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ABSTRACT

Traditional distributions face limitations in adapting to the complexities of complex random phenomena.
This observation prompts the exploration of creative generalizations through the application of diverse
mathematical approaches. In this manuscript, we use Generalized Even Power Weighted Probability
Technique, as a generator to introduce a new distribution called 2K™ Order Weighted Maxwell-Boltzmann
Distribution. We derive its various structural properties including the moment generating function, moments,
mean residual lifetime, mean waiting time, Renyi entropy and order statistics, among others. Additionally,
we employ the maximum likelihood method for parameter estimation. A simulation study is conducted to
analyse the asymptotic normality behaviour of the maximum likelihood estimators. The versatility of the
new distribution is demonstrated through its application to real-life datasets and simulated data.

KEYWORDS: Weighted Maxwell-Boltzmann Distribution, Structural properties, mean residual lifetime,
mean waiting time and maximum likelihood estimation.
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RESUMEN

Las distribuciones tradicionales presentan limitaciones para adaptarse a la complejidad de los fenémenos
aleatorios complejos. Esta observacion impulsa la exploracion de generalizaciones creativas mediante la
aplicacion de diversos enfoques matematicos. En este manuscrito, utilizamos la técnica de probabilidad
generalizada, incluso ponderada por potencia, como generador para introducir una nueva distribucion
denominada Distribucion de Maxwell-Boltzmann Ponderada de 2K° Orden. Derivamos sus diversas
propiedades estructurales, incluyendo la funcién generadora de momentos, los momentos, la vida media
residual, el tiempo medio de espera, la entropia de Renyi y las estadisticas de orden, entre otras. Ademas,
empleamos el método de maxima verosimilitud para la estimacion de parametros. Se realiza un estudio de
simulacion para analizar el comportamiento de normalidad asintética de los estimadores de méxima
verosimilitud. La versatilidad de la nueva distribucién se demuestra mediante su aplicacién a conjuntos de
datos reales y simulados.

PALABRAS CLAVE: Distribucion de Maxwell-Boltzmann Ponderada, la vida media residual, el tiempo
medio de espera Propiedades Estructurales y estimacion de maxima verosimilitud.

1. INTRODUCTION

Standard probability models may be inadequate when data are obtained through mechanisms that produce uneven
selection probabilities, whether due to complex survey structures, intrinsic biases or selective sampling. To
enhance model flexibility under such conditions, statisticians have developed families of generalized distributions
as well as generalization techniques to extend the existing models. These extended models typically incorporate
up to four additional parameters, striking a practical balance between improved fit and interpretability. A
particularly powerful class within these extensions is weighted distributions, which formally integrate the
sampling mechanism into the probabilistic model. The theory of weighted probability distribution is a powerful
concept that offers a valuable framework for addressing issues related to model specification and data
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interpretation. It provides a technique for fitting models to the unknown weight functions when samples can be
taken both from the original distribution and the developed distribution. This concept was first provided by Fisher
(1934), who studied how the methods of ascertainment can influence the form of the distribution of recorded
observations. He showed that if the chance of observing an event with value X is proportional to w(x), the

resulting observed density is f,, (x) = '”;([’3{;;) Later Rao (1965) introduced and formulated it in general terms in

connection with modelling statistical data, when the usual practice of using standard distributions were found to
be unsuitable. Building on this foundation, Patil & Rao (1978) made significant advances by applying weighted-
distribution methods to human population studies and ecological sampling. Castillo & Pérez-Casany (1998)
further extended the methodology by deriving new weighted exponential-Poisson families capable of modelling
both over dispersion and under dispersion in count data. Contemporary research continues to expand this field,
with studies such as Fatima & Ahmad (2017), Dar et al. (2018), Shakhatreh & Al-Masri (2020), Fallah & Kazemi
(2022) and Ghitany and Wang (2022).

In this manuscript, we introduced a new two-parameter 2kth Order Weighted Maxwell Boltzmann Distribution
(KWMBD) by utilizing a new generalization of weighted probability distribution called the Generalized Even
Power Weighted Distribution to enhance the flexibility and practical utility of the classical Maxwell Boltzmann
distribution, particularly in contexts where data are collected through mechanisms that produce uneven selection
probabilities. This contribution advances both the theoretical understanding and the practical application of
weighted distributions in modern data analysis.

Definition: Consider a random variable X with f (x ) as its density function and let us assume the probability of
observing X = x is proportional to aweight function w(x) = 0. Therefore the density function of the Generalized
Even Power Weighted Distribution is given by:

_(we)" @
fwzk(X)—W, —00<X<00,kE]R. (11)

Where,E[(w(x))*] = [, (w(x)**f (x)dx,
andx € R, w(x)is weight function and k € R.

2. DERIVATION OF 2KTH ORDER WEIGHTED MAXWELL-BOLTZMANN DISTRIBUTION
(KWMBD)

The Maxwell-Boltzmann (MB) distribution was introduced by Maxwell (1867) to describe the distribution of
speeds of molecules at thermal equilibrium and nowadays is widely applied in many fields such as statistical
physics, statistical mechanics and accounting theory, among others.

The Probability density function (pdf) of the Maxwell distribution is given by:

2 _x*
flx,a) = \Ea'3xze 2a2, x>0,a>0. 2.1

and the cumulative distribution function (cdf) of Maxwell Distribution is given as:

3 x?
M)
N

r3)
The MB distribution has been discussed in many works in the literature, for example, Tyagi and Bhattacharya
(1989) used MB distribution as a lifetime model and discussed Bayesian and minimum variance unbiased
estimation methods for its parameters and reliability function. Chaturvedi and Rani (1998) extended the MB
distribution by adding another parameter and estimated both classical and Bayesian estimators. Bekker and Roux
(2005) obtained empirical Bayesian estimation for MB distribution. Kazmi et al. (2012) derived the Bayesian
estimation for two component mixture of Maxwell distribution, assuming censored data. Modi (2015) proposed
length biased MB distribution. Saghir and Khadim (2016) derived mathematical properties of length biased MB
distribution. Huang and Chen (2016) studied the tail behaviour of MB distribution. Reshi (2021) estimated

parameters of weighted MB distribution using simulated and real life data sets. Some recent extensions of the MB
distribution are discussed in Saghir et al (2018), Segovia et al. (2021) and Castillo et al (2023).

F(x,a)=1-— x>0,a>0. (2.2)
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The pdf of KWMBD distribution is obtained by taking the weight function w(x) = x, k > —1.5. the Maxwell
pdf (2) in the basic definition of Generalized Even Power Weighted Distribution; we have the following weighted

pdf of KWMBD

2 x2
ka\/;a_3xze 2a?

EGR) ) x>0,a>0k>—-1.5.

fwzk (x, a, k) =

2

Where, E(x%*) = fom xz"\/% a 3x%e 2a?dx = %az"Zk“F (k + ;)
On simplifying the expression, the pdf of KWMBD is given by
x2

2 2(k+1) = (3+2K) 542
, x>0a>0k>—-1.5.

x,a k) =
wak( ) 2(k+%)l"(k + E)
2

The cdf of KWMBD (F 2k (x, a, k)) obtained by integrating (4) w.r.t xand is given by
3 x?
r(k+350)
3 )
r(k+2)

Where, I'(a, x) = fx°° t(@De~t dt is incomplete gamma function.

Fec(x,a,k) =1— x>0,aa>0k>-—1.5.
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Figure 1: The PDF curve of KWMBD for different values of a and k.
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2.1. Sub models of 2K order Weighted Maxwell-Boltzmann Distribution:

For different choices of the parameter values in (2.3), the sub-models of 2K™ order Weighted Maxwell-Boltzmann
Distribution are:

Sub-Models Parameter restriction PDF’s CDF’s
x2
Half normal distribution \2e zaZ x?
k=-1 _ F(x) =erf | —=
(HND) 16 === ) oD
2
Rayleigh distribution 1 xe a2
(RD) k==32 G0 =—; F)=1-¢
3 x?
Maxwell distribution 2 _x 22
(MD) k=0 f(x) = \/;a_3xze 2a2 F(x)=1 —@
r()
x F(x
Length biased Maxwell o=t x%‘é ) X2 2
distribution (LBMD) ) fx) = > o =1- (ﬁ + 1) e 2a?2
4 3 _ax? r (5 x? )
Area biased Maxwell 1 _xaze 2 1 \272a2
distribution (ABMD) k=1o= \/; fe) = e 8 Fe) =1 r(9)
2
Length biased weighted 1 1 o g2 F(x) i
Rayleigh distribution k=-0=— _oXx"pTe « e w (Bx + a
(LBWRD) 2 2B f&) 2 L Gt )

a

Table 1: Sub-models of 2K™ order Weighted Maxwell for different parameter values.

3. STRUCTURAL AND STATISTICAL PROPERTIES OF KWMBD:
3.1 Reliability function and hazard rate function of KWMBD
The reliability function (R2«(x,a,k)) and hazard rate function (h,z«(x,a,k)) of KWMBD are given

respectively by:
3 x2
rk+350)
r

R 2k(x,a,k) =1—F qx(x,a,k) = x>0,a>0k>—15. 3.1)

fook(e,a k) x2*+Dg=G+2k)e73q7

R (@)~ 0D (1 (14 2, 2]

h,zc(x, a, k) = x>0,a>0k>-15. 3.2)

In the particular case at = 0 , where the proposed distribution reduces to the Maxwell distribution, the reliability
function and hazard rate function of KWMBD simplifies to the well-known form of the Maxwell distribution, and
are given by

3 x2
Grya2)

R(x,a) = F(i)

, x>0,a>0.
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x2

x%q3e za?

h(x,a) = ——— x>0,a>0.
’ 3 XZ ’ ’
V2 {r (3.23))
o | o
a a — =45 k=-1
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—_— =2, k=0.
@ a — =3 k=1
w _ w |
a o
x =
g Y
< | <
o (@]
— =45 k=-1
o — a-1 k=05 o
— «=2 k=08
— =3, k=1
(S a |
o (@]
I I I I I I I I T I I T I I
0 2 4 B 8 10 12 0 2 4 B 8 0 12
X X

Figure 2: The cumulative distribution function and reliability function of KWMBD for different choices of a

and k.
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Figure 3: The hazard rate function curve of KWMBD for different value of parameters.

The figure 3 describes the behaviour of hazard rate function of KWMBD for different choice of parameters and
it depicts that the hazard rate function of KWMBD is increasing, decreasing, linearly increasing, constant and
decreasing- increasing.
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3.2 Reverse hazard rate function

The reverse hazard rate function ((rf)wzk (x, ¢, k)) of KWMBD distribution is given by:

%2
[ a k) y2(k+1) o =(3+2K) o 557
(Tf)WZk(x, o, k) = Fooc(x,a k) o(kt2) 3 3 22N’ x>0,a>0k>-15 (3.3)
§ 2 e (k4 3) -1 (k4 2.52)}
2 2’ 2a

At k = 0, the reverse hazard rate reduces to the form of Maxwell distribution reverse hazard rate function, which
is given by

X2
x2a3e 2a2

v2rG)r(35))

3.3 Moments of KWMBD

e (x, ) = x>0,a>0.

In this we compute the »t* moment, mean, variance, coefficient of variation (CV), coefficient of skewness (CS)
and coefficient of kurtosis (CK) of KWMBD.

If a random variable X follows KWMBD, then the rt* moment about origin is given by

[oe]

E(X™) =J- x" f 2 (x, a, k)dx

0

x2
Xy = J.ooxr x2(k+1) o =(3+2Kk) o 75,2 i
- 1
0 2(3)p (k+3)

After simplifying the integral, we get

o \/_r TF(2k+2r+3)
EX") =(V2) « W (3.4)

Substituting r = 1, we obtain the mean of KWMBD and is given by

2k+4
_ - )
E(X) =2a o (3.5)
r(k+2)
2
Similarly, by substituting r = 2,3,4..., we obtain the expressions of higher order moments about origin
(E(X?),E(X3),E(X*) ...) of KWMBD and then variance, CV,CS and CK are calculated by basic definition in
terms of moments about origin.

Variance of random variable X following KWMBD is calculated by
var(X) = E(x?) — (E(X))
On substituting the mean and E (X?2), we get variance of KWMBD and is given by
2 o2 2k +5 3 2k + 4
var(X) = _[r ( ) r (k + —) —(r ( ) (3.6)
3 2 2 2
(r (k+ 5))

CV of random variable X following KWMBD is calculated by
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JEe) - (ECoY

cV = D

On substituting the variance and E (X), we get CV of KWMBD and is given by

P (e+2) - (r(%) |

NIR

v = 3.7

r (2k2+4) )
CS of random variable X following KWMBD is calculated by
s = E(X3) — 3E(X)E(Xz) +2[ECO)?

V()L
On substituting the variance, E(X?), E(X?) and E(X), we obtained CS of KWMBD and is given by

2 3
e (e ) - B rEr (4D +2 ()| .

3
2k+5 3 2k+4 2|2
[P (+2) - (r ()
CK of random variable X following KWMBD is calculated by

_EXM -4EXEX®) + 6EXHEX)]* = 3[EX)]*
- veol?

On substituting the variance, E(X*), E(X?), E(X?)and E (X), we obtained CK of KWMBD and is given by

CK

CK =

) ) ) ) o )) rEEed-<(re5) | @9)
(- (222
3.4 Mode of KWMBD

The logarithm of the pdf (4) is:

1 x? 3
log f 2k (x, a, k) = — (k + E) log(2) + 2(k + 1) log(x) — (3 + 2k) log(a) — i log (F (k + E))

2(k+1) «x 9? —2k+1) 1

Sz log (e k) = ——5— - — <0

0
_longZR(xl a, k) = x ?’ 62x xz

ox

The first derivative has positive root x = a./2(k + 1)

a k Mean Variance CcVv Cs CK Mode
1 -1 0.7979 0.3634 0
2 -1 1.5958 1.4535 0.7555 0.9952 2.9232 0
3 -1 2.3936 3.2704 0
1 -0.5 1.2533 0.4292 1
2 -0.5 2.5066 1.7168 0.5227 0.6311 1.5033 2
3 -0.5 3.7599 3.8628 3
1 1 2.1277 0.4729 0.3232 0.3542 1.9632 2
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2 1 4.2554 1.8917 4
3 1 6.3831 4.2563 6
1 2 2.5532 0.4810 2.4494
2 2 5.1065 1.9241 0.2716 0.2906 4.9190 4.8990
3 2 7.6597 4.3291 7.3484

Table 2: Descriptive statistics (Mean, Variance, CV, CS, CK, and Mode) of KWMBD for different choices of

parameters.

Table 2 presents the numerically evaluated values of the Mean, Variance, CV, CS, CK and Mode for selected
values of parameters a and k. The results indicate that as we increase the value of a and weight parameterk, the
distribution becomes more concentrated, with less variability, as evidenced by decreased coefficient of variance
and coefficient of skewness and accompanied by an increased mean, variance , and mode.

3.5 Incomplete moments and Conditional moments

The incomplete moments display the graphical structure of a distribution’s moments, which is helpful in various
fields such as econometrics, finance and reliability. The n* incomplete moments of KWMBD (1,2« (t, 1)) is

given by:

t

I2k(t,n) = f x"f 2 (x, a, k)dx

0

(Vaa)'y (22, 2)

2 242
r(k+2)

The nt"conditional momentof KWMBD is given by:

Iwzk (t,n) =

f:o X f 2 (x, a, k)dx
R(t) '

E(T"|T > t) =

(\/Ea)nr(n+2k+1i)

2 2a2

(o) n j—
where, [~ x"f, 2k (x, @, k)dx = (k)

’

(ﬁa)nr(n+2k+1 i)

2 '2a2

3 x2
r(3552)

E(TMT >¢) =

3.6 Mean residual life and mean waiting time

Mean residual life u,,2x (t) of KWMBD is given by:

1
ok = [0~

2k+4 t2
ay\—; oy

t

xf,2k(x, a, k)dx] —t

t
where, [ xf,, 2 (x, @, k)dx = Tl
VZa k+2 t?
U2k (t) = {F( )—Y<k+2,—)}—t
Y re+2,5) 0N 2 20t
2 2a

The mean waiting time fi,zx of KWMBD is given by:

gk =t

1 t
- WL xwak(x, a, k)dx
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[T
Vaay (22, 1)

2 2a

=t- 3 = (3.13)
F(k+§) (k+222)

3.7 Entropy measures of KWMBD

Entropy measures provide a quantification of uncertainty or randomness within the system. We have calculated
the expressions for Renyi entropy, Arimoto’s entropy and Havrda and Charvat entropy.

The Renyi entropy for KWMBD is defined by

Hz(8) = il 610g {f f‘swzk(x,a,k)dx} 6>0,6+0
0

Incorporating equation (4), integration f‘swzk (x, a, k) gives

NP REICED) . <26(k +1)+ 1)

O u(x,a, k)dx =
fﬂ - r(k+2) sens) 2

Hence, the Renyi entropy reduces to

1 V20 1-8) 28(k+1)+1
He(6) = —=log {r(k+g)%(6<k+1>+%) r (e §>0,6%0 (3.14)

The Arimoto entropy for KWMBD is defined by

1

H,(6) = 2(61—) [f f zk(xak)dx] -1 6>06+0

Incorporating integration f5wzk (x, a, k) , the Arimoto entropy is given by

50,55 25 (Z(W)%

HA(6)—2(5 " . y -1 6§>0,6+0 (3.15)
r(k+3)
The Havrda and Charvat entropy for KWMBD is defined by
1 [ee)
H,@):m{f fﬁwzk(x,a,k)dx—1} 5>0,8%0
- 0

Incorporating integration f5wzk (x,a, k) , the Havrda and Charvat entropy is given by

61 (-8
Hy(8) == 5{[ (W ™ r (2‘“"“)“)| - 1] §>0,6#0 (3.16)

r(k+3 ) (6(k+1)+ ) 2

Parameters Entropy measures
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a k 6 Renyi entropy Arimoto entropy Havrdznzicgpc)ilharvat
15 0.6313 0.7737 0.5413
2.0 0.5724 0.5832 0.4358
. * 2.5 0.5312 0.4433 0.3662
3.0 0.5004 0.3378 0.3162
15 1.3244 1.6023 0.9686
2.0 1.2655 1.2390 0.7179
’ * 2.5 1.2244 0.9540 0.5604
3.0 1.1936 0.7320 0.4541
15 0.9438 1.1050 0.7524
2.0 0.8882 0.8282 0.5886
. . 2.5 0.8491 0.6239 0.4801
3.0 0.8197 0.4709 0.4029
15 1.6369 2.0197 1.1178
2.0 1.5814 1.5854 0.7943
’ . 25 1.5422 1.2278 0.6007
3.0 1.5128 0.9433 0.4757

Table 3: Numerical analysis for entropy measures (Renyi entropy, Arimoto’s entropy and Havrda and Charvat

entropy).

The table 3 presented numerical analysis of Renyi entropy, Arimoto’s entropy and Havrda and Charvat entropy
for different value a , k and level of generalization §. The results demonstrate that as we increase the parameters
a and k value the entropy/uncertainty increases, means introducing more randomness and allows it for wide range
of events. Also it is evident that for a fixed combination of parameters a and k as we increase level of

generalization § the entropy decreases, makes it more predictable and deterministic.

3.8 Odds ratio and Mills ratio

The odds ratio (0,,zk(x, «, k)) and Mills ratio (m,, 2« (x, , k)) for KWMBD distribution are given respectively

by

Foaoock) 20 {r(k+2) - r(

k+a0))

0W2k (x, &, k) =

fwzk (X, X, k) -

R, 2k (x, 00 k) 2(+3) {1" (k +

m,2k(x, a, k) =

fwzk (x, o, k) N

x2(k+1) g —(3+2K) g 202

= , x>0,a>0k>—15.
x20k+1) o ~(3+2K) g 202

x>0a>0k>—1.5.

(3.17)

(3.18)

In the particular case at k = 0, where the proposed KWMBD reduces to the Maxwell distribution, the odds and
mills ratio simplifies to the well-known form of the Maxwell distribution, and are given by

O(x,a) = 2

2{r()-ri.:2)

x2
x2q3e 2aZ

1]

x>0,a>0.




V2{r (2}

XZ
x2q3e 242

m(x,a) = , x>0,a>0.

3.9 Lorenz inequality and Bonferoni inequality

Bonferroni and Lorenz curves were first presented by Bonferroni (1961) to measure the inequality of the
distribution. The Bonferroni and Lorenz curve for a random variable X following KWMBD are respectively given
by:

2k+4 t?
fotxfwzk(x, a, k)dx B Y(Tﬁ)

L(t) = 70 (= (3.19)
po ok Ty (5 5) 520,

PO () () - 550)]
3.10 Order statistics

Let us assume that the random sample X3, X,, X5 ..., X;, come from the KWMBD, with pdf f 2« (x, @, k) and cdf
F2k(x, 0, k). Let Xy < X(p) <, .0, < X S, -0, < Xydenote the corresponding order statistics, then the pdf
and cdf of the r®*(r = 1,2,3, ..., n) order statistic are respectively, given by:

n! r-1 n-r
f.(x) = CEyTey=y [F 2, @, K)] " f,2e(x, @, k)[1 = F 2k (x, a, k)]
and, F.(x) = X7, (7]1) foo’ 0, K)[1—F 2x(x,a, k)]n_j.
£60 n!a—(3+2k)xz(k+1)e—§ [ (k 3) (k 3 x2 >l(r—1)[ (k 3 52 >l(n—r) 321)
(X)) = - —Ir(k+=)-T(k+=,-— Mk+2,— _
(r — D! (n — )1 20 (F (k+§)) 2 220 2" 2a%
and,

n 27\’ 2 \1J
F.(x) = m}z ) (r <k + %) - I‘<k 4 %;TZ» [r <k + ;%)] (3.21)

4. PARAMETRIC ESTIMATION OF KWMBD USING MAXIMUM LIKELIHOOD ESTIMATION
TECHNIQUE

Let X, X,, X5 ..., X,, be an observed sample taken from the KWMBD (k, &) with unknown parameters aand k,
then the log-likelihood function can be written as

n

n
1 .2 3
logL(x,a,k) =—n (k + E) log2 +2(k+1) ) log(x;) — Z X n(2k + 3) log(a) —nlog T (k + E)
1 i=1

, 2a?
i=

The values of @ and k that maximize the log-likelihood function are called the maximum likelihood estimates
of the parameters a and k.

The equations obtained on equating the first-order partial derivatives of log L (x, @, k) with respect to a and k to
zero, are given as

L (4.1)
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n
3
—nlog2 + 2 z log(x;) — 2nlog(a) — n¥ <k + E) =0 (4.2)

i=1

3\ _ @ 3\ P(k+3)
Where, ¥ (k +3) = Zlogr (k +3) = "E
The equations (28) and (29) must be solved simultaneously to obtain MLEs of KWMBD parameters. Since a

closed form solution is not known, an iterative technique is required to compute the estimators @ and k . The
system of equations is solved by Newton-Raphson iteration method.

5. SIMULATION STUDY AND COMPUTATIONS OF KWMBD

In this subsection, we executed a simulation study to evaluate the accuracy of our estimated parameters of the
KWMBD. Random datasets were generated from KWMBD using the inverse cdf method. In this method, a sample
of size n from a particular distribution is obtained by solving the equation F(x;®) =p ~ U(0,1) for x, at
preassigned values of @ and at n independent values of p. Following the same procedure, the equation for
generating random numbers from KWMBD is

3 x?
F(k+=,—
F2e(x,a, k) = 1_M=p

r(k+2)

Solving this equation for x at n independent values of p ~ U(0,1) and at fixed values of a and k, yields the
required sample of size n from the KWMBD. Since solving this equation manually is tedious, the uniroot function
from the R package stats is employed to numerically find the root. By applying the uniroot function to the equation
above for each value of p, we can generate the desired sample from the KWMBD. Herein, we generated multiple
random dataset from KWMBD, each with sizes of 25,50, 100 and 200. These datasets were replicated 100 times,
considering various combinations of parameter values for ¢ = (1,2) and k = (0.5, 1, 1.5, 2). For each case, we
computed the average estimates along with their corresponding mean square errors (MSEs) and bias. The results
are present in Table 4.

Also, a simulated dataset comprising 51 different observations from KWMBD characterized by parameter values
a=1 and k=2 is generated by solving the equation (5) using R software. This simulated data set is used for
modelling comparison and represents quartiles of KWMBD. The R-code for resulted simulated dataset is as
follows

> Data<-function(n,r,alpha,k)

+ {set.seed(1)

+ U=runif(n,0,1)

+ library(zipfR)

+ cdf<-function(x,alpha,k)

+ {fn<-1-lgamma(k+3/2,(x"2)/(2*alpha"2), lower=FALSE)/gamma(k+3/2)}

+ data=c() #Create an empty vector

+ for(i in 1:length(U)){

+ fn<-function(x){cdf(x,alpha,k)-U[i]}

+ uni<-uniroot(fn,c(0,100000))

+ data=c(data,uni$root)}

+ return(data)}

>Simulateddata<-Data(51,1,1,2)

>Simulateddata

>cat(round(Simulateddata,4))

2.0941 2.2942 2.6489 3.5039 1.9589 3.4595 3.7115 2.8152 2.7536 1.5318 1.9686 1.900 2.8683 2.3156 3.0537
2.515 2.9332 4.3624 2.3083 3.0725 3.6459 1.9823 2.7972 1.7641 2.0975 2.3191 1.1685 2.3125 3.346 2.2366
2.4877 2.6979 2.5078 1.9231 3.2081 2.8305 3.1157 1.7096 2.9465 2.3637 3.1893 2.7882 3.0864 2.6131 2.5715
3.1029 1.2844 2.4792 2.9657 2.8802 2.4799
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n Parameters MLE MSE BIAS
a |K a k a k a k

25 1.009443 1.114015 0.000581 0.411303 0.009443 0.614015
50 1 05 1.006308 1.083338 0.000260 0.359678 0.006308 0.583338
100 1.003223 1.060062 0.000045 0.322014 0.003223 0.560062
200 1.001965 1.043841 0.000019 0.298972 0.001965 0.543841
25 1.035333 1.444696 0.004062 0.353786 0.035333 0.444696
50 1 1 1.031529 1.402255 0.003174 0.275075 0.031529 0.402255
100 1.027932 1.388184 0.002170 0.225602 0.027932 0.388184
200 1.027186 1.356266 0.001941 0.175490 0.027186 0.356266
25 1.042998 1.835612 0.007009 0.455788 0.042998 0.335612
50 1.042728 1.825221 0.006382 0.371971 0.042728 0.325221
100 1 15 1.036248 1.807491 0.003979 0.237899 0.036248 0.307491
200 1.033539 1.790357 0.003361 0.199572 0.033539 0.290357
25 1.046555 2.338572 0.010094 0.719172 0.046555 0.338572
50 L 5 1.043798 2.329445 0.008459 0.591237 0.043798 0.329445
100 1.042290 2.295191 0.006747 0.425754 0.042290 0.295191
200 1.041246 2.267568 0.006300 0.283974 0.041246 0.267568
25 2.117254 0.860687 0.019129 0.243612 0.117254 0.360687
50 5 05 2.110143 0.846802 0.015213 0.166326 0.110143 0.346802
100 2.103364 0.832683 0.012019 0.133773 0.103364 0.332683
200 2.097136 0.829511 0.010047 0.125636 0.097136 0.329511
25 2.134382 1.276969 0.031200 0.287898 0.134382 0.276969
50 2.122661 1.248040 0.022329 0.165287 0.122661 0.248040
100 2 1 2.114878 1.238515 0.020267 0.112391 0.114878 0.238515
200 2.108847 1.231972 0.014906 0.085827 0.108847 0.231972
25 2.167331 1.694842 0.053833 0.393048 0.167331 0.194842
50 5 15 2.14118 1.67663 0.034150 0.246105 0.14118 0.17663
100 2.130761 1.651060 0.026514 0.133897 0.130761 0.151060
200 2.129223 1.648105 0.025962 0.096800 0.129223 0.148105
25 2.203508 2.145473 0.110299 0.838411 0.203508 0.145473
50 5 5 2.189253 2.120873 0.081828 0.492189 0.189253 0.120873
100 2.149048 2.111927 0.040105 0.255040 0.149048 0.111927
200 2.134574 2.100532 0.026184 0.146768 0.134574 0.100532

Table 4: Average values of MLEs and the corresponding MSEs and Bias values.

The results presented in Table 4 reveals that as we increase the size of the dataset, the precision of our parameter
estimates improves. Additionally, we observed a decrease in both MSE and bias with an increase in sample size.
This suggests that the estimators are consistent and maximum likelihood (ML) estimation performs effectively.

6. APPLICATIONS OF 2K™ ORDER WEIGHTED MAXWELL-BOLTZMANN DISTRIBUTION

This section illustrates the practical applicability of the KWMBD through analysing three real-life datasets and
one simulated data. The objective is to access the versatility and compatibility of the proposed model in
comparison to its sub-models. For that propose, we are using the maximum likelihood estimation technique for
parameter estimation and various model selection tools. Generally, a superior distribution is indicated by smaller
values of these model selection tools.

The data set | represent the tensile strength measures in GPA of 69 carbon fibres tested under tension at gauge
lengths of 20mm, reported first by Bader and Priest (1982). While as, data set 11 is related to the logarithm of light
intensity of 47 stars in the star cluster CYG OBL, reported first by Rousseeuw and Leroy (1987) and Data set 111
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represents the resistance of 48 semiconductor devices, reported first by R. C., Milliken, Stroup and Wolfinger

(1996).
Tensile Strength Data
Model Estim:ates _ Model selection tools
a k B -2logl AIC BIC AICC HQIC
KWMBD | 0.709 4,723 - 98.463 102.463 106.931 102.645 104.236
ABMD 0.800 - - 121.735 123.735 125.969 123.795 124.622
LBMD 1.250 - - 132.569 134.569 136.803 134.628 135.455
LBWMD 1.541 - 0.493 132.569 136.569 141.037 136.750 138.341
MD 1.443 - - 148.586 150.586 152.820 150.646 151.472
RD 1.768 - - 174.493 176.493 178.727 176.553 177.379
HND 2.500 - - 226.614 228.614 230.849 228.674 229.501
Light Intensity Data
Model Estirrlates _ Model selection tools
a k I’} -2logl AIC BIC AICC HQIC
KWMBD | 0.802 | 18.277 - 79.650 83.650 87.351 83.923 85.043
ABMD 0.197 - - 138.177 140.177 142.027 140.266 140.874
LBMD 2.522 - - 148.236 150.236 152.086 150.325 150.932
LBWMD 1.589 - 0.125 148.236 152.236 155.936 152.508 153.628
MD 2.912 - - 161.825 163.825 165.675 163.914 164.521
RD 3.567 - - 182.151 184.151 186.001 184.240 184.847
HND 5.044 - - 220.333 222.333 224.183 222.422 223.029
Semiconductor Resistance Data
Model Estiniates _ Model selection tools
a k I’} -2logl AIC BIC AICC HQIC
KWMBD | 0.713 | 34.146 - 70.290 74.290 78.033 74.557 75.704
ABMD 0.138 - - 155.970 157.970 159.841 158.057 158.677
LBMD 4.259 - - 166.790 168.790 170.661 168.877 169.497
LBWMD 1.591 - 0.088 166.790 170.790 174532 171.056 172.204
MD 3.478 - - 181.216 183.216 185.087 183.303 183.923
RD 1.184 - - 202.521 204.521 206.393 204.608 205.229
HND 6.024 - - 242.063 244.063 245.934 244.150 244.770
Simulated Data
Model Estirrlates _ Model selection tools
a k I’} -2logl AIC BIC AICC HQIC
KWMBD | 0.906 2.882 - 97.096 101.096 104.959 101.346 102.572
ABMD 0.696 - - 104.432 106.432 108.364 106.514 107.170
LBMD 1.341 - - 110.607 112.607 114.539 112.689 113.346
LBWMD 1.529 - 0.425 110.607 114.607 118.471 114.857 116.084
MD 1.548 - - 120.614 122.614 124.546 122.696 123.353
RD 1.896 - - 137.931 139.931 141.863 140.013 140.669
HND 2.681 - - 174.624 176.624 178.555 176.705 177.362

Table 5: MLEs and Model selection tools (-2logl, AIC, BIC, AICC, HQIC) for all the dataset.
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Figure 3: The histogram and fitted density functions for dataset | and II.
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Figure 4: The histogram and fitted density functions for dataset 111 and simulated dataset.

The results in Table 5 clearly demonstrate that the proposed model consistently yields the smallest values across
the model selection tools. Therefore, we conclude that the KWMBD distribution provides a better fit than the
other compared models. Also the results are validated by figure 3 and 4.
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7. CONCLUSION

To enhance the modelling of complex real world data, researchers are focusing on developing more adaptable
models. Consequently, there have been significant efforts to generalize the classical Maxwell distribution. In this
manuscript, a two-parametric 2K™ Order Weighted Maxwell-Boltzmann Distribution (KWMBD) is formulated
using a Generalized Even Power Weighted Probability Technique. We investigate some statistical properties and
estimate the KWMBD parameters using maximum likelihood estimation method. Numerical analysis of structural
properties reveals that as the parameter (@ and k) values increases, the distribution becomes more concentrated
with reduced variability. Additionally, the entropy measures analysis shows that increasing parameter (a and k)
values lead to higher entropy, indicating a shift toward greater randomness and allowing the distribution to model
a broader range of events. The simulation study reveals that as the sample size increases, the maximum likelihood
estimators (MLES) tend to converge to the true parameter values. Moreover, a decrease in bias and mean squared
error (MSE) of MLEs is observed with larger sample sizes. For practical validation, we apply the proposed
distribution to three real world datasets related to mechanical physics, along with a simulated dataset. It is observed
from results that the proposed distribution offers better fits than its sub-models when applied to these datasets.
Further research can focus on both theory and applications. On the theoretical side, the model may be extended
through new parameterizations, Bayesian methods and asymptotic studies. Practically, it can be applied in fields
like reliability, biomedical sciences, finance and environmental studies to assess its usefulness with real data.
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