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ABSTRACT 

Traditional distributions face limitations in adapting to the complexities of complex random phenomena. 

This observation prompts the exploration of creative generalizations through the application of diverse 

mathematical approaches. In this manuscript, we use Generalized Even Power Weighted Probability 

Technique, as a generator to introduce a new distribution called 2Kth Order Weighted Maxwell-Boltzmann 

Distribution. We derive its various structural properties including the moment generating function, moments, 

mean residual lifetime, mean waiting time, Renyi entropy and order statistics, among others. Additionally, 

we employ the maximum likelihood method for parameter estimation. A simulation study is conducted to 

analyse the asymptotic normality behaviour of the maximum likelihood estimators. The versatility of the 

new distribution is demonstrated through its application to real-life datasets and simulated data. 

KEYWORDS: Weighted Maxwell-Boltzmann Distribution, Structural properties, mean residual lifetime, 

mean waiting time and maximum likelihood estimation. 
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RESUMEN 

Las distribuciones tradicionales presentan limitaciones para adaptarse a la complejidad de los fenómenos 

aleatorios complejos. Esta observación impulsa la exploración de generalizaciones creativas mediante la 

aplicación de diversos enfoques matemáticos. En este manuscrito, utilizamos la técnica de probabilidad 

generalizada, incluso ponderada por potencia, como generador para introducir una nueva distribución 

denominada Distribución de Maxwell-Boltzmann Ponderada de 2Kº Orden. Derivamos sus diversas 

propiedades estructurales, incluyendo la función generadora de momentos, los momentos, la vida media 

residual, el tiempo medio de espera, la entropía de Renyi y las estadísticas de orden, entre otras. Además, 

empleamos el método de máxima verosimilitud para la estimación de parámetros. Se realiza un estudio de 

simulación para analizar el comportamiento de normalidad asintótica de los estimadores de máxima 

verosimilitud. La versatilidad de la nueva distribución se demuestra mediante su aplicación a conjuntos de 

datos reales y simulados.  

PALABRAS CLAVE: Distribución de Maxwell-Boltzmann Ponderada, la vida media residual, el tiempo 

medio de espera Propiedades Estructurales y estimación de máxima verosimilitud. 

 

1. INTRODUCTION 

Standard probability models may be inadequate when data are obtained through mechanisms that produce uneven 

selection probabilities, whether due to complex survey structures, intrinsic biases or selective sampling. To 

enhance model flexibility under such conditions, statisticians have developed families of generalized distributions 

as well as generalization techniques to extend the existing models. These extended models typically incorporate 

up to four additional parameters, striking a practical balance between improved fit and interpretability. A 

particularly powerful class within these extensions is weighted distributions, which formally integrate the 

sampling mechanism into the probabilistic model. The theory of weighted probability distribution is a powerful 

concept that offers a valuable framework for addressing issues related to model specification and data 
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interpretation. It provides a technique for fitting models to the unknown weight functions when samples can be 

taken both from the original distribution and the developed distribution. This concept was first provided by Fisher 

(1934), who studied how the methods of ascertainment can influence the form of the distribution of recorded 

observations. He showed that if the chance of observing an event with value 𝑋 is proportional to 𝑤(𝑥), the 

resulting observed density is 𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸[𝑤(𝑥)]
.  Later Rao (1965) introduced and formulated it in general terms in 

connection with modelling statistical data, when the usual practice of using standard distributions were found to 

be unsuitable. Building on this foundation, Patil & Rao (1978) made significant advances by applying weighted-

distribution methods to human population studies and ecological sampling. Castillo & Pérez-Casany (1998) 

further extended the methodology by deriving new weighted exponential–Poisson families capable of modelling 

both over dispersion and under dispersion in count data. Contemporary research continues to expand this field, 

with studies such as Fatima & Ahmad (2017), Dar et al. (2018), Shakhatreh & Al-Masri (2020), Fallah & Kazemi 

(2022) and Ghitany and Wang (2022). 

In this manuscript, we introduced a new two-parameter 2kth Order Weighted Maxwell Boltzmann Distribution 

(KWMBD) by utilizing a new generalization of weighted probability distribution called the Generalized Even 

Power Weighted Distribution to enhance the flexibility and practical utility of the classical Maxwell Boltzmann 

distribution, particularly in contexts where data are collected through mechanisms that produce uneven selection 

probabilities. This contribution advances both the theoretical understanding and the practical application of 

weighted distributions in modern data analysis. 

Definition: Consider a random variable 𝑋 with 𝑓 (𝑥 ) as its density function and let us assume the probability of 

observing 𝑋 = 𝑥 is proportional to a weight function  𝑤(𝑥) ≥ 0. Therefore the density function of the Generalized 

Even Power Weighted Distribution is given by: 

𝑓𝑤2𝑘(𝑥) =
(𝑤(𝑥))

2𝑘
𝑓(𝑥)

𝐸[(𝑤(𝑥))2𝑘]
,       − ∞ < 𝑥 < ∞, 𝑘 ∈ ℝ.                                                                                                 (1.1) 

Where,𝐸[(𝑤(𝑥))2𝑘] = ∫ (𝑤(𝑥))2𝑘𝑓(𝑥)𝑑𝑥
∞

−∞
, 

and𝑥 ∈ ℝ, 𝑤(𝑥)is weight function and  𝑘 ∈ ℝ. 

2. DERIVATION OF 2KTH ORDER WEIGHTED MAXWELL-BOLTZMANN DISTRIBUTION 

(KWMBD) 

The Maxwell-Boltzmann (MB) distribution was introduced by Maxwell (1867) to describe the distribution of 

speeds of molecules at thermal equilibrium and nowadays is widely applied in many fields such as statistical 

physics, statistical mechanics and accounting theory, among others. 

The Probability density function (pdf) of the Maxwell distribution is given by: 

𝑓(𝑥, 𝛼) = √
2

𝜋
𝛼−3𝑥2𝑒

−
𝑥2

2𝛼2 ,                  𝑥 > 0, 𝛼 > 0.                                                                                                    (2.1) 

and the cumulative distribution function (cdf) of Maxwell Distribution is given as: 

𝐹(𝑥, 𝛼) = 1 −
Γ(

3

2
,
𝑥2

2𝛼2
)

Γ (
3

2
)

,                   𝑥 > 0, 𝛼 > 0.                                                                                                    (2.2) 

The MB distribution has been discussed in many works in the literature, for example, Tyagi and Bhattacharya 

(1989) used MB distribution as a lifetime model and discussed Bayesian and minimum variance unbiased 

estimation methods for its parameters and reliability function. Chaturvedi and Rani (1998) extended the MB 

distribution by adding another parameter and estimated both classical and Bayesian estimators. Bekker and Roux 

(2005) obtained empirical Bayesian estimation for MB distribution. Kazmi et al. (2012) derived the Bayesian 

estimation for two component mixture of Maxwell distribution, assuming censored data. Modi (2015) proposed 

length biased MB distribution. Saghir and Khadim (2016) derived mathematical properties of length biased MB 

distribution. Huang and Chen (2016) studied the tail behaviour of MB distribution. Reshi (2021) estimated 

parameters of weighted MB distribution using simulated and real life data sets. Some recent extensions of the MB 

distribution are discussed in Saghir et al (2018), Segovia et al. (2021) and Castillo et al (2023). 
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The pdf of KWMBD distribution is obtained by taking the weight function  𝑤(𝑥) = 𝑥, 𝑘 > −1.5. the Maxwell 

pdf (2) in the basic definition of Generalized Even Power Weighted Distribution; we have the following weighted 

pdf of KWMBD 

𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) =
𝑥2𝑘√

2

𝜋
𝛼−3𝑥2𝑒

−
𝑥2

2𝛼2

𝐸(𝑥2𝑘)
,           𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.    

Where, 𝐸(𝑥2𝑘) = ∫ 𝑥2𝑘√
2

𝜋
𝛼−3𝑥2𝑒

−
𝑥2

2𝛼2𝑑𝑥 =
1

𝜋

∞

0
𝛼2𝑘2𝑘+1Γ (𝑘 +

3

2
). 

On simplifying the expression, the pdf of KWMBD is given by 

𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) =
𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒

−
𝑥2

2𝛼2

2(𝑘+
1

2
)Γ(𝑘 +

3

2
)

,           𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.                                                                    (2.3) 

The cdf of KWMBD (𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)) obtained by integrating (4) w.r.t 𝑥and is given by 

𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘) = 1 −
Γ(k +

3

2
,
𝑥2

2𝛼2
)

Γ (𝑘 +
3

2
)

,                𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.                                                                     (2.4) 

Where, Γ(a, 𝑥) = ∫ 𝑡(𝑎−1)𝑒−𝑡  𝑑𝑡 
∞

𝑥
is incomplete gamma function. 

 

Figure 1: The PDF curve of KWMBD for different values of α and k. 
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2.1. Sub models of 2Kth order Weighted Maxwell-Boltzmann Distribution: 

 For different choices of the parameter values in (2.3), the sub-models of 2Kth order Weighted Maxwell-Boltzmann 

Distribution are: 

Sub-Models Parameter restriction PDF’s CDF’s 

Half normal distribution 

(HND) 
𝑘 = −1 𝑓(𝑥) =

√2𝑒
−
𝑥2

2𝛼2

√𝜋𝛼
 𝐹(𝑥) = erf (

𝑥2

𝛼√2
) 

Rayleigh distribution 

(RD) 
𝑘 = −

1

2
 𝑓(𝑥) =

𝑥𝑒
−
𝑥2

2𝛼2

∝2
 𝐹(𝑥) = 1 − 𝑒

−
𝑥2

2𝛼2 

Maxwell distribution 

(MD) 
𝑘 = 0 𝑓(𝑥) = √

2

𝜋
𝛼−3𝑥2𝑒

−
𝑥2

2𝛼2 𝐹(𝑥) = 1 −
Γ(

3

2
,
𝑥2

2𝛼2
)

Γ (
3

2
)

 

Length biased Maxwell 

distribution (LBMD) 
𝑘 =

1

2
 𝑓(𝑥) =

𝑥3𝑒
−
𝑥2

2𝛼2

2 ∝4
 

𝐹(𝑥)

= 1 − (
𝑥2

2𝛼2
+ 1) 𝑒

−
𝑥2

2𝛼2 

Area biased Maxwell 

distribution (ABMD) 𝑘 = 1 ∝= √
1

𝛼
 𝑓(𝑥) =

𝑥4𝛼
5

2𝑒−
𝛼𝑥2

2

2
3

2Γ (
5

2
)

 𝐹(𝑥) = 1 −
Γ(

5

2
,
𝑥2

2𝛼2
)

Γ (
5

2
)

 

Length biased weighted 

Rayleigh distribution 

(LBWRD) 

𝑘 =
1

2
∝=

1

2𝛽
 𝑓(𝑥) =

2𝑥3𝛽2𝑒−
𝛽𝑥2

𝛼

∝2
 

𝐹(𝑥)

= 1 −
𝑒−

𝛽𝑥2

𝛼 (𝛽𝑥2 + 𝛼)

α
 

Table 1: Sub-models of 2Kth order Weighted Maxwell for different parameter values. 

 

3. STRUCTURAL AND STATISTICAL PROPERTIES OF KWMBD: 

3.1 Reliability function and hazard rate function of KWMBD 

The reliability function (𝑅𝑤2𝑘(𝑥, 𝛼, 𝑘)) and hazard rate function (ℎ𝑤2𝑘(𝑥, 𝛼, 𝑘)) of KWMBD are given 

respectively by: 

𝑅𝑤2𝑘(𝑥, 𝛼, 𝑘) = 1 − 𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘) =
Γ (k +

3

2
,
𝑥2

2𝛼2
)

Γ (𝑘 +
3

2
)

,                           𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.                           (3.1) 

ℎ𝑤2𝑘(𝑥, 𝛼, 𝑘) =
𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)

𝑅𝑤2𝑘(𝑥, 𝛼, 𝑘)
=
𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒

−
𝑥2

2𝛼2

2
(𝑘+

1

2
)
{Γ (k +

3

2
,
𝑥2

2𝛼2
)}
,                  𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.                            (3.2) 

In the particular case at = 0 , where the proposed distribution reduces to the Maxwell distribution, the reliability 

function and hazard rate function of KWMBD simplifies to the well-known form of the Maxwell distribution, and 

are given by  

𝑅(𝑥, 𝛼) =
Γ(
3

2
,
𝑥2

2𝛼2
)

Γ(
3

2
)

,                           𝑥 > 0, 𝛼 > 0.                              
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ℎ(𝑥, 𝛼) =
𝑥2𝛼−3𝑒

−
𝑥2

2𝛼2

√2 {Γ (
3

2
,
𝑥2

2𝛼2
)}
,                  𝑥 > 0, 𝛼 > 0.                             

 

Figure 2: The cumulative distribution function and reliability function of KWMBD for different choices of α 

and k. 

 

Figure 3: The hazard rate function curve of KWMBD for different value of parameters. 

The figure 3 describes the behaviour of hazard rate function of KWMBD for different choice of parameters and 

it depicts that the hazard rate function of KWMBD is increasing, decreasing, linearly increasing, constant and 

decreasing- increasing. 
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3.2 Reverse hazard rate function 

The reverse hazard rate function ((𝑟𝑓)𝑤2𝑘
(𝑥, ∝, 𝑘)) of KWMBD distribution is given by: 

(𝑟𝑓)𝑤2𝑘
(𝑥, ∝, 𝑘) =

𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)

𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)
=

𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒
−
𝑥2

2𝛼2

2
(𝑘+

1

2
)
{Γ (𝑘 +

3

2
) − Γ (k +

3

2
,
𝑥2

2𝛼2
)}
,           𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.      (3.3) 

At  𝑘 = 0, the reverse hazard rate reduces to the form of Maxwell distribution reverse hazard rate function, which 

is given by  

 𝑟𝑓(𝑥, ∝) =
𝑥2𝛼−3𝑒

−
𝑥2

2𝛼2

√2{Γ(
3

2
)−Γ(

3

2
,
𝑥2

2𝛼2
)}
,                     𝑥 > 0, 𝛼 > 0. 

3.3 Moments of KWMBD 

In this we compute the 𝑟𝑡ℎ moment, mean, variance, coefficient of variation (CV), coefficient of skewness (CS) 

and coefficient of kurtosis (CK) of KWMBD. 

If a random variable 𝑋 follows KWMBD, then the 𝑟𝑡ℎ moment about origin is given by 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

0

𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

0

𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒
−
𝑥2

2𝛼2

2
(𝑘+

1

2
)
Γ (𝑘 +

3

2
)

𝑑𝑥 

After simplifying the integral, we get 

𝐸(𝑋𝑟) = (√2)
𝑟
∝𝑟

Γ (
2𝑘+𝑟+3

2
)

Γ (𝑘 +
3

2
)
                                                                                                                                     (3.4) 

Substituting  𝑟 = 1 , we obtain the mean of KWMBD and is given by 

𝐸(𝑋) = √2𝛼
Γ (

2𝑘+4

2
)

Γ (𝑘 +
3

2
)
.                                                                                                                                                   (3.5) 

Similarly, by substituting  𝑟 = 2,3,4…, we obtain the expressions of higher order moments about origin 

(𝐸(𝑋2), 𝐸(𝑋3), 𝐸(𝑋4)… ) of KWMBD and then variance, CV,CS and CK are calculated by basic definition in 

terms of moments about origin.  

Variance of random variable 𝑋 following KWMBD is calculated by 

𝑣𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
 

On substituting the mean and  𝐸(𝑋2), we get variance of KWMBD and is given by 

𝑣𝑎𝑟(𝑋) =
2 ∝2

(Γ (𝑘 +
3

2
))

2 ⌊Γ (
2𝑘 + 5

2
) Γ (𝑘 +

3

2
) − (Γ (

2𝑘 + 4

2
))

2

⌋                                                                   (3.6) 

CV of random variable 𝑋 following KWMBD is calculated by 
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𝐶𝑉 =
√𝐸(𝑋2) − (𝐸(𝑋))

2

𝐸(𝑋)
 

On substituting the variance and 𝐸(𝑋), we get CV of KWMBD and is given by 

𝐶𝑉 =

⌊Γ (
2𝑘+5

2
) Γ (𝑘 +

3

2
) − (Γ (

2𝑘+4

2
))

2

⌋

1

2

Γ (
2𝑘+4

2
)

                                                                                                            3.7) 

CS of random variable 𝑋 following KWMBD is calculated by 

𝐶𝑆 =
𝐸(𝑋3) − 3𝐸(𝑋)𝐸(𝑋2) + 2⌈𝐸(𝑋)⌉3

[𝑉(𝑋)]
3

2

 

On substituting the variance, 𝐸(𝑋3), 𝐸(𝑋2) and 𝐸(𝑋), we obtained CS of KWMBD and is given by 

𝐶𝑆 =

⌈Γ (
2𝑘+6

2
) (Γ (𝑘 +

3

2
))

2

− 3Γ (
2𝑘+4

2
) Γ (

2𝑘+5

2
) Γ (𝑘 +

3

2
) + 2 (Γ (

2𝑘+4

2
))

3

⌉

⌊Γ (
2𝑘+5

2
) Γ (𝑘 +

3

2
) − (Γ (

2𝑘+4

2
))

2

⌋

3

2

                                           (3.8) 

CK of random variable 𝑋 following KWMBD is calculated by 

𝐶𝐾 =
𝐸(𝑋4) − 4𝐸(𝑋)𝐸(𝑋3) + 6𝐸(𝑋2)⌈𝐸(𝑋)⌉2 − 3⌈𝐸(𝑋)⌉4

[𝑉(𝑋)]2
 

On substituting the variance, 𝐸(𝑋4), 𝐸(𝑋3), 𝐸(𝑋2)and 𝐸(𝑋), we obtained CK of KWMBD and is given by 

 

𝐶𝐾 =
⌈Γ(

2𝑘+7

2
)(Γ(𝑘+

3

2
))
3
−4Γ(

2𝑘+4

2
)Γ(

2𝑘+6

2
)(Γ(𝑘+

3

2
))
2
+6(Γ(

2𝑘+4

2
))

2

Γ(
2𝑘+5

2
)Γ(𝑘+

3

2
)−3(Γ(

2𝑘+4

2
))

4

⌉

⌊Γ(
2𝑘+5

2
)Γ(𝑘+

3

2
)−(Γ(

2𝑘+4

2
))

2

⌋

2                               (3.9) 

3.4 Mode of KWMBD 

The logarithm of the pdf (4) is: 

log 𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) = −(𝑘 +
1

2
) log(2) + 2(𝑘 + 1) log(𝑥) − (3 + 2𝑘) log(𝛼) −

𝑥2

2𝛼2
− log (Γ (𝑘 +

3

2
)) 

𝜕

𝜕𝑥
log 𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) =

2(𝑘 + 1)

𝑥
−
𝑥

𝛼2
,              

𝜕2

𝜕2𝑥
log 𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) =

−2(𝑘 + 1)

𝑥2
−
1

𝛼2
< 0 

The first derivative has positive root 𝑥 = 𝛼√2(𝑘 + 1) 

𝜶 𝒌 Mean Variance CV CS CK Mode 

1 -1 0.7979 0.3634 

0.7555 0.9952 2.9232 

0 

2 -1 1.5958 1.4535 0 

3 -1 2.3936 3.2704 0 

1 -0.5 1.2533 0.4292 

0.5227 0.6311 1.5033 

1 

2 -0.5 2.5066 1.7168 2 

3 -0.5 3.7599 3.8628 3 

1 1 2.1277 0.4729 0.3232 0.3542 1.9632 2 
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2 1 4.2554 1.8917 4 

3 1 6.3831 4.2563 6 

1 2 2.5532 0.4810 

0.2716 0.2906 4.9190 

2.4494 

2 2 5.1065 1.9241 4.8990 

3 2 7.6597 4.3291 7.3484 

Table 2: Descriptive statistics (Mean, Variance, CV, CS, CK, and Mode) of KWMBD for different choices of 

parameters. 

Table 2 presents the numerically evaluated values of the Mean, Variance, CV, CS, CK and Mode for selected 

values of parameters 𝛼 and 𝑘. The results indicate that as we increase the value of 𝛼 and weight parameter𝑘, the 

distribution becomes more concentrated, with less variability, as evidenced by decreased coefficient of variance 

and coefficient of skewness and accompanied by an increased mean, variance , and mode. 

3.5 Incomplete moments and Conditional moments 

The incomplete moments display the graphical structure of a distribution’s moments, which is helpful in various 

fields such as econometrics, finance and reliability. The 𝑛𝑡ℎ incomplete moments of KWMBD (𝐼𝑤2𝑘(𝑡, 𝑛)) is 

given by: 

𝐼𝑤2𝑘(𝑡, 𝑛) = ∫ 𝑥𝑛𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥                                                                                                                                
𝑡

0

 

𝐼𝑤2𝑘(𝑡, 𝑛) =
(√2𝛼)

𝑛
γ (

2𝑘+4

2
,
𝑡2

2𝛼2
)

Γ (𝑘 +
3

2
)

.                                                                                                                            (3.10) 

The 𝑛𝑡ℎconditional momentof KWMBD is given by: 

𝐸(𝑇𝑛|𝑇 > 𝑡) =
∫ 𝑥𝑛𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥
∞

𝑡

𝑅(𝑡)
 ,                                                                                                                                   

where, ∫ 𝑥𝑛𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥
∞

𝑡
=

(√2𝛼)
𝑛
Γ(
𝑛+2𝑘+1

2
,
𝑡2

2𝛼2
)

Γ(𝑘+
3

2
)

 ,                                                                                                              

𝐸(𝑇𝑛|𝑇 > 𝑡) =
(√2𝛼)

𝑛
Γ(
𝑛+2𝑘+1

2
,
𝑡2

2𝛼2
)

Γ(k+
3

2
,
𝑥2

2𝛼2
)

                                                                                     (3.11) 

3.6 Mean residual life and mean waiting time 

Mean residual life 𝜇𝑤2𝑘(𝑡) of KWMBD is given by: 

𝜇𝑤2𝑘(𝑡) =
1

𝑅𝑤2𝑘(𝑥, 𝛼, 𝑘)
⌊𝐸(𝑡) − ∫ 𝑥𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥

𝑡

0

⌋ − 𝑡                                                                                   

where,∫ 𝑥𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥
𝑡

0
=

√2𝛼γ(
2𝑘+4

2
,
𝑡2

2𝛼2
)

Γ(𝑘+
3

2
)

 

𝜇𝑤2𝑘(𝑡) =
√2𝛼

Γ (k +
3

2
,
𝑡2

2𝛼2
)
{Γ (

𝑘 + 2

2
) − γ(k + 2,

𝑡2

2𝛼2
)} − 𝑡                                                                          (3.12) 

The mean waiting time 𝜇𝑤2𝑘̂  of KWMBD is given by: 

𝜇𝑤2𝑘̂ = 𝑡 −
1

𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)
∫ 𝑥𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥
𝑡

0
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𝜇𝑤2𝑘̂

= 𝑡 −
√2𝛼γ (

2𝑘+4

2
,
𝑡2

2𝛼2
)

Γ (𝑘 +
3

2
) − Γ (k +

3

2
,
𝑡2

2𝛼2
)
                                                                                                                         (3.13) 

3.7 Entropy measures of KWMBD 

Entropy measures provide a quantification of uncertainty or randomness within the system. We have calculated 

the expressions for Renyi entropy, Arimoto’s entropy and Havrda and Charvat entropy.  

The Renyi entropy for KWMBD is defined by 

𝐻𝑅(𝛿) =
1

1 − 𝛿
𝑙𝑜𝑔 {∫ 𝑓𝛿

𝑤2𝑘
(𝑥, 𝛼, 𝑘)𝑑𝑥

∞

0

}                                   𝛿 > 0, 𝛿 ≠ 0           

Incorporating equation (4), integration 𝑓𝛿
𝑤2𝑘

(𝑥, 𝛼, 𝑘) gives 

∫ 𝑓𝛿
𝑤2𝑘

(𝑥, 𝛼, 𝑘)𝑑𝑥
∞

0

=
√2

(𝛿−1)
𝛼(1−𝛿)

Γ (𝑘 +
3

2
)
𝛿

𝛿
(𝛿(𝑘+1)+

1

2
)
Γ (
2𝛿(𝑘 + 1) + 1

2
) 

Hence, the Renyi entropy reduces to 

 

𝐻𝑅(𝛿) =
1

1−𝛿
𝑙𝑜𝑔 {

√2
(𝛿−1)

𝛼(1−𝛿)

Γ(𝑘+
3

2
)
𝛿
𝛿
(𝛿(𝑘+1)+

1
2)
Γ (

2𝛿(𝑘+1)+1

2
)}                                   𝛿 > 0, 𝛿 ≠ 0                    (3.14) 

The Arimoto entropy for KWMBD is defined by 

𝐻𝐴(𝛿) =
1

2(𝛿−1) − 1
{[∫ 𝑓𝛿

𝑤2𝑘
(𝑥, 𝛼, 𝑘)𝑑𝑥

∞

0

]

1

 𝛿

− 1}                                   𝛿 > 0, 𝛿 ≠ 0           

Incorporating integration 𝑓𝛿
𝑤2𝑘

(𝑥, 𝛼, 𝑘) , the Arimoto entropy is given by 

 

𝐻𝐴(𝛿) =
1

2(𝛿−1)−1

{
 

 
⌊
√2

(
1−𝛿
𝛿
)
𝛼
(
𝛿−1
𝛿
)
𝛿
(
2(𝑘+1)+𝛿

2𝛿
)

Γ(𝑘+
3

2
)

1
𝛿

Γ (
2(𝑘+1)+𝛿

2𝛿
)⌋

1

 𝛿

− 1

}
 

 
            𝛿 > 0, 𝛿 ≠ 0                              (3.15) 

The Havrda and Charvat entropy for KWMBD is defined by 

𝐻𝑅(𝛿) =
1

1 − 𝛿
{∫ 𝑓𝛿

𝑤2𝑘
(𝑥, 𝛼, 𝑘)𝑑𝑥

∞

0

− 1}                                   𝛿 > 0, 𝛿 ≠ 0           

Incorporating integration 𝑓𝛿
𝑤2𝑘

(𝑥, 𝛼, 𝑘) , the Havrda and Charvat entropy is given by 

𝐻𝐻(𝛿) =
1

1−𝛿
{⌊

√2
(𝛿−1)

𝛼(1−𝛿)

Γ(𝑘+
3

2
)
𝛿
𝛿
(𝛿(𝑘+1)+

1
2)
Γ (

2𝛿(𝑘+1)+1

2
)⌋ − 1}                             𝛿 > 0, 𝛿 ≠ 0                                (3.16) 
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𝜶 𝒌 𝜹 Renyi entropy Arimoto entropy 
Havrda and Charvat 

entropy 

1 -1 

1.5 0.6313 0.7737 0.5413 

2.0 0.5724 0.5832 0.4358 

2.5 0.5312 0.4433 0.3662 

3.0 0.5004 0.3378 0.3162 

2 -1 

1.5 1.3244 1.6023 0.9686 

2.0 1.2655 1.2390 0.7179 

2.5 1.2244 0.9540 0.5604 

3.0 1.1936 0.7320 0.4541 

1 1 

1.5 0.9438 1.1050 0.7524 

2.0 0.8882 0.8282 0.5886 

2.5 0.8491 0.6239 0.4801 

3.0 0.8197 0.4709 0.4029 

2 1 

1.5 1.6369 2.0197 1.1178 

2.0 1.5814 1.5854 0.7943 

2.5 1.5422 1.2278 0.6007 

3.0 1.5128 0.9433 0.4757 

Table 3: Numerical analysis for entropy measures (Renyi entropy, Arimoto’s entropy and Havrda and Charvat 

entropy). 

The table 3 presented numerical analysis of  Renyi entropy, Arimoto’s entropy and Havrda and Charvat entropy 

for different value 𝛼 , 𝑘 and level of generalization 𝛿. The results demonstrate that as we increase the parameters 

𝛼 and 𝑘 value the entropy/uncertainty  increases, means introducing more randomness and allows it for wide range 

of events. Also it is evident that for a fixed combination of parameters 𝛼 and 𝑘 as we increase level of 

generalization 𝛿 the entropy decreases, makes it more predictable and deterministic. 

3.8 Odds ratio and Mills ratio 

The odds ratio (𝑂𝑤2𝑘(𝑥, ∝, 𝑘)) and Mills ratio (𝑚𝑤2𝑘(𝑥, ∝, 𝑘)) for KWMBD distribution are given respectively 

by 

𝑂𝑤2𝑘(𝑥, ∝, 𝑘) =
𝐹𝑤2𝑘(𝑥, ∝, 𝑘)

𝑓𝑤2𝑘(𝑥, ∝, 𝑘)
=
2
(𝑘+

1

2
)
{Γ (𝑘 +

3

2
) − Γ (k +

3

2
,
𝑥2

2𝛼2
)}

𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒
−
𝑥2

2𝛼2

,      𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.            (3.17)  

𝑚𝑤2𝑘(𝑥, 𝛼, 𝑘) =
𝑅𝑤2𝑘(𝑥, ∝, 𝑘)

𝑓𝑤2𝑘(𝑥, ∝, 𝑘)
=
2
(𝑘+

1

2
)
{Γ (k +

3

2
,
𝑥2

2𝛼2
)}

𝑥2(𝑘+1)𝛼−(3+2𝑘)𝑒
−
𝑥2

2𝛼2

,                    𝑥 > 0, 𝛼 > 0, 𝑘 > −1.5.                     (3.18) 

In the particular case at  𝑘 = 0 , where the proposed KWMBD  reduces to the Maxwell distribution, the odds and 

mills ratio simplifies to the well-known form of the Maxwell distribution, and are given by  

𝑂(𝑥, 𝛼) =
√2 {Γ (

3

2
) − Γ (

3

2
,
𝑥2

2𝛼2
)}

𝑥2𝛼−3𝑒
−
𝑥2

2𝛼2

,                           𝑥 > 0, 𝛼 > 0.                              
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𝑚(𝑥, 𝛼) =
√2 {Γ (

3

2
,
𝑥2

2𝛼2
)}

𝑥2𝛼−3𝑒
−
𝑥2

2𝛼2

,                                        𝑥 > 0, 𝛼 > 0.    

3.9 Lorenz inequality and Bonferoni inequality 

Bonferroni and Lorenz curves were first presented by Bonferroni (1961) to measure the inequality of the 

distribution. The Bonferroni and Lorenz curve for a random variable X following KWMBD are respectively given 

by: 

𝐿(𝑡) =
∫ 𝑥𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)𝑑𝑥
𝑡

0

𝐸(𝑥)
=
γ (

2𝑘+4

2
,
𝑡2

2𝛼2
)

Γ (
2𝑘+4

2
)

                                                                                                             (3.19) 

𝐵(𝑡) =
𝐿(𝑡)

𝐹(𝑡)
=

Γ (𝑘 +
3

2
) γ (

2𝑘+4

2
,
𝑡2

2𝛼2
)

Γ (
2𝑘+4

2
) ⌊Γ (𝑘 +

3

2
) − Γ (k +

3

2
,
𝑡2

2𝛼2
)⌋
                                                                                            (3.20) 

3.10 Order statistics 

Let us assume that the random sample 𝑋1, 𝑋2, 𝑋3… ,𝑋𝑛  come from the KWMBD, with pdf 𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘) and cdf 

𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘). Let 𝑋(1) ≤ 𝑋(2) ≤,… ,≤ 𝑋(𝑟) ≤,… ,≤ 𝑋(𝑛)denote the corresponding order statistics, then the pdf 

and cdf of the 𝑟𝑡ℎ(𝑟 = 1,2,3, … , 𝑛) order statistic are respectively, given by: 

𝑓𝑟(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
[𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)]

𝑟−1
𝑓𝑤2𝑘(𝑥, 𝛼, 𝑘)[1 − 𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)]

𝑛−𝑟
 

and, 𝐹𝑟(𝑥) = ∑ (
𝑛
𝑗) 𝑓𝑤2𝑘

𝑗(𝑥, 𝛼, 𝑘)[1 − 𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘)]
𝑛−𝑗𝑛

𝑗=𝑟 . 

𝑓𝑟(𝑥) =
𝑛! 𝛼−(3+2𝑘)𝑥2(𝑘+1)𝑒−

𝑥2

2𝛼2

(𝑟 − 1)! (𝑛 − 𝑟)! 2
(𝑘+

1

2
)
(Γ (𝑘 +

3

2
))

𝑛 ⌈Γ (𝑘 +
3

2
) − Γ(k +

3

2
,
𝑥2

2𝛼2
)⌉

(𝑟−1)

⌈Γ (k +
3

2
,
𝑥2

2𝛼2
)⌉

(𝑛−𝑟)

                    (3.21) 

and, 

𝐹𝑟(𝑥) =
1

(Γ (𝑘 +
3

2
))

𝑛∑(
𝑛
𝑗) (Γ (𝑘 +

3

2
) − Γ(k +

3

2
,
𝑥2

2𝛼2
))

𝑗

[Γ (k +
3

2
,
𝑥2

2𝛼2
)]

𝑛−𝑗

                                    (3.21)

𝑛

𝑗=𝑟

 

 

4. PARAMETRIC ESTIMATION OF KWMBD USING MAXIMUM LIKELIHOOD ESTIMATION 

TECHNIQUE 

Let 𝑋1, 𝑋2, 𝑋3… ,𝑋𝑛 be an observed sample taken from the KWMBD(𝑘, 𝛼) with unknown parameters 𝛼and 𝑘, 

then the log-likelihood function can be written as 

log 𝐿(𝑥, 𝛼, 𝑘) = −𝑛 (𝑘 +
1

2
) 𝑙𝑜𝑔2 + 2(𝑘 + 1)∑log(𝑥𝑖) −∑

𝑥𝑖
2

2𝛼2
− 𝑛(2𝑘 + 3) log(𝛼) − 𝑛𝑙𝑜𝑔

𝑛

𝑖=1

𝑛

𝑖=1

Γ (𝑘 +
3

2
) 

The values of  𝛼̂  and 𝑘̂  that maximize the log-likelihood function are called the maximum likelihood estimates 

of the parameters 𝛼 and 𝑘.  

 The equations obtained on equating the first-order partial derivatives of log 𝐿(𝑥, 𝛼, 𝑘) with respect to 𝛼  and 𝑘 to 

zero, are given as 

∑
𝑥2

𝛼3

𝑛

𝑖=1

−
𝑛(2𝑘 + 3)

𝛼
= 0                                                                                                                                                  (4.1) 



61 
 

−𝑛𝑙𝑜𝑔2 + 2∑log(𝑥𝑖) − 2𝑛𝑙𝑜𝑔(𝛼) − 𝑛Ψ(𝑘 +
3

2
) = 0

𝑛

𝑖=1

                                                                                        (4.2) 

Where, Ψ (𝑘 +
3

2
) =

𝜕

𝜕𝑥
log Γ (𝑘 +

3

2
) =

Γ́(𝑘+
3

2
)

Γ(𝑘+
3

2
)
 

The equations (28) and (29) must be solved simultaneously to obtain MLEs of KWMBD parameters. Since a 

closed form solution is not known, an iterative technique is required to compute the estimators 𝛼̂  and 𝑘̂ . The 

system of equations is solved by Newton-Raphson iteration method. 

 

5. SIMULATION STUDY AND COMPUTATIONS OF KWMBD 

In this subsection, we executed a simulation study to evaluate the accuracy of our estimated parameters of the 

KWMBD. Random datasets were generated from KWMBD using the inverse cdf method. In this method, a sample 

of size 𝑛 from a particular distribution is obtained by solving the equation 𝐹(𝑥; 𝛩) = 𝑝 ∼ 𝑈(0,1) for 𝑥, at 

preassigned values of 𝛩 and at 𝑛 independent values of 𝑝. Following the same procedure, the equation for 

generating random numbers from KWMBD is 

𝐹𝑤2𝑘(𝑥, 𝛼, 𝑘) = 1 −
Γ(k +

3

2
,
𝑥2

2𝛼2
)

Γ (𝑘 +
3

2
)

= 𝑝 

Solving this equation for 𝑥 at 𝑛 independent values of 𝑝 ∼ 𝑈(0,1) and at fixed values of 𝛼 and 𝑘, yields the 

required sample of size 𝑛 from the KWMBD. Since solving this equation manually is tedious, the uniroot function 

from the R package stats is employed to numerically find the root. By applying the uniroot function to the equation 

above for each value of 𝑝, we can generate the desired sample from the KWMBD. Herein, we generated multiple 

random dataset from KWMBD, each with sizes of 25, 50, 100 and 200. These datasets were replicated 100 times, 

considering various combinations of parameter values for 𝛼 =  (1, 2) and 𝑘 =  (0.5, 1, 1.5, 2). For each case, we 

computed the average estimates along with their corresponding mean square errors (MSEs) and bias.  The results 

are present in Table 4.  

Also, a simulated dataset comprising 51 different observations from KWMBD characterized by parameter values 

α=1 and k=2 is generated by solving the equation (5) using R software. This simulated data set is used for 

modelling comparison and represents quartiles of KWMBD. The R-code for resulted simulated dataset is as 

follows 

> Data<-function(n,r,alpha,k)  

+ {set.seed(1) 

+ U=runif(n,0,1)  

+ library(zipfR)  

+ cdf<-function(x,alpha,k)  

+ {fn<-1-Igamma(k+3/2,(x^2)/(2*alpha^2), lower=FALSE)/gamma(k+3/2)}  

+ data=c() #Create an empty vector  

+ for(i in 1:length(U)){  

+ fn<-function(x){cdf(x,alpha,k)-U[i]} 

 + uni<-uniroot(fn,c(0,100000))  

+ data=c(data,uni$root)}  

+ return(data)}  

>Simulateddata<-Data(51,1,1,2) 

>Simulateddata 

>cat(round(Simulateddata,4))  

2.0941 2.2942 2.6489 3.5039 1.9589 3.4595 3.7115 2.8152 2.7536 1.5318 1.9686 1.900 2.8683 2.3156 3.0537 

2.515 2.9332 4.3624 2.3083 3.0725 3.6459 1.9823 2.7972 1.7641 2.0975 2.3191 1.1685 2.3125 3.346 2.2366 

2.4877 2.6979 2.5078 1.9231 3.2081 2.8305 3.1157 1.7096 2.9465 2.3637 3.1893 2.7882 3.0864 2.6131 2.5715 

3.1029 1.2844 2.4792 2.9657 2.8802 2.4799 
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n 

 

Parameters MLE MSE BIAS 

𝜶 K 𝜶̂ 𝒌̂ 𝜶̂ 𝒌̂ 𝜶̂ 𝒌̂ 

25 

1 0.5 

1.009443 1.114015 0.000581 0.411303 0.009443 0.614015 

50 1.006308 1.083338 0.000260 0.359678 0.006308 0.583338 

100 1.003223 1.060062 0.000045 0.322014 0.003223 0.560062 

200 1.001965 1.043841 0.000019 0.298972 0.001965 0.543841 

25 

1 1 

1.035333 1.444696 0.004062 0.353786 0.035333 0.444696 

50 1.031529 1.402255 0.003174 0.275075 0.031529 0.402255 

100 1.027932 1.388184 0.002170 0.225602 0.027932 0.388184 

200 1.027186 1.356266 0.001941 0.175490 0.027186 0.356266 

25 

1 1.5 

1.042998 1.835612 0.007009 0.455788 0.042998 0.335612 

50 1.042728 1.825221 0.006382 0.371971 0.042728 0.325221 

100 1.036248 1.807491 0.003979 0.237899 0.036248 0.307491 

200 1.033539 1.790357 0.003361 0.199572 0.033539 0.290357 

25 

1 2 

1.046555 2.338572 0.010094 0.719172 0.046555 0.338572 

50 1.043798 2.329445 0.008459 0.591237 0.043798 0.329445 

100 1.042290 2.295191 0.006747 0.425754 0.042290 0.295191 

200 1.041246 2.267568 0.006300 0.283974 0.041246 0.267568 

25 

2 0.5 

2.117254 0.860687 0.019129 0.243612 0.117254 0.360687 

50 2.110143 0.846802 0.015213 0.166326 0.110143 0.346802 

100 2.103364 0.832683 0.012019 0.133773 0.103364 0.332683 

200 2.097136 0.829511 0.010047 0.125636 0.097136 0.329511 

25 

2 1 

2.134382 1.276969 0.031200 0.287898 0.134382 0.276969 

50 2.122661 1.248040 0.022329 0.165287 0.122661 0.248040 

100 2.114878 1.238515 0.020267 0.112391 0.114878 0.238515 

200 2.108847 1.231972 0.014906 0.085827 0.108847 0.231972 

25 

2 1.5 

2.167331 1.694842 0.053833 0.393048 0.167331 0.194842 

50 2.14118 1.67663 0.034150 0.246105 0.14118 0.17663 

100 2.130761 1.651060 0.026514 0.133897 0.130761 0.151060 

200 2.129223 1.648105 0.025962 0.096800 0.129223 0.148105 

25 

2 2 

2.203508 2.145473 0.110299 0.838411 0.203508 0.145473 

50 2.189253 2.120873 0.081828 0.492189 0.189253 0.120873 

100 2.149048 2.111927 0.040105 0.255040 0.149048 0.111927 

200 2.134574 2.100532 0.026184 0.146768 0.134574 0.100532 

Table 4: Average values of MLEs and the corresponding MSEs and Bias values. 

The results presented in Table 4 reveals that as we increase the size of the dataset, the precision of our parameter 

estimates improves. Additionally, we observed a decrease in both MSE and bias with an increase in sample size. 

This suggests that the estimators are consistent and maximum likelihood (ML) estimation performs effectively. 

6. APPLICATIONS OF 2KTH ORDER WEIGHTED MAXWELL-BOLTZMANN DISTRIBUTION 

This section illustrates the practical applicability of the KWMBD through analysing three real-life datasets and 

one simulated data. The objective is to access the versatility and compatibility of the proposed model in 

comparison to its sub-models. For that propose, we are using the maximum likelihood estimation technique for 

parameter estimation and various model selection tools. Generally, a superior distribution is indicated by smaller 

values of these model selection tools. 

The data set I represent the tensile strength measures in GPA of 69 carbon fibres tested under tension at gauge 

lengths of 20mm, reported first by Bader and Priest (1982). While as, data set II is related to the logarithm of light 

intensity of 47 stars in the star cluster CYG OB1, reported first by Rousseeuw and Leroy (1987) and Data set III 
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represents the resistance of 48 semiconductor devices, reported first by R. C., Milliken, Stroup and Wolfinger 

(1996). 

Tensile Strength Data 

Model 
Estimates Model selection tools 

𝜶̂ 𝒌̂ 𝜷̂ -2logl AIC BIC AICC HQIC 

KWMBD 0.709 4.723 - 98.463 102.463 106.931 102.645 104.236 

ABMD 0.800 - - 121.735 123.735 125.969 123.795 124.622 

LBMD 1.250 - - 132.569 134.569 136.803 134.628 135.455 

LBWMD 1.541 - 0.493 132.569 136.569 141.037 136.750 138.341 

MD 1.443 - - 148.586 150.586 152.820 150.646 151.472 

RD 1.768 - - 174.493 176.493 178.727 176.553 177.379 

HND 2.500 - - 226.614 228.614 230.849 228.674 229.501 

Light Intensity Data 

Model 
Estimates Model selection tools 

𝜶̂ 𝒌̂ 𝜷̂ -2logl AIC BIC AICC HQIC 

KWMBD 0.802 18.277 - 79.650 83.650 87.351 83.923 85.043 

ABMD 0.197 - - 138.177 140.177 142.027 140.266 140.874 

LBMD 2.522 - - 148.236 150.236 152.086 150.325 150.932 

LBWMD 1.589 - 0.125 148.236 152.236 155.936 152.508 153.628 

MD 2.912 - - 161.825 163.825 165.675 163.914 164.521 

RD 3.567 - - 182.151 184.151 186.001 184.240 184.847 

HND 5.044 - - 220.333 222.333 224.183 222.422 223.029 

Semiconductor Resistance Data 

Model 
Estimates Model selection tools 

𝜶̂ 𝒌̂ 𝜷̂ -2logl AIC BIC AICC HQIC 

KWMBD 0.713 34.146 - 70.290 74.290 78.033 74.557 75.704 

ABMD 0.138 - - 155.970 157.970 159.841 158.057 158.677 

LBMD 4.259 - - 166.790 168.790 170.661 168.877 169.497 

LBWMD 1.591 - 0.088 166.790 170.790 174.532 171.056 172.204 

MD 3.478 - - 181.216 183.216 185.087 183.303 183.923 

RD 1.184 - - 202.521 204.521 206.393 204.608 205.229 

HND 6.024 - - 242.063 244.063 245.934 244.150 244.770 

Simulated Data 

Model 
Estimates Model selection tools 

𝜶̂ 𝒌̂ 𝜷̂ -2logl AIC BIC AICC HQIC 

KWMBD 0.906  2.882 - 97.096 101.096 104.959 101.346 102.572 

ABMD 0.696 - - 104.432 106.432 108.364 106.514 107.170 

LBMD 1.341 - - 110.607 112.607 114.539 112.689 113.346 

LBWMD 1.529  - 0.425 110.607 114.607 118.471 114.857 116.084 

MD 1.548 - - 120.614 122.614 124.546 122.696 123.353 

RD 1.896 - - 137.931 139.931 141.863 140.013 140.669 

HND 2.681 - - 174.624 176.624 178.555 176.705 177.362 

         

Table 5: MLEs and Model selection tools (-2logl, AIC, BIC, AICC, HQIC) for all the dataset. 
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Figure 3: The histogram and fitted density functions for dataset I and II. 

 
 

Figure 4: The histogram and fitted density functions for dataset III and simulated dataset. 

 

 

The results in Table 5 clearly demonstrate that the proposed model consistently yields the smallest values across 

the model selection tools. Therefore, we conclude that the KWMBD distribution provides a better fit than the 

other compared models. Also the results are validated by figure 3 and 4. 
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7. CONCLUSION 

To enhance the modelling of complex real world data, researchers are focusing on developing more adaptable 

models. Consequently, there have been significant efforts to generalize the classical Maxwell distribution. In this 

manuscript, a two-parametric 2Kth Order Weighted Maxwell-Boltzmann Distribution (KWMBD) is formulated 

using a Generalized Even Power Weighted Probability Technique. We investigate some statistical properties and 

estimate the KWMBD parameters using maximum likelihood estimation method. Numerical analysis of structural 

properties reveals that as the parameter (𝛼 and 𝑘) values increases, the distribution becomes more concentrated 

with reduced variability. Additionally, the entropy measures analysis shows that increasing parameter  (𝛼 and 𝑘) 
values lead to higher entropy, indicating a shift toward greater randomness and allowing the distribution to model 

a broader range of events. The simulation study reveals that as the sample size increases, the maximum likelihood 

estimators (MLEs) tend to converge to the true parameter values. Moreover, a decrease in bias and mean squared 

error (MSE) of MLEs is observed with larger sample sizes. For practical validation, we apply the proposed 

distribution to three real world datasets related to mechanical physics, along with a simulated dataset. It is observed 

from results that the proposed distribution offers better fits than its sub-models when applied to these datasets. 

Further research can focus on both theory and applications. On the theoretical side, the model may be extended 

through new parameterizations, Bayesian methods and asymptotic studies. Practically, it can be applied in fields 

like reliability, biomedical sciences, finance and environmental studies to assess its usefulness with real data. 
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