑣𝑝𝑖 + 𝛾𝑝𝑣) = 𝐷𝑒𝑡(𝐽) 

Obviously, the determinant of 𝐽(𝑆, 𝐼) is positive and its trace is negative, so, to classify the equilibrium 

point the sign of the quadratic form 𝜑2 − 4𝜓 must be found, which depends on 5 variables, defined in the 

following expression 

𝑄(𝛽, 𝑚, 𝑝𝑣 , 𝑝𝑖 , 𝛾) = 𝜑2 − 4𝜓 = (𝛽 + 𝑚 + 𝑝𝑖 + 𝑝𝑣 + 𝛾)2 − 4(𝛽𝑚 + 𝑚𝑝𝑣 + 𝛽𝑝𝑖 + 𝑝𝑣𝑝𝑖 + 𝛾𝑝𝑣) 

If it holds that the quadratic form 𝑄 ≥ 0, both eigenvalues would be real negative, therefore this critical 

point is an asymptotically stable node. On the other hand, if 𝑄 < 0, there are complex conjugate 

eigenvalues, but not pure imaginary ones, therefore the critical point would be a focus. It is important to 

clarify that 𝑄 depends on the model parameters, which indicates that we must focus on analyzing values 

that oscillate between 0 and 1, since these parameters refer, for the most part, to rates. 

Since the quadratic form 𝑄 depends on 5 variables, we represent the space 𝑅5 as three simultaneous planes 

of 𝑅2. A simulation was carried out using the Monte Carlo method, with random points of the parameters 

that range between 0 and 1, the quadratic form was evaluated at those points that were drawn on a color 

map, depending on the value of that evaluation. Values between 0 and 1 were characterized with blue points, 

in green between 1 and 2, in pink between 2 and 3, in red those greater than 3 and in black the values of the 

quadratic form that are negative. 

 



 

Figure 3: Values of the quadratic form 𝑄. 

 

In Figure 3(a), there is a pattern in the distribution of points depending on their value, similar to an inverse 

function, which shows that the lower the values of the parameters 𝛽 and 𝛾, the smaller the quadratic form. 

However, in the Figures 3(b)-3(c) there is a dispersion of points that do not generate any pattern, which is 

interpreted as a superposition of surfaces, which will be interesting to represent graphically. 

Graphing as a function of 𝑝𝑖 , 𝑝𝑣  and keeping the other variables as constants, for different values of the 

parameters, the following curves were obtained that show to be positive (apparently), for any value of the 

parameters between 0 and 1, which are the cases of interest to analyze. 

 

Figure 4: Graph based on 𝒑𝒊, 𝒑𝒗 

To formalize this idea, the minimum of the quadratic form Q was found with respect to the variables 𝑝𝑖 , 𝑝𝑣. 

It was obtained that the minimum has the form of 4𝛽𝛾, which will always be positive since the parameters 

𝛽 and 𝛾 are positive. 

The previous analysis allows us to reach the conclusion that the quadratic form 𝑄(𝛽, 𝑚, 𝑝𝑣 , 𝑝𝑖 , 𝛾) = 𝜑2 −
4𝜓 is always positive, for parameter values between 0 and 1. It can be affirmed, therefore, that the 

eigenvalues 𝜆1, 𝜆2  are always real numbers, different and of the same sign (negative). Consequently, the 

critical point 𝐸0 = (𝑆∗, 𝐼∗), is an asymptotically stable improper node. 

If the phase diagram is analyzed, it can be seen that there are four trajectories in the form of semi-straight 

lines with ends at the origin; all the other trajectories have the appearance of branches of a parabola and, 

when tending towards the origin, their slopes tend to the slope of one of the semi-straight lines. 

 

 



 

Figure 5: Phase diagram around of 𝐸0 

 

In the case of the non-linear variant of model (5)-(7), in which the variables and parameters are kept similar 

and the 𝑆𝐼 term is used, which represents the interaction between susceptible and infected populations, it 

must be determined at what point a balance between the populations is achieved and then it must be 

analyzed whether this balance is due to the disappearance of the disease or if the disease is persistent. 

The equilibrium points are obtained when the three groups into which the population is divided do not 

change over time, that is, when the equations that describe the model cancel out. It is enough to set equations 

(5)-(6) equal to zero since it would imply that the change in the immunized population will also be zero 

since the total population is constant. (J.J. Hernández Cervantes, 2022) 

Two balance points were obtained, one free of disease and another where the disease persists, the endemic 

balance. 

The disease-free equilibrium, denoted by 𝐸1 is   𝐸1 = (𝑆1, 𝐼1) = (
𝛿

𝑝𝑣
, 0), since the variable that describes 

the infected has 0 value, with 𝛿 = (1 − 𝑐)𝑃𝑓. 

It can be verified that the endemic is: 

 

𝐸2 = (𝑆2, 𝐼2) = (
𝑝𝑖 + 𝑚 + 𝛾

𝛽
,
𝛽𝛿 − 𝑝𝑣(𝑝𝑖 + 𝑚 + 𝛾)

𝛽(𝑚 + 𝑝𝑖)
) 

The Jacobian matrix for this model will be: 

𝐽(𝑆, 𝐼) = (
−(𝛽 + 𝑝𝑣) 𝛾 − 𝛽𝑆

𝛽𝐼 −(𝑝𝑖 + 𝑚 + 𝛾) + 𝛽𝑆
) 

Analyzing the first equilibrium point, the eigenvalues of 𝐽(𝑆1, 𝐼1) are  𝜆1 = −𝑝𝑣 and  𝜆2 =
𝜹𝛽

𝑝𝑣
− 𝛾 − 𝑚 − 𝑝𝑖 

.  

For 𝐸1 to be a stable node, the eigenvalues need to be negative. Since it has been assumed that 𝑝𝑣 > 0, the 

eigenvalue 𝜆2 will determine the stability. 

 

2.5. Basic Reproductive Number (𝑹𝟎) 

 

The parameter 𝑅0, called Basic Reproductive Number, has the physical interpretation of the average number 

of new infections created by a single infected individual in a completely susceptible population (V. Medina 

Rodríguez, 2024). 

The basic reproductive number of this model has the expression 

 

𝑅0 =
𝛿𝛽

𝑝𝑣(𝑝𝑖+𝑚+𝛾)
 , being  𝜆2 < 0 when 𝑅0 < 1. 

 

The disease-free equilibrium is stable as long as 𝑅0 < 1, because each infected person infects, on average, 

less than one person, so the disease tends to disappear. 



 

On the other hand, when analyzing the second equilibrium point, it is not difficult to verify that the 

eigenvalues of 𝐽(𝑆2, 𝐼2) are 

 

𝜆1,2 = −
𝜂± √𝜂2−4(𝑚+𝑝𝑖)2𝜂+4𝑝𝑣(𝑚+𝑝𝑖)32

2(𝑚+𝑝𝑖)
 ,  with  𝜂 = 𝛽 𝛿 − 𝑝𝑣𝛾 

 

As in the previous case, this equilibrium point will be a stable node if the eigenvalues are negative; then, 

the values of 𝜆1,2 determine the stability of this equilibrium point. 

Solving the polynomial of degree two with respect to 𝜂, corresponding to the square root argument obtained 

on the right side of our eigenvalues: 

𝑝(𝜂) = 𝜂2 − 4(𝑚 + 𝑝𝑖)
2𝜂 + 4𝑝𝑣(𝑚 + 𝑝𝑖)3 = 0 

the solutions are: 

𝜂1,2 = 2(𝑚 + 𝑝𝑖)2 (1 ± √1 −
𝑝𝑣

𝑚 + 𝑝𝑖

2
) 

Therefore, the polynomial 𝑝(𝜂) can be expressed in the following form 𝑝(𝜂) = (𝜂 − 𝜂1)(𝜂 − 𝜂2) and the 

eigenvalues rewritten in the following form: 

 

𝜆1,2 = −
𝜂 ± √(𝜂 − 𝜂1)(𝜂 − 𝜂2)2

2(𝑚 + 𝑝𝑖)
 

It would be necessary to analyze the following two cases: 

• If 𝑚 + 𝑝𝑖 + 𝑝𝑣 ≥ 0, then the values of 𝜂1,2 will be real positive. 

• If 𝑚 + 𝑝𝑖 + 𝑝𝑣 < 0, then the values of 𝜂1,2 will be imaginary conjugates. 

 

Cases Subcases Range of 𝜂 values Eigenvalues 
Critical point 

classification 

𝑚 + 𝑝𝑖 + 𝑝𝑣 > 0 

A 𝜂1 <  𝜂 < 𝜂2 𝜆1,2𝜖 ℂ, 𝑅𝑒(𝜆1,2) < 0 Stable focus 

B 𝜂 >  𝜂2 ó 𝜂 < 𝜂1 𝜆1 < 0, {
𝜆2 > 0 𝑖𝑓 𝑅0 < 1
𝜆2 < 0 𝑖𝑓 𝑅0 > 1

 

(i) Unstable 

saddle point 

(ii) Stable node 

𝑚 + 𝑝𝑖 + 𝑝𝑣 < 0 C 
para todo valor de 

𝜂 
𝜆1 < 0, {

𝜆2 > 0 𝑖𝑓 𝑅0 < 1
𝜆2 < 0 𝑖𝑓 𝑅0 > 1

 

(i) Unstable 

saddle point 

(ii) Stable node 

𝑚 + 𝑝𝑖 + 𝑝𝑣 = 0 D 𝜂 =  𝜂2 ó 𝜂 =  𝜂1 𝜆1 < 0  or  𝜆2 < 0 Stable focus 

Table 1. Classification of critical points. 

Two examples of the phase plane around the first equilibrium point (𝑆1, 𝐼1) are shown, where values of 

𝑅0respectively greater and less than one were selected. 

It can be seen in Figure 6 how, when 𝑅0 > 1, the critical point is an unstable saddle point, while for 𝑅0 <
1, the critical point is a stable node. It can be noted that there are four trajectories in the form of semi-

straight lines with ends at the origin; all the other trajectories have the appearance of branches of a parabola 

and when tending towards the origin, their slopes tend to the slope of one of the semi-straight lines. 

 



 

Figure 6: Trajectories around the equilibrium point (𝑆1, 𝐼1). 
   

 

(a) Stable node point                                                      (b) Unstable saddle point 

 

Figure 7: Trajectories around the equilibrium point (𝑆2, 𝐼2). 
 

3. CONCLUSIONS 

 

For this study, the COVID 19 disease was described by means of models defined by a system of ordinary 

differential equations, presented in (V. Medina Rodríguez, 2024), with initial conditions chosen according 

to certain measurements and, therefore, inevitably obtained with a certain error. For this reason, the problem 

arose of analyzing the influence of small variations in the initial conditions on the desired solution. 

If arbitrarily small variations of the initial values can change the solution greatly, then the solution 

determined by the chosen inexact conditions usually has no practical value and cannot even approximately 

describe the phenomenon studied. Therefore, we pose the problem of finding the conditions under which a 

sufficiently small change in the initial values causes an arbitrarily small change in the solution. 

The qualitative study of these models is of great importance because, to make possible the mathematical 

description of any real phenomenon, it must inevitably be simplified, idealized, highlighting and taking into 

account only the most substantial factors that act on it and neglecting the less considerable. Then, the 

problem inevitably arises as to whether the simplifying assumptions were correctly chosen or not. It is 

possible that factors not considered strongly influence the phenomenon studied, and change its quantitative 

and qualitative characteristics. Ultimately this question is resolved in practice, seeing whether or not the 



conclusions obtained correspond to the experimental data, but in many problems the conditions under which 

certain simplifications are not possible can be characterized. 

The qualitative study of the models is another tool to predict the behavior of the subpopulations under study, 

since zones of stability can be detected and know exactly where the solutions will converge and whether 

the transmission dynamics that are simulated will disappear over time or will coexist. 

For the linear case, it was obtained that 𝜑2 − 4𝜓 is always positive for parameter values between 0 and 1 

and as 𝜓 > 0 and φ < 0, the solution is an asymptotically stable node, converging to the stationary point. 

In the non-linear case, two critical points were obtained, one free of disease and the other endemic. In the 

first case we conclude that the condition 𝑅0 < 1 indicates stability in the system of differential equations, 

therefore the behavior of the solution is convergent towards the stationary point, which means that the 

disease will decrease in the population. 

On the other hand, around the second critical point there will be stability if 𝑅0 > 1. 
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