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ABSTRACT 

This article deals with different methods of point estimation for the unknown parameters of Marshall-Olkin Pareto 

distribution (MOP). This is a new lifetime that generalizes Pareto distribution, which was introduced by Marshall-Olkin 

(1997). Some classical point estimation methods are considered and their asymptotic properties are discussed along with 

studying Bayesian estimation method. The main purpose of this work is to determine which estimation method is more 

efficient under MOP distribution based on minimum average relative mean square error (MSE). Real data analyses are 

performed and it has been shown that MOP distribution is a better fit than the original Pareto distribution. In this paper, we 

compare the performances of these procedures through extensive numerical simulations. 
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RESUMEN 

Este articulo trata diferentes métodos de estimación puntual para los desconocidos parámetros de la distribución de  

Marshall-Olkin Pareto (MOP). Este presenta una nueva generalización de la distribución de  Pareto, el que fue introducido 

por  Marshall-Olkin (1997). Algunos clásicos métodos de estimación puntual son  considerados y sus propiedades  

asintóticas son discutidas así como el estudio del método Bayesiano de  estimación. El principal  propósito de este trabajo 

es  determinar que método de  estimación es más  eficiente bajo la distribución  MOP basada en el promedio mínimo del 

error cuadrático relativo (MSE). Se hacen análisis con data real y se muestra que la distribución MOP ajusta mejor que la 

original distribución de Pareto. En este paper,  comparamos el desempeño de estos  procedimientos tras de  extensivas 

simulaciones  numéricas. 

 

PALABRAS CLAVE:  Distribución de Marshall-Olkin; Distribución de Pareto; Método de estimación de Percentil; 

Estimación mínimo cuadrático; Estimación L-momento; Estimación Bayesiana; Método de Lindley; Simulación de Monte 

Carlo; método de Newton-Raphson. 

 

1. INTRODUCTION 

 

Expanding family of distributions is an attractive subject to many scientists because expanding or 

generalizing a certain distribution will add some flexibility to the original distribution. In recent years 

several methods of generating new distributions from classical ones were developed. Many generalized 

classes of distributions have been applied to describe various phenomena. Kumaraswamy (1980) 

introduced a generalization of Beta distribution, where he found that the new one is much better suited 

than Beta distribution for computation intensive activities. Later in (1997) a new method was proposed by 

Marshall and Olkin, their idea of obtaining a new distribution depends on adding a parameter to the 

original distribution. The new family of distributions includes the original distributions as special cases, 
and it gives more flexibility to the original models. 

Many physical and lifetime applications were discussed in literature concerning Marshall-Olkin 

distribution (MO), Sankaran and Jayakumar (2006) studied the physical interpretation of MO family by 

considering odd models. Jose (2011) considered the applications of MO family in reliability theory, while 

Lai (2013) studied some methods and mechanisms to construct generalizations of some life time 

distributions and their applications in reliability engineering, insurance and others. It was noticed that 

adding a parameter to the original distribution will yield a distribution with interesting hazard function, 

therefore it can be used to model real data in a better way than the basic distribution. That was a reason 

for many researchers to use MO extended family of distribution in producing new models. For more 
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details, one may refer to Jose and Alice (2001, 2005), Ghitany et. al (2005), Ghitany and Kotz (2007) and 

Jose and Uma (2009). 

The Pareto distribution is a well known model, it was first studied by a professor of economics "Vilfredo 

Pareto". Many forms of Pareto distribution appeared in the literature and it was used in a wide range of 

scientific applications. For instance, it was found that it is compliant in lifetime models such as actuarial 

sciences, finance, economic, life testing and climatology, where it usually describes the occurrence of 

extreme weather. 

Several generalized forms of Pareto distribution were discussed in literature. Generalized Pareto (GP) 
distribution was first studied by Pickands (1975), and then it was studied by many authors like Gupta et. 

al (1998) and Hogg et. al (2005). The GP distribution was used as a model for excesses over thresholds. 

Its applications include environmental extreme events, ozone levels in the upper atmosphere, large 

insurance claims or large fluctuation in financial data, and reliability studies. Its areas of applications are 

successfully addressed in several books, such as those by Castillo et. al (2004), Kotz and 

Nadarajah(2000), and Ahsanullah (1992). Alice and Jose (2004) considered Marshall-Olkin Pareto and 

Marshall-Olkin semi-Pareto distributions; they developed time series models with modification structure. 

Ghitany (2005) considered MO of Pareto distribution and studied some of its statistical properties and its 

hazard rate. He also showed that the limiting distributions of the sample extremes were of exponential and 

Fréchet type. He used maximum likelihood estimation method to estimate the unknown parameters of 

MO Pareto distribution. However, there are some situations in which Pareto distribution may not be 
suitable from a theoretical or applied point of view. So, to obtain a more flexible family of distributions, 

we introduce here an extension of Pareto distribution based the MO extension method. 

In this paper we study different classical point estimation methods for the unknown parameters of MO for 

Pareto Type I distribution (MOP) as well as the Baysian method. Some properties of the density function 

are discussed. Numerical methods are used to solve the obtained normal equations. Simulations are also 

used to make comparison between those methods, and also to determine which method is more efficient 

according to the mean square error. Bayesian estimation method was used and a comparison between 

Bayesian method and the classical methods of estimation is performed. 

The rest of the paper is organized as follows: In section 2 we introduce MOP distribution. Classical point 

estimation methods for the unknown parameters are discussed in section 3, while in section 4, Bayesian 

estimation method is considered. In section 5 simulation study and real life data analysis are presented 
and also comparison results among all estimation methods are provided. 

 

2. PROBABILITY DENSITY FUNCTION 

 

The Pareto Type I distribution is a continuous statistical distribution with probability density function 

(pdf) of the form ,   ,),;(
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parameters Marshall-Olkin Pareto (MOP) distribution is obtained as  
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.  ,0,,   ,
))(1(

),,;(
2

)1(












−

=
+−

x
x

xg
x

                               (1) 

The density function of MOP distribution can be rewritten as a linear combination of Pareto distribution 

using the well-known of binomial expansion. First we assume that ,10   then the binomial 

expansion for the denominator in Eq. (1) can be applied since ,1)( 
x

 so we can rewrite it as: 
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where  (.)  is the gamma function. Applying the expansion (2) in (1), yields 
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where ),;(  xf P  is the probability density function of Pareto distribution with parameters 
  and 

 , where  )1( += j  and .
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For 1 , we can use similar argument as in Eq. (2), and after some algebraic manipulations we can 

obtain  
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Hence the MOP density function can be expressed as infinite linear combinations of Pareto density 

functions. Therefore, expression (3) and (4) can be used to find and simplify many mathematical 

properties related to moments. 

 

3. CLASSICAL POINT ESTIMATION METHODS 

 

In this section we consider different methods of point estimation for the MOP parameters. The asymptotic 

properties are discussed for some point estimation methods. Numerical techniques are helpful in 

obtaining the estimated values of these parameters, then we compare between these estimation methods to 
decide which method is more efficient. 

 

3.1. Maximum Likelihood Estimation 

 

The maximum likelihood estimation (MLE) is widely used in inferential statistics as it has many nice 

properties, such as invariance, consistency, and normal approximation properties. It depends basically on 

maximizing the likelihood function of MOP distribution. Let nXXX ,...,, 21  be a random sample from 

MOP distribution, then the log-likelihood function for the vector of parameters ),,(  =  can be 

expressed by 
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From the above log-likelihood equation we compute the derivatives with respect to the parameter vector 

 , but since x , then the MLE of the parameter   is assumed to be )1(x , where )1(x  is the first 

order statistics. Taking partial derivatives of Eq. (5) with respect to   and ,  then equate them to zero 

will yield two nonlinear normal equations as follows: 
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where . =   

The above normal equations of   and   form an implicit system, hence do not have unique root, so 

they can be solved analytically. The maximum likelihood estimators (MLE) have been obtained using 

Newton-Raphson (N-R) method or using the functions nlm or optim in R statistical package which 

maximize the log-likelihood function. 

The normal approximation of the MLE of vector parameter   can be used to construct approximate 



confidence intervals and testing hypotheses on the parameters  ,  and .  From the asymptotic 

property of the MLE we have )ˆ(  −n
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where the second partial derivatives are as follow: 
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The expected values of these second derivatives can be evaluated using integration techniques, hence the 

entries of the Fisher information matrix for 1  are:  
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where ),log( zspoly  is a special function )(zLis  which is the polylogarithm function defined by the 
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Now without loss of generality we may assume that 1=  since it is a scale parameter. Then the MLE 

of  , say MLE̂ , when the other parameters are known, can be obtained by solving the non linear 

equation  
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Let us consider the MLEs of   and  , say MLE̂  and MLE̂  when the shape parameter   is known and 

another parameter is also known. For known   and  , MLE̂  and for known   and  , MLE̂  can be 

obtained by maximizing  
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with respect to   and by maximizing  
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with respect to  , respectively. Therefore, MLE̂  can be obtained by a numerical solution using the 

Newton Raphson method of the non-linear equation ,
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3.2. Moment Estimation 

 

In order to find the method of moment estimators (MME) it is necessary to compute the moments of 

MOP distribution. So we use the idea of binomial expansion in Eqs. (3) and (4) in order to obtain the 

following:  
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Using this formula, we can find the first three sample moments. Equating the sample moments with the 

population moments of MOP distribution, we obtain the following three equations:  
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 Numerical methods are used to solve the three equations (11), (12) and (13) in order to estimate the 

needed parameters. 

Population and sample variances can be used to obtain the second moment instead of equation (12) that is 
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Now we discuss the asymptotic distribution properties of the MME's of  ,  and .  Let 
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Using Taylor expansion of )ˆ( MMEf   about the true value of ),,,(  =  where  
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where   is a point between MME̂  and .  It is clear that as ,→n  →MME̂ ,  and . →  Using 
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3.3. Estimators Based on Percentiles 

 

This method was introduced by Kao (1958, 1959), which can be used when the data has a distribution 
function with closed form. The idea depends on estimating the unknown parameters by fitting straight 

line to the theoretical percentile points obtained from the distribution function and the sample percentile 

points. Kao (1958, 1959) found that this method can be useful in Weibull and exponential distributions. 

In this section we use the same technique for the MOP distribution. 
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Let )(iX  denote the 
thi  order statistics from a sample of size n . If ip  denote some estimate of 

);( )( ixG , then the estimate of ),,(  =  can be obtained by minimizing 

                             
.

1

2
/1

)(

1






















+

−
−=

=







i

i

n

i p
x

                                                       (15) 

This method is used by several authors, see for example Bdair (2012), Gupta and Kundu (2001) and 

Kundu and Raqab (2005). Since Eq. (15) is a non-linear function, non-linear optimization technique can 

be used to find the minimum values of the needed estimators, these estimators are called percentile 

estimators (PCE's). It is possible to use several ip 's as estimators of )( )(ixG . For example 
1+

=
n

i
ip  is 

the most used estimator of )( )(ixG , as 1+n
i  is the expected value of )( )(ixG . In this paper we also use 
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n
i

ip . Some of the other choices of ip 's are ))4/1(/())8/3(( +−= nipi
 or nipi /))2/1(( −= , see 

Mann et. al (1974). 

If we assume that   is known then the PCE of ),(   can be obtained by taking partial derivative with 

respect to   and . Let ,
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Solving these normal equations after equating them to zero will give 
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When   is known, this gives the PCE of   denoted by PCE̂ . Substituting PCE̂  in one of the above 

normal equations will give the PCE of   ( PCE̂ ) . 

Now, if   is unknown then without loss of generality we may assume ,1=  since it is a scale 
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with respect to  . So the PCE of   ( PCE̂ ) is given by  
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 Similarly, when   is known, the PCE of   is found to be  
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Interestingly, all the PCE's estimators have closed forms when assuming that the other parameters are 

known. 

 

3.4. Least Squares Estimators and Weighted Least Squares Estimators 

 

The method of least squares estimate or regression estimate was first suggested by Swain et. al (1988). It 

was used to estimate the parameters of beta distribution. The method can be described as follows: 

Suppose nYYY ,...,, 21  is a random sample of size n from a distribution function (.)G  and 

)()2()1( ,...,, nYYY  denote the order statistics of the observed sample. Let )( )(iYG  be the distribution 

function of the 
thi  order statistics of the observed sample, then )( )(iYG  has )1,0(Uniform  

distribution. Therefore, we have  
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One may refer to Johnson et. al (1995) for more details. The least squares estimators of the unknown 

parameters can be obtained by minimizing ,
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Numerical solution of Eq. (21) can give the least squares estimate of the three unknown parameters 

denoted by LSE̂ , LSE̂  and LSE̂ . 

For the weighted least square estimators of the unknown parameters we need to minimize  
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with respect to ,    and  . We can obtain WLSE̂ , WLSE̂  and WLSE̂  respectively by numerical 

solution. 

 



3.5. L-moment Estimators 

 

In this section we use a method of estimating the unknown parameters of a MOP distribution based on the 

linear combination of order statistics, see David and Nagaraja (2003) and Hosking (1990). The estimators 

obtained by this method are well known as L-moment estimators (LME's). The LME's are similar to the 

usual moment estimators but can be estimated by linear combinations of order statistics. The LME's have 

certain advantages over usual moment estimators. It is observed that LME's are less subject to bias in 

estimation and sometimes more accurate in small samples than even the MLE's. Here, the idea is to 
equate the first three sample L-moments with the corresponding population L-moments. From Hosking 

(1990), we obtain the first, second and third sample L-moments as:  
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Similarly, the first three population L-moments are: 
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where F  denotes the (cdf) of the distribution under study. Now under MOP distribution and after using 

some integration techniques, the above population moments will reduce to:  
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Therefore, the L-moment estimators can be obtained by numerical solution of the following system of 

equations: 
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4. BAYESIAN ESTIMATION 

 

Bayesian estimation procedure of the parameters of a lifetime model has been studied in the literature 

extensively. Bayes estimation of parameters under generalized distributions was also studied. Singh et. al 

(2008) considered generalized exponential parameters, Preda et. al (2010) studied modified Weibull 

distribution and Singh et. al (2014) considered MO extended exponential parameters. Abdul Haq and Al-

Omari (2016) considered the three component mixture of Rayleigh distribution. 

In Bayesian method all parameters are considered as random variables with certain distribution called 

prior distribution. If prior information is not available which is usually the case, we need to select a prior 

distribution. Since the selection of prior distribution plays an important role in estimation of the 

parameters, our choice for the prior of ,    and   are the independent gamma distributions i.e. 

),(),,( 2211 baGbaG  and ),( 33 baG , respectively. The reason for choosing this prior density is that 

Gamma prior has flexible nature as a non-informative prior, especially when the values of the 



hyperparameters are assumed to be zero. Thus the suggested prior for ,    and   are independent 

gamma ),( 11 baG , ),( 22 baG  and ),( 33 baG  distributions, respectively, which have the following 

densities:  
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where 21321 ,,,, bbaaa  and 3b , the hyperparameters of prior distributions, are positive real 

constants that reflect prior knowledge about  ,   and  . 

The joint prior of ,    and   is  
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The joint posterior density of ,    and   is given by  
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where ),,/( xL  is the likelihood function of MOP distribution. Substituting ),,/( xL  and 

),,( g  for MOP distribution, the joint posterior density can be written as  
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In the literature there are several approximation methods available to solve this kind of integration. Here 

we consider Lindley's and Monte Carlo Markov Chain (MCMC) approximation methods, see Lindley 

(1980) and Karandikar (2006), respectively. These approximation methods reduce the ratio of integrals 

into a whole and produce a single numerical result. The two methods are described below: 

 

4.1. Bayes Estimation under Lindley's Approximation 

 
This method is used to obtain the Bayes estimates (BEs) of the unknown parameters. In this method the 

posterior mean or expectation is expressed as the ratio of integral as follows:  
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where ),,( u  is a function of ,    and   only, )|,,( x  is the log likelihood function and 

),,( G  is the log of joint prior density. 

According to Lindley (1980), if the maximum likelihood estimation of the parameters are available and 

n  is sufficiently large, then the above ratio of integrals can be approximated as: 
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where  ˆ,ˆ  and  ̂  are the MLEs of  ,  and  , respectively. 
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  are the partial derivatives with 3,2,1,, =kji , which indicates the 

number of parameters of distribution under study. The values of ji,  and k  refer to the parameters 

 ,  and  , respectively. In other words, if ji,  or 1=k  means that we take partial derivative with 

respect to  . For ji,  or 2=k , this means that we take partial derivative with respect to   and finally 

if ji,  or 3=k  then take partial derivative with respect to .   

If  ,  and   are pair wise orthogonal then 0=ij  for ji   and )( 1

ijij −=  for .ji =   In MOP 



distribution if we assume the parameters are orthogonal then Eq. (24) reduces to  
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If ),,or(),,(  =u  then 1),or( =u  and the remaining partial derivatives are zeros. 

Consequently, it can be easily verified that: 
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Using the above partial derivatives and substituting them in Eq. (25), we obtain the Bayes estimate for 

MOP parameters as follows:  
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4.2. Monte Carlo Markov Chain Approximation Method 

 

We use Monte Carlo Markov Chain approximation method (MCMC) to evaluate the Bayes estimates 

(BEs) for the unknown parameters  ,   and  . The form of the BEs of  ,   and   under square 

loss function may not be obtained in explicit forms. Consequently, we choose for stochastic simulation 

procedures to generate samples from the posterior distribution of  ,   and  . Based on the joint 

posterior density given in Eq. (23), the Monte Carlo (MC) samples of  ,   and   are generated using 

the following algorithm: 

1) Step 1: Generate 1  from gamma distribution ),( 11 banf + . 

2) Step 2: Generate 1  from gamma distribution )ln,( 122 i

n
i xbanf ++ = . 

3) Step 3: Generate 1  from gamma distribution ),( 331 banf + . 

4) Step 4: Repeat Steps 1-3 M times to obtain MC samples Miiii ,...,1:),,( = . 

5) Step 5: We compute any function of  ,   and   (say ),,( V ).  

,
)(

)),,((
))|,,((

−

−

=
eE

eVE
xVE


 by averaging the numerator and denominator with respect to these 

simulations. This gives an estimate of  ,   and  . 

 

5. SIMULATION STUDY AND DATA ANALYSIS 

 

In this section, we divide our work into two subsections. In the first subsection, we perform some 

numerical computations based on artificial data while in the second subsection we apply these 

computations on a real life example. 

 

5.1. Simulation Study 

 

In this subsection, we compare the performances of the different estimators proposed in the previous 

sections using some numerical computations. We perform a simulation study to compare the 



performances of the different methods in the sense of bias and mean square error (MSE) for different 

sample sizes and for different parameter values. The generation of the MOP  can be easily obtained 

through the transformation 
  /1

1
)1( −+=

−U
X , where U  is a uniform distribution deviates on 

)1,0( . Mathematica 7 and R codes are used for generating the MOP  random variables and for solving 

the non-linear equations as well as for computing the minimization or maximization of the related 

functions. The computations of the Bayes estimator of MOP 's parameters depends on the second 

method of Bayesian estimation namely the MCMC method based on the improper prior  

)0( 212121 ====== ccbbaa . We postpone the estimation under many proper priors for the real 

life example. We do not use the Bayes estimation under Lindley's approximation because it is clearly very 

difficult and it needs to solve many complicated non linear equations. 

Since   is the scale parameter and all the estimators are scale invariant, we take 1=  in all cases 

considered. We consider various choices of the parameters  ,   and sample sizes 50,10=n  and 

100 . 

We compute the average relative biases and average relative MSE's over 10,000 runs. This number of 

runs will give the accuracy in the order 01.0)000,10( 5 = −
 (see Karian and Dudewicz (1999)). 

Therefore, we report all the results up to three decimal places. 

First we consider the estimation of   when other parameters are known. If   and   are known, the 

MLE's and PCE's of   can be obtained directly from (6) and (17) respectively. The MLE's of   and   

can be obtained directly from equations (7) and (8), respectively. The PCE's of   and   can be 

computed directly from Equations (16) and (18), respectively. The MME's of all parameters can be 

obtained by solving the non-linear Equation (11) when other parameters are known. The LSE's and 

WLSE's can be obtained by minimizing (21) and (22), respectively, with respect to the needed parameter 

only. The BEs of the unknown parameters of the MOP  distribution can be computed using the 

algorithm presented in section 4.2 based on Eq. (23). If ̂  is an estimate, then we present the average 

value of )/ˆ(   and the average MSE of )/ˆ(  . The relative average bias and relative average MSE 

of )/ˆ(  , where ̂  is an estimate of  , are defined, respectively, as follows:  

)/ˆ()/1()/ˆ(Re
1


=

=
k

i

iklativeBias   

 and  

,)ˆ()/1()/ˆ(Re 2

1

2 
=

−=
k

i

iklativeMSE   

 where )/ˆ(Re  lativeBias=  and k  is the number of iterations. We are calculated the results for  

8.0,2.0= , for 0.2,0.1,5.0=  and for 50,10=n  and 100 . The results are presented in 3 

different tables. For each method, the average value of )/ˆ(   is given in each box and the 

corresponding MSE is reported within parenthesis. 

It is observed from Table 1 that all of the estimators usually overestimate   for small values of  . For 

large values of  , most of the estimators tend to be underestimates   for 1 . It is also observed that 

all estimates decrease as the value of   increase. One can also observe that for each estimation method, 

the average relative MSE's decreases as the sample size increases and also as the value of   increases. 

It is observed from Tables 2 that all of the estimators usually overestimate   for all values of   and 

when 1  for small sample size except the PCE's and LME's which are usually underestimate. For 

large sample size the estimators tends to be underestimate especially for large values of  . It is also 

observed that all estimates decrease as the value of   increase and as the sample size increase except the 

LME's which increase as the sample size increase. One can also observe that for each estimation method, 

the average relative MSE's decreases as the sample size increases and also as the values of   and   

increase. 

It is observed from Tables 3 that all of the estimators usually underestimate   for all values of   except 

MLE's that tend to be overestimate. All estimates tend to be under estimate for large values of   and 

large sample sizes. It is also observed that all estimates decrease as the value of   increases. One can 



also observe that for each estimation method, the average relative MSE's decreases as the sample size 

increases and also as the values of   and   increase. 

Table 1: Average relative estimators and average relative MSE's of  . 

 
),(   

n method (0:2, 0:5) (0:2, 1:0) (0:2, 2:0) (0:8, 0:5) (0:8, 1:0) (0:8, 2:0) 

10 MLE 1.201(0.319) 1.161(0.289) 0.978(0.212) 1.961(0.119) 1.115(0.088) 0.983(0.055) 

 MME 1.780(0.598) 1.238(0.390) 0.882(0.284) 1.880(0.494) 1.793(0.224) 0.719(0.106) 

 PCE 1.653(1.454) 1.297(0.674) 1.219(0.422) 1.205(0.478) 0.901(0.362) 0.866(0.253) 

 LSE 2.461(0.499) 1.031(0.235) 0.913(0.218) 1.420(0.413) 1.341(0.304) 0.954(0.201) 

 WLSE 2.343(0.361) 1.018(0.224) 0.821(0.215) 1.433(0.411) 1.352(0.303) 0.849(0.201) 

 LME 1.366(1.686) 0.914(0.078) 0.915(0.077) 0.665(0.145) 0.669(0.143) 0.631(0.140) 

 BE 1.113(0.301) 1.018(0.064) 0.921(0.061) 1.033(0.111) 1.042(0.033) 0.949(0.021) 

50 MLE 1.093(0.174) 1.063(0.171) 0.943(0.149) 1.070(0.112) 0.975(0.074) 0.896(0.051) 

 MME 1.629(0.257) 1.148(0.159) 0.938(0.143) 1.958(0.350) 1.906(0.208) 1.840(0.076) 

 PCE 1.497(0.573) 1.205(0.385) 1.176(0.249) 1.097(0.371) 1.029(0.272) 0.923(0.148) 

 LSE 2.419(0.348) 1.022(0.213) 0.911(0.207) 1.424(0.305) 1.326(0.302) 0.846(0.201) 

 WLSE 2.255(0.319) 1.013(0.206) 0.731(0.204) 1.405(0.393) 1.349(0.282) 0.841(0.201) 

 LME 1.363(1.212) 0.933(0.081) 0.936(0.074) 0.783(0.127) 0.758(0.123) 0.777(0.125) 

 BE 1.103(0.261) 1.020(0.064) 0.927(0.057) 1.053(0.091) 1.032(0.031) 0.959(0.020) 

100 MLE 1.042(0.108) 1.019(0.141) 0.917(0.132) 1.041(0.087) 1.011(0.068) 0.826(0.044) 

 MME 1.543(0.213) 1.055(0.148) 0.917(0.135) 0.908(0.311) 1.897(0.185) 0.812(0.058) 

 PCE 1.231(0.467) 1.250(0.291) 1.104(0.197) 1.069(0.309) 1.036(0.269) 0.929(0.142) 

 LSE 2.404(0.331) 1.016(0.208) 0.810(0.204) 1.412(0.303) 1.322(0.302) 0.739(0.159) 

 WLSE 2.217(0.310) 1.009(0.203) 0.678(0.202) 1.345(0.302) 1.253(0.201) 0.739(0.201) 

 LME 0.946(0.076) 0.945(0.076) 0.943(0.072) 0.931(0.075) 0.941(0.078) 0.938(0.074) 

 BE 1.024(0.095) 1.013(0.060) 0.929(0.042) 1.023(0.064) 1.012(0.028) 0.979(0.017) 

Table 2: Average relative estimators and average relative MSE's of  . 

),(   

n method (0:2; 0:5) (0:2; 1:0) (0:2; 2:0) (0:8; 0:5) (0:8; 1:0) (0:8; 2:0) 

10 MLE 1.186(0.135) 1.096(0.118) 1.083(0.105) 1.175(0.080) 1.164(0.077) 1.065(0.071) 

 MME 1.098(0.137) 1.076(0.109) 1.085(0.107) 1.060(0.081) 1.062(0.077) 1.058(0.072) 

 PCE 0.982(0.223) 0.975(0.134) 0.958(0.082) 0.974(0.072) 0.972(0.069) 0.973(0.068) 

 LSE 2.521(0.579) 1.075(0.172) 1.066(0.133) 1.364(0.114) 1.202(0.108) 1.110(0.105) 

 WLSE 2.758(0.609) 1.052(0.161) 0.892(0.135) 1.430(0.118) 1.305(0.111) 1.206(0.108) 

 LME 0.964(0.072) 0.963(0.071) 0.955(0.071) 0.968(0.070) 0.944(0.069) 0.947(0.068) 

 BE 1.143(0.122) 1.018(0.112) 0.956(0.097) 1.123(0.067) 1.112(0.062) 0.987(0.060) 

50 MLE 1.122(0.132) 1.116(0.120) 1.110(0.101) 1.114(0.075) 1.098(0.073) 1.012(0.071) 

 MME 1.024(0.133) 1.019(0.121) 1.018(0.101) 1.013(0.081) 1.016(0.073) 1.010(0.071) 

 PCE 0.960(0.146) 0.970(0.133) 0.978(0.084) 0.982(0.080) 0.985(0.078) 0.985(0.069) 

 LSE 2.220(0.235) 1.011(0.128) 0.956(0.107) 1.380(0.102) 1.205(0.102) 1.101(0.102) 

 WLSE 2.556(0.208) 1.010(0.125) 0.615(0.106) 1.428(0.104) 1.240(0.103) 0.935(0.102) 

 LME 1.072(0.169) 0.983(0.060) 0.976(0.061) 0.967(0.064) 0.951(0.063) 0.950(0.061) 

 BE 1.120(0.101) 1.064(0.094) 0.939(0.084) 1.103(0.057) 1.027(0.048) 0.980(0.041) 

100 MLE 1.111(0.113) 1.092(0.110) 1.067(0.108) 1.104(0.107) 1.101(0.106) 1.001(0.106) 

 MME 1.013(0.114) 1.013(0.110) 1.006(0.108) 1.004(0.077) 1.006(0.076) 1.005(0.066) 

 PCE 0.966(0.116) 0.977(0.111) 0.977(0.078) 0.978(0.070) 0.983(0.066) 0.983(0.066) 

 LSE 2.175(0.147) 1.015(0.114) 1.073(0.103) 1.303(0.101) 1.193(0.101) 1.108(0.101) 

 WLSE 2.073(0.115) 1.014(0.113) 0.603(0.103) 1.409(0.102) 1.204(0.101) 0.678(0.101) 

 LME 1.750(0.276) 0.994(0.056) 0.983(0.047) 0.988(0.017) 0.972(0.014) 0.959(0.010) 

 BE 1.107(0.096) 1.024(0.085) 0.921(0.081) 1.003(0.051) 0.998(0.031) 0.973(0.029) 

Among all classical methods of estimation, the MLE's provide the best results for all sample sizes. The 

WLSE's work better than the LSE's for all sample sizes and all values of   and  . In the context of 

computational issues, the MLE's, MME's and PCE's could not be easily implemented since they involve 

non-linear equations. The LSE's and WLSE's involve non-linear functions that should be minimized. 

According to the bias and MSE's results reported in Tables 1-3, the Bayesian method of estimation 

provides the best results over all classical methods of estimation. It can be easily noticed that the MSE's 

results are better than that of all classical methods and also the bias results give a closer value than that of 

classical methods. 

Table 3: Average relative estimators and average relative MSE's of θ. 



),(   

n method (0:2; 0:5) (0:2; 1:0) (0:2; 2:0) (0:8; 0:5) (0:8; 1:0) (0:8; 2:0) 

10 MLE 1.218(1.944) 1.061(0.075) 1.041(0.071) 1.043(0.070) 1.042(0.069) 1.044(0.069) 

 MME 1.340(0.050) 1.293(0.106) 0.852(0.037) 0.656(0.026) 0.692(0.027) 0.791(0.011) 

 PCE 1.386(1.658) 0.946(0.080) 0.972(0.080) 0.954(0.074) 0.534(0.196) 0.534(0.189) 

 LSE 2.136(0.072) 1.029(0.018) 0.728(0.017) 0.543(0.021) 0.377(0.015) 0.311(0.013) 

 WLSE 2.097(0.054) 1.016(0.014) 0.719(0.006) 0.534(0.041) 0.376(0.024) 0.310(0.013) 

 LME 1.762(0.195) 0.987(0.039) 0.855(0.031) 0.634(0.010) 0.594(0.006) 0.584(0.005) 

 BE 1.178(0.051) 1.059(0.022) 0.974(0.015) 1.033(0.011) 1.002(0.011) 0.992(0.009) 

50 MLE 1.204(0.468) 1.039(0.061) 1.042(0.064) 1.043(0.060) 1.045(0.060) 1.043(0.061) 

 MME 1.249(0.335) 1.194(0.111) 0.908(0.077) 0.666(0.046) 0.900(0.015) 0.753(0.010) 

 PCE 0.923(0.075) 0.914(0.074) 0.904(0.072) 0.909(0.071) 0.921(0.073) 0.916(0.069) 

 LSE 1.277(0.064) 1.008(0.052) 0.655(0.021) 0.514(0.021) 0.376(0.015) 0.310(0.012) 

 WLSE 1.264(0.032) 1.004(0.031) 0.659(0.031) 0.507(0.041) 0.386(0.021) 0.319(0.011) 

 LME 1.250(0.027) 0.999(0.031) 0.810(0.011) 0.651(0.008) 0.616(0.006) 0.588(0.004) 

 BE 1.152(0.036) 1.023(0.019) 0.921(0.012) 1.019(0.008) 1.002(0.008) 0.949(0.007) 

100 MLE 1.142(0.186) 1.042(0.054) 1.041(0.050) 0.998(0.059) 1.001(0.060) 1.002(0.060) 

 MME 1.222(0.463) 1.160(0.113) 0.948(0.076) 0.706(0.049) 0.859(0.003) 0.754(0.011) 

 PCE 0.993(0.243) 0.925(0.069) 0.924(0.066) 0.922(0.065) 0.865(0.087) 0.876(0.084) 

 LSE 1.083(0.054) 1.004(0.042) 0.651(0.021) 0.508(0.021) 0.376(0.011) 0.308(0.011) 

 WLSE 1.035(0.032) 1.002(0.032) 0.659(0.031) 0.504(0.041) 0.388(0.011) 0.321(0.011) 

 LME 1.114(0.020) 0.997(0.019) 0.810(0.011) 0.652(0.005) 0.604(0.003) 0.580(0.002) 

 BE 1.087(0.019) 1.009(0.014) 0.911(0.010) 1.008(0.008) 0.994(0.007) 0.915(0.005) 

 

5.2. Data Analysis 

 

In this section we have taken one real-life data set from Lawless (1982), and will use the MOP  model to 

analyze the data. Many authors used this data to study some models related to Pareto model, see for 

example Sankaran and Kundu (2014). The data set consists of failure times or censoring times for 36 

appliances subjected to an automated life test. Failures are mainly classified into 18 different modes, 

though among 33 observed failures only 7 modes are present and only model 6 and 9 appear more than 

once. We are mainly interested about the failure mode 9. The data are given below: 

Data Set: 1167, 1925, 1990, 2223, 2400, 2471, 2551, 2568, 2694, 3034, 3112, 3214, 3478, 3504, 4329, 

6976, 7846. 

The MLEs of  ,   and  are computed numerically using the function optim in R statistical package. 

These MLEs, Kolmogorov-Smirnov (K-S) distance between the fitted and the empirical distribution 

functions and the corresponding p-values (between parentheses) are respectively: 2920.33ˆ = , 

1167ˆ = , 9630.3ˆ =  and  )9786.0(1157.0=− SK . When we use Pareto distribution with 

MLEs 1252.0ˆ = , 1167ˆ =  to fit these data, we find that )105.9(7881.0 12−=− SK . 

Therefore, this indicates that the MOP  distribution fits the data set well and better than using Pareto 

distribution. This is also an example that proves the needs of new distributions in managing some sets of 

data. 

Based on the results of the simulation study presented in the previous subsection that shows that the MLE 

is the best classical estimator for the three parameters for all cases. In Table 4, we present the average 

relative estimators and the average relative MSE's for the MLEs and BEs for the parameters   and  . 

From Table 4, we can clearly notice that the parameters' estimations based on Bayesian approach are 

much better than that are based on the classical approaches. 

Table 4: Average relative estimators and average relative MSE's of MLEs and BEs for   and  . 

METHOD       

MLE 1.3218(1.944) 1.1713(0.079) 1.4915(1.031) 

BE 1.1781(0.051) 1.1009(0.034) 0.9774(0.017) 

 

To study the sensitivity of the variation in the specification of prior parameters on our Bayesian analysis, 

further MCMC simulations were undertaken using proper and improper priors. The proper priors on  , 

  and   are chosen such that the prior mean of   is equal to 4 and its standard deviation is equal to 2, 

for   the prior mean is 2 with a standard deviation 1, and that for  , the prior mean is 1 with a standard 



deviation 0.125. This corresponds to 1,2,4,8,4 12121 ===== cbbaa  and 82 =c  (call it 1 ). For 

the second proper prior ( )2 on the parameters, we assume that only small amount of prior information is 

available and assign small integer values to ia  and ib . That is, we assume that 221 == aa , 

121 == bb  and 121 == cc . The third prior ( 3 ) is limiting improper priors by setting 

0,1,5.0 212121 ====== ccbbaa . Table 5 presents the MCMC based posterior means and 

standard deviations for the model parameters. It can be seen from Table 5 that our results are sensitive to 

the assumed values of the prior parameters. 

Table 5: Bayesian analysis using different priors. 
Prior 

1  2  3  

)|( dataE   
33.7982 34.7326 35.2302 

)|( dataStd   
1.5131 1.0453 1.6346 

)|( dataE   
1165.77 1166.78 1162.73 

)|( dataStd   
1.1043 1.2049 1.7059 

)|( dataE   
3.8751 3.7278 3.7398 

)|( dataStd   
2.1043 1.9048 1.5993 
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