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ABSTRACT
This article presents a methodology for fitting the parameters of the chloride-ion Hall’s diffusion coef-

ficient in re-inforced concrete samples exposed to aggressive marine environments. The methodology

aims to minimize the mean square error (MSE) between experimental and simulated chloride-ion con-

centration profiles, based on Fick’s second law coupled with Hall’s empirical diffusion equation and

appropriate initial and boundary value condi-tions (IBVP). This minimization problem is formulated

as a nonlinear dynamic optimization problem (NDOP) and solved using the Levenberg-Marquardt

algorithm, with constraints set on each parameter to ensure they fall within a specific range. The

numerical solution of the IBVP, which is also part of the NDOP constraints, is achieved through a

spatial finite element semi-discretization, combined with an explicit Runge-Kutta RK(4) scheme for

temporal approximation at each time step. The estimated MSE for the fitted diffusion coefficient

pa-rameters was on the order of 10−5, and the relative error between experimental and predicted

concentration values was less than 1%. The consistency and accuracy of the numerical results demon-

strate that the model effectively explains the diffusion behavior of chloride ions in reinforced concrete

exposed to aggressive marine conditions, with a composition like that reported by Anzola E. et al.

in [6]. Furthermore, the average value of the predicted diffusion coefficient can be compared with the

reference threshold value reported in the literature [4], supporting the potential of this methodology

for determining the service life of this specific material con-figuration.
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RESUMEN

Este art́ıculo presenta una metodoloǵıa para el ajuste de los parámetros del coeficiente de difusión

de iones cloruro según el modelo emṕırico de Hall en muestras de concreto reforzado expuestas

a ambientes marinos agresivos. El objetivo de la metodoloǵıa es minimizar el error cuadrático

medio (ECM) entre los perfiles de concentración de iones cloruro obtenidos experimentalmente y

aquellos simulados, utilizando la segunda ley de Fick acoplada con la ecuación emṕırica de difusión

de Hall y condiciones iniciales y de contorno apropiadas (problema de valores iniciales y de frontera,

IBVP por sus siglas en inglés). Este problema de minimización se formula como un problema

de optimización dinámica no lineal (NDOP) y se resuelve mediante el algoritmo de Levenberg-

Marquardt, imponiendo restricciones sobre cada parámetro para garantizar que se encuentren dentro

de un rango espećıfico. La solución numérica del IBVP, que también forma parte de las restricciones

del NDOP, se logra mediante una semi-discretización espacial con elementos finitos, combinada con

un esquema expĺıcito de Runge-Kutta RK(4) para la aproximación temporal en cada paso de tiempo.

El ECM estimado para los parámetros ajustados del coeficiente de difusión fue del orden de 10−5, y

el error relativo entre los valores de concentración experimentales y los predichos fue menor al 1%. La

consistencia y precisión de los resultados numéricos demuestran que el modelo explica eficazmente el

comportamiento difusivo de los iones cloruro en concreto reforzado expuesto a condiciones marinas

agresivas, con una composición similar a la reportada por Anzola E. et al. en [6]. Además, el valor

promedio del coeficiente de difusión predicho puede compararse con el valor umbral de referencia

reportado en la literatura [4], lo que respalda el potencial de esta metodoloǵıa para la determinación

de la vida útil de esta configuración espećıfica de material.

PALABRAS CLAVE: Optimización dinámica no lineal, coeficiente de difusión de Hall, muestras

de hormigón armado.

1. INTRODUCTION

The “economy-durability” ratio, combined with the properties of reinforced concrete, makes it a widely

used material in marine constructions today. However, the negative effect of the composition of marine

environments on the structure of the concrete is still a big concern worldwide [11]. In particular, the

corrosion of metal embedded into the reinforced concrete induced by chloride diffusion is one of the

important issues [10, 12, 7].

Predicting the chloride transport mechanism into the concrete structure is essential to enlarging the

material performance in marine environments [20]. Concrete is a porous material. Therefore, chlorides

transport in concrete involves the diffusion of chloride ions into the pore solution, as well as physical and

chemical interactions with the pore surfaces in the cement matrix [18].

For an effective maintenance plan in a specific marine environment, it is crucial to understand the chloride

ion diffusion mechanism and the resulting chloride concentration profile within the concrete, even more

so than the chemical reactions occurring at the metal surface [14]. The primary objective is to minimize

ion penetration into the concrete structure and thereby extend the material’s service life [24].
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The analysis of actual chloride profiles in reinforced concrete requires substantial investment and long-

term monitoring. This process involves testing concrete samples with specific water-cement ratios under

marine environmental conditions. However, chloride diffusion is generally a slow process, influenced by

the porosity and resistance of the material matrix [25, 5, 18]. Given the time-consuming nature of this

approach, mathematical models and simulations offer a more efficient alternative for predicting chloride

concentration profiles and the durability of reinforced concrete under similar environmental conditions [2].

The change in concentration gradient due to diffusion is typically modeled using Fick’s second law, and

the chloride ion diffusion coefficient D (m2/s) is often estimated experimentally through regression anal-

ysis of concentration profiles C (in ppm) [26]. A key limitation of this approach is the assumption that

the diffusion coefficient D remains constant, which contradicts experimental evidence showing that dif-

fusional resistance is concentration dependent. In the context of porous adsorption media with nonlinear

isotherms, a functional relationship between the diffusion coefficient and concentration has been estab-

lished [22]. To address this, Morón et al. in [15] propose a model to estimate the durability of reinforced

concrete structures in marine environments, which evaluates four nonlinear empirical equations for the

diffusion coefficient:

� Langmuir’s Model

D(C) = k1

(
C

1 + k2C

)
; (1.1)

� Temkin’s Model

D(C) = k1 ln(k2C); (1.2)

� Gilliland’s Model

D(C) = k1 exp(k2C); (1.3)

� Hall’s Model

D(C) = k1

(
1 + k2C

1 + k3C

)
; (1.4)

where the ki, i = 1, 2, 3, are specific rate constants fitting to the concentration profiles measured in cores

extracted from reinforced concrete samples that were exposed to an aggressive marine environment. The

authors noticed some important issues: the quality of the concrete and external agents have a strong

influence on the chloride ion diffusion coefficient, more than the concentration rate within the concrete.

However, Hall’s model provided a better fit for the results in 70% of cases with lower mean squared error.

On the other hand, the parameters in Hall’s model match the constant coefficient D0 with lower chloride

ion concentrations, and with the highest diffusion coefficient D = k1k2

k3
, when concentrations are higher.

In addition, the parameters k2 and k3 are related to the ion’s presence and mobility, respectively [15].

A 3-years experimental study by Anzola et al. [6] showed chloride concentration profiles in prismatic

rein-forced concrete samples exposed to an aggressive marine environment. To simulate this response

and contribute to the estimation of the service life of future civil constructions with characteristics like

these reinforced concrete samples, in conditions of an aggressive marine environment, in this work a fitted

version of Hall equation (1.4) based on a dynamic optimization problem of the mean square error (MSE)
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between the experimental and simulated concentrations is presented. Here, Fick’s second law coupled

with (1.4) and appropriate initial and boundary conditions are part of the constraints for the dynamic

optimization problem. Furthermore, it predicts the concentrations using a numerical model based on a

nonlinear finite element discretization in the spatial coordinate and the Runge-Kutta (R4) scheme for

the time step advance.

The following sections present the mathematical and numerical ion diffusion model into the material

porous matrix, the dynamic optimization problem with its constrainers, and the numerical results with

their validation according to the experimental date reported by Anzola et al. in [6]. Finally, the last

section shows concluding remarks.

2. MATERIALS AND METHODS

2.1. Mathematical model

As mentioned before, reinforced concrete samples were subjected to an aggressive marine environment,

with one side of the cross-section exposed to the environment while another side was isolated. The

mathematical model considers a one-dimensional diffusion of the chloride ion in the longitudinal direction

(L > 0). If the reference coordinate system is placed on the exposed face at x = 0, then the isolated face

will correspond to x = L.

The ion concentration is described in terms of a positive function C(x, t) defined at all (x, t) ∈ [0, L]×[0, T ].
Therefore, the model should satisfy the following initial and boundary conditions (IBVP):

∂C

∂t
(x, t) =

∂

∂x

(
D(C(x, t))

∂C

∂x
(x, t)

)
, ∀ (x, t) ∈ (0, L)× (0, T ]; (2.1)

C(x, 0) = 0, ∀x ∈ (0, L]; (2.2)

C(0, t) = Cs(t), ∀ t ∈ (0, T ]; (2.3)

∂C

∂x
(L, t) = 0, ∀ t ∈ (0, T ]. (2.4)

Equation (2.1) is the Fick’s second law, and the diffusion coefficient D(C(x, t)) is given by the Hall’s

model:

D(C(x, t)) = k1

(
1 + k2C(x, t)

1 + k3C(x, t)

)
. (2.5)

Initial condition (2.2) represents the concentration of the reinforced concrete samples when exposed to the

marine environment, at the instant when the experimental measurement starts (t = 0). The boundary

condition (2.3) refers to the side expose to the environment (x = 0), where concentration is described by

function Cs(t), ∀ t ∈ (0, T ]. We assume that Cs(0) = 0 to ensure compatibility and continuity in initial

and boundary conditions. Finally, the boundary condition (2.4) indicates that the flow of chlorides in

the isolated cross-section (x = L) is zero.

2.2. Numerical model

The mathematical model (2.1)-(2.4) is a non-homogenous initial boundary value problem (IBVP) for the

Fick’s second law coupled whin Hall’s diffusion coefficient D on an interval [0, L], with either Dirichlet and
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Neumann conditions on x = 0 and on x = L, respectability [19]. Furthermore, the relation (2.5) between

the Hall’s diffusion coefficient D and the concentration C(x, t) is non-linear. For solution approximate of

the IBVP, we propose a numerical approach by using finite element semi-discretization in the x-coordinate

and a Runge-Kutta RK(4) scheme for time discretization.

2.2.1. Variational formulation

The spatial semi-discretization of the IBVP (2.1)-(2.4) by the finite element method is based on an

equivalent variational formulation [3]. However, for this purpose it is convenient to homogenize the

Dirichlet-type boundary condition (on x = L) by introducing the suitable change:

C̄(x, t) = C(x, t)− (x− L)2

L2
Cs(t) (2.6)

Therefore, the IBVP (2.1)-(2.4) in terms of C̄ is:

∂C̄

∂t
(x, t) =

∂

∂x

(
D(C̄(x, t))

∂C̄

∂x
(x, t)

)
+ F (C̄, x, t), ∀ (x, t) ∈ (0, L)× (0, T ]; (2.7)

C̄(x, 0) = C̄0(x), ∀x ∈ (0, L]; (2.8)

C̄(0, t) = 0, ∀ t ∈ (0, T ]; (2.9)

∂C̄

∂x
(L, t) = 0, ∀ t ∈ (0, T ], (2.10)

where

F (C̄, x, t) =

(
2Cs(t)

L2

)
∂

∂x

(
D(C̄)(x− L)

)
− (x− L)2

L2

dCs

dt
(t) (2.11)

and

C̄0(x) =

(
Cs(0)

L2

)
(x− L)2 (2.12)

Variational formulation for (2.7)-(2.10) lead to the Proposition 2.1..

Proposition 2.1.. Let V be the infinite-dimensional set formed by all continuous functions in the interval

[0, L] that vanish on the boundary x = 0. Then, the IBVP (2.7)-(2.10) is equivalent to the variational

problem: find the function t 7→ C̄(t) ∈ V , ∀ t ∈ [0, T ],such as:

(dtC̄(t), v) + a(C̄(t), v) + b(C̄(t), v) = ℓ(v, t); ∀ v ∈ V, (2.13)

(C̄(0), v) = (C̄0, v); ∀ v ∈ V, (2.14)
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where

(dtC̄(t), v) =

∫ L

0

∂C̄

∂t
(x, t)v(x) dx (2.15)

a(C̄(t), v) =

∫ L

0

D(C̄(x, t))
∂C̄

∂x
(x, t)

dv

dx
(x) dx (2.16)

b(C̄(t), v) =

(
2Cs(t)

L2

)∫ L

0

D(C̄(x, t))(x− L)
dv

dx
(x) dx (2.17)

ℓ(v, t) = − 1

L2

dCs

dt
(t)

∫ L

0

(x− L)2v(x) dx (2.18)

(C̄0, v) =

(
Cs(0)

L2

)∫ L

0

(x− L)2v(x) dx (2.19)

Proof. The technique employed to prove this proposition is standard in the theory and practice of the

finite element method. For further details, the reader is referred to [8, 9].

2.2.2. Variational formulation semi-discretization

Following the methodology presented in references [19], [8] and [9], we consider a partition of the interval

[0, L] according to the longitudinal discretization of the samples into M pieces Ij = [xj , xj+1] of length

hj = xj+1 − xj where j = 1, . . . ,M . Each sub-interval Ij is called a finite element.

If h = max
1≤j≤M

(hj), the partition represents a mesh of finite elements Ij and nodes xj , which we will denote

by Th, where h > 0 is known as the mesh size. Now, for simplicity, we introduce the finite-dimensional

vector space:

X1
h = {v ∈ C0(0, L); v|Ij ∈ P1(Ij), ∀ Ij ∈ Th}, (2.20)

that is the space of globally continuous functions that are polynomials of degree 1 on the single elements

(P1(Ij)) of the mesh Th. Moreover, we define

Vh = {vh ∈ X1
h; vh(0) = 0} (2.21)

that is, in fact, a discrete subset of V and it is called a finite-element space generated by basis functions

{φj}M+1
j=1 that link each node xj in the mesh, such as φj |Ij ∈ P1(Ij).

The semi-discretization of (2.13)-(2.14) can be expressed in terms of the approximating functions t 7→
C̄h(t) ∈ Vh, instead of the original t 7→ C̄(t) ∈ V , for a fixed t ∈ [0, T ], and the test functions vh ∈ Vh

instead of the test function v ∈ V . The next proposition expresses this semi-discretization approach.

Proposition 2.2. (Semi-discrete variational problem). Let Vh be the finite element space defined in

(2.21), and assume the initial condition C̄0 ∈ Vh. Suppose that the boundary function Cs(t) and its time

derivative
dCs

dt
(t) are continuous on [0, T ]. Then, there exists a unique function t 7→ C̄h(t) ∈ Vh, for all

t ∈ [0, T ], such that:

(dtC̄h(t), vh) + a(C̄h(t), vh) + b(C̄h(t), vh) = ℓ(vh, t); ∀ vh ∈ Vh, (2.22)

(C̄h(0), vh) = (C̄0, vh); ∀ vh ∈ Vh, (2.23)

Proof. The technical aspects of this proof are also standard; see [9]. A brief outline is as follows:

72



i) The semi-discrete variational formulation defines a nonlinear system of ordinary differential equations,

posed on the finite-dimensional space Vh, of the form

M
dC̄

dt
(t) +A(C̄(t))C̄(t) + b(C̄(t)) = ℓ(t), ∀ t ∈ (0, T ],

where M is the mass matrix, C̄(t) is the vector of coefficients associated with C̄h(t), and the terms A, b

and ℓ are nonlinear but can be shown to be continuously differentiable in C̄(t).

ii) By standard qualitative theory of ordinary differential equations (see [17] and [16]), the existence and

uniqueness of a solution to the above system are guaranteed over a short time interval (i.e., a local

solution).

iii) Then, under regularity assumptions on the coefficient D(C̄) and the boundary function Cs(t), the local

solution can be extended globally over the interval (0, T ]. With this, it follows that the semi-discrete

variational problem admits a unique solution C̄h(t) in Vh for all t ∈ [0, T ].

Since Vh = gen({φj}M+1
j=1 ), then in Proposition 2 we can take

C̄h(t) =

M+1∑
j=1

C̄j(t)φj . (2.24)

Furthermore, following Galerkin’s method, the arbitrary test function vh is chosen to be the same as the

basis functions [23]; i.e vh ≡ φi. Now, the discrete variational formulation (2.22)-(2.23) is equivalent to a

nonlinear ordinary differential equations system, with initial conditions (IVP’s): find {C̄j(t)}M+1
j=1 for all

fixed t ∈ (0, T ] and each i = 1, . . .M + 1:

M+1∑
j=1

mij
dC̄j

dt
(t) +

M+1∑
j=1

aij(t)C̄j(t) + bi(t) = ℓi(t); (2.25)

M+1∑
j=1

mijC̄j(0) = C̄0
i , (2.26)

where

mij =

∫ L

0

φj(x)φi(x) dx; (2.27)

aij(t) =

∫ L

0

D

(M+1∑
j=1

C̄j(t)φj(x)

)
dφj

dx
(x)

dφi

dx
(x) dx; (2.28)

bi(t) =

(
Cs(t)

L2

)∫ L

0

D

(M+1∑
j=1

C̄j(t)φj(x)

)
(x− L)

dφi

dx
(x) dx; (2.29)

ℓi(t) = −
1

L2

dCs

dt
(t)

∫ L

0

(x− L)2φi(x) dx, (2.30)

C̄0
i =

(
Cs(0)

L2

)∫ L

0

(x− L)2φi(x) dx, (2.31)
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with

D

(M+1∑
j=1

C̄j(t)φj(x)

)
=

k1

[
L2 + k2L

2

M+1∑
j=1

C̄j(t)φj(x) + k2(x− L)2Cs(t)

]

L2 + k3L2

M+1∑
j=1

C̄j(t)φj(x) + k3(x− L)2Cs(t)

(2.32)

For implement the numerical approach, the IVP’s (2.25)-(2.26) can be expressed in a compact vector

form by introducing the unknown column vector C̄(t) = (C̄1(t), . . . , C̄M+1(t))
⊤ ∈ R(M+1)×1 and the

notations: for i, j = 1, . . . ,M + 1

aij(C̄(t)) ≡ aij(t); bi(C̄(t)) ≡ bi(t) and ℓi(C̄(t)) ≡ ℓi(t).

The new form of the IVP’s is now expressed as: given M = [mij ] ∈ R(M+1)×(M+1), t 7→ A(C̄(t)) =

[aij(C̄(t))] ∈ R(M+1)×(M+1), t 7→ b(C̄(t)) = [bi(C̄(t))] ∈ R(M+1)×1, t 7→ ℓ(t) = [ℓi(t)] ∈ R(M+1)×1 and

C̄0 = [C̄0
i ] ∈ R(M+1)×1, find t 7→ C̄(t) such as:

M
dC̄

dt
(t) +A(C̄(t))C̄(t) + b(C̄(t)) = ℓ(t); ∀ t ∈ (0, T ] (2.33)

MC̄(0) = C̄0 (2.34)

Matrices M , A(C̄(t)) and vectors b(C̄(t)) and ℓ(t) are built using the element-by-element contribution

assembly strategy on the mesh Th, and considering the properties for the basis functions {φj}M+1
j=1 :

φj(xi) = δij para 1 ≤ i, j ≤ M + 1. Furthermore, for the nonlinear integrands involved in the definition

of the terms aij and bi, an appropriate Gauss quadrature formula is used [8].

2.3. Fitting diffusion model parameters

In this section we consider a partition of the time interval [0, T ] into N discrete times: t0, t1, . . . , tn−1,

tn, . . . , tN−1, tN , coinciding with the sampling times when the experimental chloride-ion concentration

was measured and such that: t0 < t1 < · · · < tn−1 < tn < · · · < tN−1 < tN . Here t0 and tN are the

initial and final sampling times, respectively.

Now, let Cexp(xj , tn) be the experimental chloride-ion concentration in the j-th cross-section xj of a

reinforced concrete sample represented by interval [0, L] and in the n-th discrete time tn. The Hall’s

model parameters k1, k2 and k3 in (2.32) are fitted by the minimization of the mean squared error (MSE)

between Cexp and the simulated concentration C(xj , tn; k1, k2, k3) from the numerical solution of the

VIP’s (2.33)-(2.34) in each discrete space-time point (xj , tn) expressed by (from expression (2.6)):

C(xj , tn; k1, k2, k3) = C̄(xj , tn; k1, k2, k3) +
(xj − L)2

L2
Cs(tn).

Parameters k1, k2 and k3 in this minimization problem vary in ranges that are physically admissible and

have already been reported in the reviewed literature (see for example [1] and [2]).
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The non-linear dynamic optimization problem in the fitting procedure is:

min
k1,k2,k3

1

((M + 1)×N)

N∑
n=1

M+1∑
j=1

|Cexp(xj , tn)− C(xj , tn; k1, k2, k3)|2, (2.35)

s.t. kLℓ ≤ kℓ ≤ kUℓ , ℓ ∈ {1, 2, 3}, (2.36)

and the model (2.33)-(2.34), (2.37)

where kLℓ and kUℓ denote the admissible lower and upper bounds for the ℓ-th parameter kℓ.

The non-linear dynamic optimization problem (2.35)-(2.37) is solved numerically using the Levenberg-

Marquardt approximation algorithm. The Levenberg-Marquardt algorithm was selected for solving the

nonlinear dynamic optimization problem due to its robustness and efficiency in handling least-squares

minimization tasks involving nonlinear models with a moderate number of parameters. In this study,

the objective function corresponds to the mean square error (MSE) between simulated and experimen-

tal chloride-ion concentrations, which exhibits a smooth structure favorable for this algorithm. The

Levenberg-Marquardt method effectively combines the rapid local convergence of the Gauss-Newton

approach with the stability of gradient descent, offering a practical balance between speed and robust-

ness [21]. Moreover, this algorithm has demonstrated reliable performance in related nonlinear iden-

tification problems involving physical parameter estimation, as reported in [21], where it was used to

model the dynamic behavior of photovoltaic modules. These features make it particularly suitable for

the parameter fitting task within the chloride diffusion model under consideration.

On the other hand, the model (2.33)-(2.34) is solved numerically using a Runge-Kutta RK(4) time

discretization proposed by Larson M.G., & Bengzon F. in [13], in each discrete time tn.

The consistency of this methodology with the sampling of experimental data has also been considered.

Here, the spatial and temporal discretization follows the sub-intervals defined by the j-th depth xj in the

reinforced concrete sample, and the times tn reported by Anzola, E. et al. in [6] during their experimental

measurements.

2.3.1. Optimization algorithm for parameter fitting

The following algorithm outlines the procedure associated with the previously presented methodology

for the optimal estimation of the Hall diffusion model parameters (k1, k2, and k3), based on the non-

linear dynamic optimization problem (2.35)–(2.37) and its solution using the Levenberg–Marquardt (LM)

algorithm.
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Algorithm 1 Fitting Hall’s Diffusion Parameters via Levenberg–Marquardt Algorithm

Require: Experimental data Cexp(xj , tn), initial guess k(0) = (k
(0)
1 , k

(0)
2 , k

(0)
3 ), parameter bounds kLℓ ,

kUℓ , convergence tolerance ε

Ensure: Optimal parameters k∗ = (k∗1 , k
∗
2 , k

∗
3)

1: Initialize iteration counter m← 0

2: Set k(m) ← k(0), choose damping parameter λ > 0

3: repeat

4: Solve the semi-discrete PDE system (2.33)–(2.34) using RK(4) for current k(m)

5: Compute model predictions C(xj , tn;k
(m))

6: Compute residuals: r
(m)
j,n = Cexp(xj , tn)− C(xj , tn;k

(m))

7: Form residual vector r(m)

8: Estimate Jacobian matrix J (m) = ∂r
∂k

9: Compute parameter update using:

δk(m) =
[
(J (m))⊤J (m) + λI

]−1

(J (m))⊤r(m)

10: Update parameters: k(m+1) ← k(m) + δk(m)

11: Project each k
(m+1)
ℓ to satisfy bounds kLℓ ≤ k

(m+1)
ℓ ≤ kUℓ

12: Update λ based on error decrease (e.g., decrease if MSE improves, increase otherwise)

13: Increment iteration counter m← m+ 1

14: until ∥δk(m)∥2 < ε or maximum iterations reached

15: return k∗ ← k(m)

The LM algorithm described in Algorithm 1 aims to determine the optimal values of the Hall’s model

parameters k1, k2, and k3 by minimizing the mean squared error (MSE) between experimental data

and the numerical solution of the chloride diffusion model. Below is a step-by-step explanation of the

algorithm:

� Initialization (Lines 1–2): The algorithm starts from an initial guess k(0) = (k
(0)
1 , k

(0)
2 , k

(0)
3 ) and

a damping parameter λ. Bounds for each parameter ensure the solution remains within physically

admissible ranges.

� Numerical solution (Line 4): For the current parameter estimate k(m), the semi-discrete sys-

tem (2.33)–(2.34) is solved numerically using a Runge–Kutta RK(4) scheme. This provides the

approximate solution C̄(xj , tn).

� Reconstruction of total concentration (Line 5): The original concentration C(xj , tn;k
(m)) is

reconstructed using:

C(xj , tn;k
(m)) = C̄(xj , tn;k

(m)) +
(xj − L)2

L2
Cs(tn).

� Residual computation (Lines 6–7): The residuals are defined as:

r
(m)
j,n = Cexp(xj , tn)− C(xj , tn;k

(m)),
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and are collected into a residual vector r(m).

� Jacobian estimation (Line 8): The Jacobian matrix J (m) is estimated as:

J (m) =

[
∂r(m)

∂k1
,
∂r(m)

∂k2
,
∂r(m)

∂k3

]
,

using finite difference or analytical methods.

� LM update (Lines 9–10): The parameter update is computed using:

δk(m) =
[
(J (m))⊤J (m) + λI

]−1

(J (m))⊤r(m);

I represents the identity matrix, and the new estimate is:

k(m+1) = k(m) + δk(m).

� Parameter projection (Line 11): The components of k(m+1) are clipped to satisfy the bounds

in (2.36).

� Damping Adjustment (Line 12): If the MSE decreases, λ is reduced; otherwise, it is increased

to enhance stability.

� Stopping criterion (Line 13): The iteration stops when:

∥δk(m)∥2 < ε,

where ∥ · ∥2 denotes the Euclidean vector norm, and ε > 0 is a predefined tolerance.

� Final output (Line 14): The optimal parameters are returned:

k∗ = (k∗1 , k
∗
2 , k

∗
3).

This algorithm integrates a robust optimization strategy with a time-dependent nonlinear diffusion model.

It ensures a physically consistent fit of the model parameters to the experimental chloride concentration

data, effectively combining numerical simulation with inverse modeling.

3. RESULTS

The reinforced concrete samples and experimental conditions of reference are described as follows [6]:

prismatic shape of 15×15×30 cm3; water-cement ratio (Portland I type): 0.45; embedded A-400 steel

structure (see [4]). The environmental parameters and atmospheric pollutants average of the marine

environment to which these reinforced concrete samples were exposed for 3 years (t = 1 year; t = 2 years

and t = 3 years) are: temperature of 20.45◦C; relative humidity of 89.00%; precipitation of 105.00 mm;

35.88 mg/m2×day of chlorides; 20.96 mg/m2×day of SO2 and 396.43 ppm (parts per million) of CO2.

The experimental chloride concentration profiles were measured every year in each slice of 15×15×15 cm3

extracted from the test samples at the following depths: 0.5 cm, 1cm, 2cm, 3cm, 3.5cm and 4cm. The
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Depth t1 = 1 t2 = 2 t3 = 3

x1 = 0.5 3332 7915 11625

x2 = 1.0 2448 2446 3617

x3 = 2.0 1088 1500 1507

x4 = 3.0 272 503 663

x5 = 3.5 68 374 525

x6 = 4.0 0 330 242

Table 1: Experimental chloride concentration profiles from cores (Cexp).

concentration on the exposed face Cs(t > 0) remained constant and equal to the average of the values

reported each year in [6]: 3528.9 ppm. After titration of each sample, the authors report the experimental

data, in parts per million (ppm), as shown in Table 1 for one of these samples that we selected.

The initial guess for the iterative fitting process using the experimental data (Table 1), were: k
(0)
1 =

0.1000 × 10−8, k
(0)
2 = 0.3000 × 10−3, k

(0)
3 = 0.4000 × 10−3, according to Morón, O. et al. in [15].

After running the non-linear dynamical optimization problem (2.35)-(2.37), the fitted parameters were

reported: k∗1 = 0.8432× 10−7, k∗2 = 0.9000× 10−3, k∗3 = 1.2000× 10−3, for a fit accuracy that yields the

MSE= 5.3160× 10−5.

The percentage relative error in the induced Euclidean matrix norm(
||Cexp − C||2
||Cexp||2

)
× 100,

was 0.220%, where Cexp and C were the matrix of concentrations extracted from Table 1 and Table 2

respectively. This result suggested that the IBVP (2.7)-(2.10) can predict the concentration profile for

the reinforced concrete samples and the reference experimental conditions.

Depth t1 = 1 t2 = 2 t3 = 3

x1 = 0.5 3332 7916 11627

x2 = 1.0 2448 2444 3611

x3 = 2.0 1088 1497 1507

x4 = 3.0 272 505 663

x5 = 3.5 68 378 550

x6 = 4.0 0 343 261

Table 2: Estimated chloride concentration profiles from cores (C).

The estimated values of the diffusion coefficient in a sample are reported in Table 3. The average value of

the diffusion coefficient (0.73614×10−7cm2/s) is above the reference threshold value (0.50000×10−9cm2/s)

reported in [4]. This result suggests that the service life of any structure with similar composition to the

sample and subjected to the same marine environment conditions reported by Anzola, E. et al. in [6],

could be even shorter than that expected for a 3cm thick cement lining [1].
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Depth t1 = 1 t2 = 2 t3 = 3

x1 = 0.5 0.6746× 10−7 0.6525× 10−7 0.6465× 10−7

x2 = 1.0 0.6859× 10−7 0.6860× 10−7 0.6719× 10−7

x3 = 2.0 0.7238× 10−7 0.7077× 10−7 0.7075× 10−7

x4 = 3.0 0.7913× 10−7 0.7639× 10−7 0.7498× 10−7

x5 = 3.5 0.8273× 10−7 0.7779× 10−7 0.7617× 10−7

x6 = 4.0 0.8432× 10−7 0.7834× 10−7 0.7958× 10−7

Table 3: Estimated values of the diffusion coefficient (D(C)).

4. CONCLUSIONS

This article presents a methodology to fit the specific speeds k1, k2 and k3 for the chloride-ion Hall’s

diffusion coefficient in reinforced concrete samples exposed to aggressive marine conditions, using a non-

linear dynamic optimization problem (NDOP) that minimizes the mean square error (MSE) between the

experimental concentration values reported in the literature, and the simulated chloride concentration by

the one dimensional Fick’s second law coupled with the Hall’s empirical equation, initial and boundary

value conditions (IBVP). The methodology proposed a spatial and time discretization for the IBVP, using

a finite element and Runge-Kutta RK(4) approaches respectively, to evaluate concentrations in reinforced

concrete samples exposed to three years of aggressive marine environment. With the finite element semi-

discretization, the IBVP result in a system of initial value problems (IVP’s) for concentrations at each

depth during exposure time to the marine environment. The IVP’s and the range values for the three

specific velocities of Hall’s empirical equation were the constraints for the NDOP. Next, the Levenberg-

Marquardt algorithm led to accurately solve the NDOP. Regarding the precision of the methodology,

the relative percentage error between the experimental and estimated concentrations was less than 1%,

and the order of the MSE for the fitted parameters was 10−5, suggesting that the proposed model and

the estimating methodology could accurately predict the ion-concentration profile and the service life of

any civil construction structure with similar composition and subjected to aggressive marine conditions

reported in [6].

While the results demonstrate the accuracy and robustness of the proposed methodology, some limita-

tions should be acknowledged. These include the assumption of homogeneous material properties, the

restriction to diffusion-only mechanisms, and the absence of uncertainty quantification or validation un-

der diverse environmental conditions. However, these limitations open opportunities for future research

to extend the model with coupled multi-physics phenomena, incorporate stochastic analysis, and explore

broader datasets to enhance generalizability and predictive power.
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