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ABSTRACT

Missing data in decision theory significantly impacts real-world problems, distorting results and potentially leading to biased or
incorrect decisions. Imputation and deletion of significant survey responses may impair the reliability and validity of the results. In
order to address non-ignorable missing data, this article suggests new, improved exponential type estimators for estimating the
study variable's mean using an auxiliary variable that shows non-response during two phases. The study examines the strength of
estimators using mathematical expressions for bias and MSE under stratified two-phase sampling. The theoretical constraints have
been given to strengthen the performance of the proposed estimators. To mechanize the efficiency of the proposed estimators, a
numerical analysis on the simulated data-sets (symmetric and asymmetric) and real data-sets has been carried out using statistical
packages of R-software.
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RESUMEN

La ausencia de datos en la teoria de decisiones impacta de manera significativa en problemas del mundo real, distorsionando los
resultados y pudiendo conducir a decisiones sesgadas o incorrectas. La imputacion y eliminacién de respuestas relevantes en encuestas
puede afectar la fiabilidad y validez de los resultados. Para abordar los datos faltantes no ignorables, este articulo propone nuevos
estimadores de tipo exponencial mejorados para calcular la media de la variable de estudio utilizando una variable auxiliar que presenta
no respuesta en dos fases. El estudio examina la solidez de los estimadores mediante expresiones matematicas de sesgo y error
cuadratico medio bajo muestreo estratificado en dos fases. Se han establecido restricciones tedricas para reforzar el desempefio de los
estimadores propuestos. Para operacionalizar la eficiencia de los estimadores, se realizé un analisis numérico sobre conjuntos de datos
simulados (simétricos y asimétricos) y reales, empleando paquetes estadisticos del software R.

PALABRAS CLAVE: Sesgo, Media, Error cuadratico medio, Submuestreo, Simulacion.

1. INTRODUCTION

1.1. Motivation and Literature Review

In recent days internet-based platforms such as- online surveys, web-based questionnaire, email surveys, web-
scraping, crowdsourcing etc. are being used extensively to gather information regarding variables under study,
due to widespread availability of internet and the advantages it offers in terms of cost effectiveness, time
effectiveness, real- time collection, and accessibility. Instead of having several advantages, internet-based surveys
may suffer from non-response. Non-response occurs due to attrition of the survey unit, or may be survey unit fails
to respond the survey invitation. Various fields such as — academics, health care, market research, public policy,
political polling, behavioural sciences, non-profit and social services etc. use online survey for data collection.
For instance, in health sector to analyse the preferences, perspectives, experiences, and many other important
facets of medical assets, online survey to the medical practitioners and interns may be beneficial. Loss of
information due to non-response or missing data can potentially affect the precision, power and generalizability
of the results as respondent units may differ from non-respondent units. This necessitates the study of the effect
of non-response in the estimation of mean of the population under study and its remedies. And so, the primary
focus of this article is to examine the impact of total non-response of units selected in the sample to estimate the
population mean of study variable. To address non-response, Hansen and Hurwitz [8] developed an unbiased
estimator for the population mean by using additional effort to collect data on a sub-sample of non-responding
units.

Let us consider S, is a sample of size m drawn from the population Uy (of N units with survey variables Y, X,
Z) using simple random sampling without replacement (SiRS,,,,-). Hansen and Hurwitz [8] considered that the

population is made of two mutually exclusive groups, respondent (of size N(,,) and non-respondent (of size N,))
such that N1y + N,y = N. Further from m sampled units, m;y and m ) denote the size of the respondent units

and non-respondent units respectively i.e. my + m, = m. Again, r (r = % sk > 1) is the size of SiRS (01
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sub-sample drawn from the m,, non-respondents for personal interview in order to obtain information on the
goal of interest. Hence, based on m 4y + r units, Hansen and Hurwitz [8] defined an unbiased estimator (y;;,;) for
population mean of the study variable as:

Vin = (m(1)/m)3_’m(1) + (m(z)/m)}_’r (1.1)
where, Vi and y, are sample means based on responding units (m;,) and sub-sampled units () and variance
of y5;5 is given by,

var(fz}fm) = /153 + QWZS,E(Z) (1.2)
where, 1 =———, 0 = — W2 (2) , SZ and 53(2) are population variance of the study variable based on

respondent and non respondent group Subsequently, a large number of researchers [1], [3], [4], [5], [6], [7]., [11],
[12], [15], [26], [17], [18], [19], [20], [22], [23], [24], and [25] have carried out commendable work to address the
non-response issue by introducing better estimators of the population parameters. But, when the population mean
of auxiliary variable is unknown ahead of time, the majority of authors prefer to use two phase sampling to
estimate it, taking into account that the auxiliary variable is free from non-response during the first phase and
suffers from non-response during the second phase. Chaudhary and Kumar [4] took into account the non-response
during both phases and suggested conventional ratio, product, and regression estimators to estimate the mean of
study variable (Y) when population mean of an auxiliary variable (X) is unknown, as

Tg = ?:: Xiin (1.3)
Tp = z:: X (1.4)
Treg = Yan + b"(Xiy — Xyn); (1.5)

where X}y, Xy are the Hansen Hurwitz estimators based on first and second phase samples respectively.

1.2. Notations and Methodology

On the basis of observance, heterogeneity is classified in to two categories: Observed heterogeneity (presence of
some factors that can be measure directly such as : age, gender, education, income, size of the firm, market share,
supply and demand, blood pressure, cholesterol level and body mass index (BMI), etc.) and Unobserved
heterogeneity (presence of the factors that cannot be included in the analysis directly such as: unobservable genetic
factors, variations in immune response, metabolic process, mental process and cognitive factors, etc.). The
presence of heterogeneity in the study population, as it can affect the variability of the data and so the
representativeness of the selected sample, is necessary to take in to account. The purpose of the article that is
being presented is to address the problem of non-response in a heterogeneous population that has been observed.
Specifically, we have taken into consideration study and auxiliary variables: Y and X, both of which have unit
non-response while another variable, Z, does not (see Rao [13]). Now we define two different situations for
variables X and Z as

Situation-1 When auxiliary mean X is unknown but Z is known.

Situation-11 When auxiliary mean X and Z both are unknown.
To elucidate the methodology, let us consider population Uy can be divided into L, (h = 1,2,3, ..., L) exhaustive
and mutually heterogeneous strata, where h*" stratum consist of N, units such that Y% _, N,, = N. Following

Hansen and Hurwitz [8] it is assumed that ht" stratum is consist of two mutually exclusive groups, respondents
(R) and non-respondents (NR) with Ny qy and N,y units respectively. For defined situations, here we have used

two phase sampling scheme to obtain the unknown auxiliary mean. Let S, and S, are first phase and second
phase simple random samples (SiRS ) Of size nj, and n,, respectively drawn from ht" stratum. Additionally,

(Y;, X; and Z;) indicates observations made on the i*" population unit of the ht"* stratum for the survey variables
(Y, X, Z) respectively. Detailed sampling methodology required for these situations can be understand from the
figure 1

Here, k' > 1,k > 1and n, < nj

39



l ";1(1)

—

| First Phase Sample

SR

i
NR*| Mp(2)

i

Sub-
Sample !

[
Nh(2)
Th

k!

SR

Np(1)

—

| Second Phase Sample »

Sub-
Sample

Np(2
NR™| Np(2) Th = %

Figure 1: Execution of Two-Phase Sampling Technique for h™" Stratum

To determine the variance and covariance of the variables under consideration, let us take into consideration the
large sample approximations as:

* * = —*I =I
_ Vst _ Xst _ Zst o Xst 1 _ Zst
60—?—1, 61—7—1, 62—7— ) 61—?—1, 62—7—1.

Such that, E(e;) = 0;Vi =0,1,2, E(e[) =0,Vi=1,2
wo = E(ed) = Thoy(AnTy, + 0Ty, 2)).01 = E(e2) = Xho1(AnTx, + OnTx,2))-@2 = E(€22) = Tho1(AnTz,),
wy = E(eéz) = 2%1:1()‘;1'52,1)» wy = E(eiz) = Zﬁ=1(/1’hth + g;lTXh(Z))D woz = E(epe;) = Zﬁ=1(ﬂh7yzh),
wiy = E(ere)) = Thoy (A Tx, + 0hTx,2)). o2 = E(epey) = Zﬁ=1(llnfyzh)a wi; = E(eje;) = Zﬁ=1(/1hfxzh),
Wy, = E(ez03) = Tji1(hTz,), Wiz = E(eje;) = E(ere;) = E(eje;) = Nio1(AhTxz,)-

wo, = E(egey) = Zﬁ=1(lh'fyxh + HhTYXh(Z))a wo = E(epeq) = Zﬁ=1(l;lfyxh + e;zTth(z))

Here, we define a few terms for the variable V, which acknowledges the responding units Y, X, and Z. The non-
responding units, which are only taken into account when looking at the variables Y and X, are denoted by the
subscript (2).

Ty, = PiS3,/V?  (for V=Y,X,Z), Tyn@) = PiWa)St,2)/V?
Tyyr, = PF Py SviSy) /VV' (forV V' =Y,X,Z),

(forV =Y,X),
Tyxp(2) = Pr% Wh) Pyyxn(@)Syn@)Sxn2) /YX,

!
_ 1 1 f_ 1 1 _ M) LT _ k-1, K1 _ Npy
An o Ny Ah_n;l Ny Th = > Th = > h—nh’eh_n;l’ Whz) = Ny
_ Nn _ _ =« _ VL = -« _ VL —x
Pp =" M, =0,—6y, Lp=2Ay— A Vit = Xh=1Pu - X5t = Xp=1 Pn %n,
Zx1 YL o > — 3L > 1 — YL = 1 — 1
x;£ - Zh:l Ph xhra Zst = Zh:lphzha Z;t - Zh:l thf’lﬂ Zi’l - n_;LZi:1 Zi,
o _ a1y @ Th(2) 5 = Na)Th1) P @) Th(2) = N1y Fh(1) () Fh(z) 7 = izfzh .
np > h np > Th ny, > np Si=170
—  _ 1 Nh(1) —x 1 3rh - _ 1 Mh(1) =« _ 1gTh
Yy = —nhmZi:l is Yy = EZi:l Vi» Xn1) = —nh(l)Zizl Xi, Xn2) = EZi:lxi
! !
—xr 1 ") v _ 1§Th 2 _ 1 Np 7 )2 _
Xn1) = ey st N Xpz) = Ezizl X, Sy, = N1 Yio(Vi =V (for V=Y,X,2),
S ’
2 1 Nn(2) 7 2 VhVh 1
-y _ = = orV+V'=YX7
SVh(z) Npz)—1 Z‘=1 Vi Vh(z)) (forV=Y.X), Py, SVhSV;L v ” -
S !
_ __Vavp@ _ __1 Np 7 77 —
pVthi(Z) - W (fOT' V£V = Y,X), SVth—{ = mzi:1(Vhi - Vh)(Vi:i - V,{) (fOT' V£V = Y, X, Z),
r@°V! (2)
N
Sy = —— SOV = V) Vi = V) (For V=V =¥, %), V=222 (forv =v,X,2)
VhV’i(Z) - Nh(2)_1 i=1 hi h(2) hi h(2) - ’ h — Np At .
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2. ADOPTED ESTIMATORS

Due to the heterogeneity of the population under investigation, stratified simple random sampling was employed.
Within this framework, we adopted several well-known existing estimators, including those proposed by
Chaudhary and Kumar [4], the conventional regression estimator (t,), and an exponential estimator (ts)
motivated by the work of Kumar and Bhougal [10] in the context of stratified sampling. These estimators were
considered to assess and validate the efficiency of the proposed improved exponential estimators, which are
discussed in the following section.

The adopted estimators and their corresponding mean square errors (MSE) or minimum mean square errors
(M.MSE) are summarized in Table 1.

Estimators (MSE) ! (M.MSE)
£ = Lt g L p2 < X,S2. +0, (S2, + R2S2, — 2R py, x,Sv,Sx, ) + )
v 1th ’
x OnWh()St(2) + Wa@ (R*Sky2) = 2R Prxn@ Sy Sxa@) T

St
Chaudhary and Kumar [4] where R = ¥/X

I . A4S+ (SF, + R2SE, + 2R py, x,5v,Sx, ) +
X ° M= 0, Whi) SZ gy + Wiz (R2S2 oy + 2R p Sy, Sx o))
Chaudhary and Kumar [4] W@ Sia + Whe (R4, rtn@ @S0
=k sxl ok ,
= Yo t+ b* (xst xSt) L 5 (Ah +A, (1 — p}%hxh)) S}gh + ehWh(Z)S}gh(Z) x
Where b* = S"y n=1Pi . , Where, g = —2.
+Wh2)(B*Sx,2) — 281, Sk
Chaudhary and Kumar [4]
ty = Yo + B (it — %o, [Sh=1 Pi (AnS?, + OnWh) St )]
where . p is estimate of [k PR{8n oy SyaS, HTAWice) thXh(Z)SYh(z)SXh(z)]]Z
regression coefficient. - —— > :
[Zh=1Ph{AhSXh"'nhWh(Z)SXh(z)}]
X ' 2
ts = Yseexp [ x_—iféit)]; (X1 PR (AhSXgh + ehWh(Z)SYh(Z))] ]
t t
where a s a;1 f)ptlmizing _ [Zhea P{An vy Sy Sxp +TnW i) pyhXh(Z)SYh(Z)SXh(Z)]]
constant. [Zh 1Ph{Athh+HhWn(z)th(z)}]

Table 1: Adopted Estimators and their (MSE) / (M. MSE)

3. PROPOSED ESTIMATORS: THEORETICAL PROPERTIES AND ADVANTAGES

Grasping motivation from Chaudhary and Kumar [4], this study introduces a set of novel improved exponential
estimators aimed at estimating the population mean of the study variable. These estimators are designed to
accommodate different conditions, particularly when the mean of the auxiliary variable is either known or
unknown, as outlined in sub-section 1.2. The formulation is carried out under a stratified two-phase sampling
framework and is presented as follows:

@ st—Xst Zst—Z : SN
Ty’ = yiexp [}q ’§£+f§:) + v, (z_ +Z)]’ (For Situation-I) (3.1
and 7",,(5) = yi.exp [;11 jf ’fﬁt) + 1, (Z;E“ ] (For Situation-1I) (3.2)

where 4, V2, Ui, Uy are optlmlzmg constants to be used in determining the M. MSE of the proposed estimators

T“(;l) and 7};2). We now state theorems to further clarify the traits of the proposed estimators based on
approximation to the first degree [Appr O(n™1)]. Reddy [14] and Srivastava and Jhajj [21] suggested from a
practical standpoint that the antecedent information from past data on the required parameters or their estimate
can be used to obtain the values of unknown parameters. It is also possible to use sample observations, which
won't have an impact on the performance of the estimator up to the first order of approximation.

The proposed estimators .’T,,(;) and .’]},(32) exhibit important theoretical properties, which are rigorously supported
by the following theorems.

Theorem 3.1- Bias and MSE of the proposed estimator 7},(;1) are given by

Blas(T,él) ) v [ {(‘"187“’11)} + )/22 % 7, 2(“’01—0)014)—(“’1—0’1) +7, (Zwoi—wz) + 717, (wn;wu)] (3.3)

1 ! I ’
MSE(j;I(s )) = Yz[wo +yi (w1 - w11)/4’ +v3 Wy /4 +v1v2 (Wi — w12)/2 + Y1(wor — wo1) + Yzwoz] (34
Proof: Under the above approximations given in sub-sectionl.2 the proposed estimator 7};1) takes the following
form as:
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=7 [1 teo+m {(e{—e1)+(eoe{—eoe1> _ (eiz—elz)} , ( e

2 4 2 4
Y g2 gy, erns) (35)
e S [eo 7 {(e{‘el)“ﬁ”e{_e"eﬂ - (eizfz)} (=)
ppldzed ypetyyy, (eae) (3.6)

On taking expectations on both side of the equation (3.6), and usmg the expected values we get the expression of
Bias as:

Bias(f]"lél)) Y[ {(w1 wn)} + )/2 w2 4 " 2(“’01—0)014)—(0)1—0)1) Vs (Zwoz wz) + V172 (ﬂ’n;wu)]. (3.7)

Now to study the characterization properties of proposed estimator, we get the expression for MSE of .’7}21) under
situation-I by squaring and taking expectation of equation (3.6) as,

MSE(:E}(;})) = 172[“’0 +vi (‘Ul - w,u)/‘l' + V5 W /4 + v1v2 (Wi — w13)/2 + y1(why — wor) + V2w02]~ (3-8

Theorem 3.2- Minimum mean square error (M. MSE) of the proposed estimator 7;1(31) at the optimum value of

yiand y, is
M. MSE(:];S) _ [Ay _ (BJZJxAz+szjx_;Byszszx)

X4z
2[woz(wiz—w12)—wa(wo1— w01)] 2[(w01—w01)(w12—w12)—w02(w1+w1—Zwll)]
(@] +w1-20y; )wz—(w],~ ‘1’12) (0itwi—20) oz (0]~ “’12) ’
Proof: On minimizing the equation (3.8) with respect to y;and y,, we get the optimum value of the optimizing
constants and then substituting them in the equation (3.8), the expression of M. MSE of proposed estimator is
obtained.

3.9)

at, yl(opt) - and )/Z(Opt) -

Corollary 3.2.1- M. MSE of the proposed estimator 7};1) under situation-I can also be obtained in terms of
M. MSE of the conventional regression estimator (t,) as

)] (ByzAx—Byxsz)z
M.MSE (T, =M.MSE(t,) ———F——F—=— 3.10
( IE ) ( 4) Ax(AxAz—B%;) ( )

2
here, M. MSE(t,) = A, — iﬂ.
X

Proof: Now, on further simplifying the expression of minimum MSE of 7;,(51) given in theorem 3.2 and analysing
theoretically we can have the corollary 3.2.1 easily.

Theorem 3.3- Bias and mean square error ( MSE) of the proposed estimator .7}1(52) are given by
_ _ _ ! I _ I _
BiaS(T”(EZ) ) -7 [#% (wlswn) + 12 (w2-w33) + {(%1 wo1) _ (w3 wl)} +

8 2 4
1Ly {(woz:ﬂoz) _ (0’2;0’2)} + s (0’12;(»12)] (3.11)
@)\ _ 2 2 ’ 2 — A
MSEC];E ) =Y [wo + pq (wl - wll)/4 + 1y (W — w32) /4 + Uity (W1 — wip)/2+
(o1 — Wo1) + pa(Woz — wo3)] (3.12)

Proof: Similarly, as proof of the previous theorem the proposed estimator 7};2) takes the following form as:
’ f ' 12
7;22) =V [1 +ep+ iy {(3{—31"'909{—9081) _ (elz_elz)} + Uy {(32—92"'3032—3032) _ (922_82 )} +

2 4 2 4

+ gty (e{ez—elezze{e2'+ele2') . (3.13)

12
12 (51’—51)2 + 2 (622;92 )

8 2

— _ r_ r_ 12_, 2 1 o 2_ 12 12
:7;}(52) V=7 [eo + {(91 e1+e;e1 ege1) (91 451 )} Ty {(ez e2+e;,ez eoes) (ez 492 )} " 'u% (e1 861) +

'ug (822;82’2) + ity (el’ez—elez;e{ez’+elez') . (3.14)
On taking expectations on both side of the equation (3.14), and using the expected values we get the expression

of Bias of.’]",éz) as:

BiaS(TH(;Z) ) =y [”% (w1—8w11) + 2 (wz—swzz) +uy {(wm;wm) _ (wiwl)} +

1 {(woz—mr’)z) _ (“’2_“’5)} + Uyt ((‘)524;“)12)] 3.1%5)

2 4
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Now to study the characterization properties of proposed estimator, we get the expression for MSE of .’7}22) under
situation-II by squaring and taking expectation of equation (3.14) as,

2 vV ! ! ’
MSE(j;(E )) = V2 [wo + 1F (w1 — w11)/4 + 1 (07 — w3) /4 + ity (01, — w12)/2 +
p1(wo1 — Wo1) + pa(woz — wo2)] (3.16)
Theorem 3.4- Under situation-II the expression for minimum mean square error (M. MSE) of the proposed
estimator 7};2) at the optimum value of p;and p, is
@) _ _ (szfxDz*'Cj%zAx_ZCyszszx)

M.MSE(T,) = |4, — . /

at, p — 2[(w02-wp2) (W12 =w12)~(W2=w)5) (W1 ~wo1)] and p — 2[(01=w01)(w1=w12)~(wo2=wo2) (W1=wy1)]
P il (@1=01)(02-0);)~(01,-012)” 2op0 (w1=01,)(02-0);)~(01,-w012)”

Proof: On minimizing the equation (3.16) with respect to y,and u,, we get the optimum value of the optimizing
constants. Substituting these values in the equation (3.16) and after simplifying, we get the expression of minimum
mean square error.

(3.17)

Corollary 3.4.1- The expression for M. MSE of the proposed estimator (7}(52)) under situation-II, can also be
obtained in terms of M. MSE of the conventional regression estimator (t,) as

@) _ (CyzAx—Byxsz)z .
M.MSE(T, = M.MSE(t,) ———F———
(%) (t) Ax(AxDz~BZ)

(3.18)

2
here, M. MSE (t,) = A, — 2%

Ay’
Proof: Now, on further simplifying the expression of minimum MSE of Tléz) given in theorem 3.4 and analysing
theoretically we can have the corollary 3.4.1 easily.
here,

Ay = Th_ i PE(AnSE, + 0hWi2)SE, ), Ax = Shoy Pa{ln SE, + M Wh)Sxn@} Az = Dhe1(PiAnSE,)
D, = Zlﬁ:i(Ah Pi%SZZh): By =— Z%l:l Pi% (Ah thXhSYhSXh + I, W) Pyhxh(z)SYh(z)th(z)),
By, = Zh:l(lhpi% PynzpSynSzy )a Cyz = Zﬁ=1(Ah P}% Pyz,Svy Sz, ), By, = — Zﬁ=1(Ah P}% thzhsxhszh)

Thus, based on the established theorems, the proposed estimators ﬂ;g) and 7;,(52) offer significant theoretical
advantages. They enhance efficiency through exponential adjustments involving auxiliary variables, resulting in
reduced bias and lower mean squared error (MSE) compared to traditional estimators. Their formulation
accommodates both known and unknown auxiliary means, ensuring flexibility in diverse practical scenarios. The
optimal values of the constants y;, y,, Ui, and u, are derived to minimize the MSE under first-order
approximation. The unknown parameters required in the estimators are estimated from the sample, thereby
maintaining robustness. Furthermore, the two-phase sampling design effectively integrates auxiliary information,
improving accuracy while reducing data collection burden.

4. THEORETICAL COMPARISON OF EFFICIENCY

The efficacy of the proposed estimators has been compared in terms of mean square errors against all previously
known competing estimators, with limitations arising from the use of various parameters and estimates. On putting
the expressions of minimum MSE of the proposed estimators and respective adopted estimators in the inequality
(i) to (xii) and on simplifying, we can easily get the following constraints and results for both the situations. The
obtained results are shown in Table 2.

Situation-1 Situation-11
i.  M.MSE(T,L) < var(7); if vii.  M.MSE(T,P) < var(72); if
(M_1)>0 (M_1)>0
2ByxByxzByz 2ByxBxzCyz
" @ . @ iy
ii. M.MSE(T;’) < MSE(ty); if viii.  M.MSE(T;;’) < MSE(t,); if
(RAx_Byx)z (RAx_Byx)z
2By By + Ax(RByy = Byz) < Ay 2. 2By By + Ax(RByz = Cyz) < Dy =2,
ix. M.MSE(T,") < MSE(t,); if ix. M.MSE(T,%) < MSE(t,); if
(RAx_Byx)z (RAx_Byx)z
2By By, = Ax(RByy + Byz) < Ay 22, 2ByxByy = Ax(RByy + Cyz) < Dy i 22,
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iv.  M.MSE(T,{") < MSE(ts); if x.  M.MSE(T?) < MSE(ty); if
(BAx+B. x)z_ (BAx+B x)z_
2Byxsz + Ax(ﬂsz - Byz) < AZ (ﬁT‘H)f‘:yz)’ 2Byxsz + Ax(ﬁsz - Cyz) < DZ my
= Srx — Srx
B = 2 B = 2"
v.  M.MSE(T,(") < M.MSE(t,); if xi.  M.MSE(T,%") < MSE(t,); if
(ByZAx - Byxli‘xz)2 > 0; which is always true. (CyZAx - Byxsz)Z > 0; whichis always true.
vi.  M.MSE(TY) < M. MSE(ty); if xii.  M.MSE(T,%?) < MSE(ts); if
(ByZAx - Byxli‘xz)2 > 0; which is always true. (CyZAx - Byxsz)Z > 0; which is always true.

Table 2: Theoretical Constraints of the Proposed Estimators over Adopted Estimators

5. NUMERICAL ANALYSIS OF PERFORMANCE OF PROPOSED ESTIMATORS

This section aims to conduct two types of analyses for efficiency comparison: a simulation analysis using
simulated data (symmetric and asymmetric) accounting for population type, and an empirical analysis using two
different real-world data sets.

5.1. Efficiency Analysis on Simulated Data
We have used following statistical tools available in R software- mvrnorm (), unonr (), sample (), sampling (),
moments ().
Algorithm for simulation study:
1. Input;
2. Generate Multivariate Categorical Data, D = (Yy, Xy, Zy) € ME,:

L : Number of strata;

k : Vector of sub-sampling factor;
R: Respondent Group;

NR: Non-respondent group;

Rep: Replication needed;

3. Initialize;

4. Sny = Sny, = 9;

5. Adopted Estimator (AE) Value=0 ;

6. Proposed Estimator (PE) Value =0 ;

7. for j=1,...,length (k) do

8. Stratify data D into L strata;

9. Split each stratum into R and NR

10. fori=1,...,Rep do

11. Draw first phase sample of size (n;l(l), Mh2y r,) with SiRS(,0ry from R and NR of each stratum.
12. Estimate the unknown auxiliary mean from first phase sample.

13. Draw second phase sample of size (nh(l), Np(2) rh) with SiRS o) from first phase sample.
14. Estimate Y by AE and PE.

15.  end for

16. end for

17. Output;
18. Get mean square error of the AE and PE by the model;

MSE(T) = é YR (T. _ ¥)2; where T = AE and PE;

i=1

For both situations I and IT under two types of (symmetrical and asymmetrical) data sets, the mean square error
and percentage relative efficiency (PRE) at different levels of k of the estimators are shown in Tables 3 to 4. The
PRE of the estimators are calculated with respect to ¥s; using PRE(*) = {var(y;;)/MSE(-)} X 100.

We have generated hypothetical data sets - symmetric and asymmetric with parameters (mentioned below with
respect to variable c(Y, X, Z) respectively), to perform the test the efficiency of the proposed estimators. The
parameters are:

Symmetric Data-Set Asymmetric Data Set
Mean vector=c(178, 37, 38), Mean vector=c(1, 2, 3),
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1.00 0.68 0.72 1.00 0.71 0.72
Variance-covariance matrix —[0.68 1.00 0.46 Variance-covariance matrix —[0.71 1.00 0.46]
0.72 0.46 1.00 0.72 0.46 1.00

1.00 0.69 0.69 1.00 0.69 0.70

p= [0.69 1.00 0.47] p= [0.69 1.00 0.45]

0.69 0.47 1.00 0.70 0.45 1.00

Symmetric Data set Asymmetric Data Set
k 2 3 4 2 3 4
Estimators
Vit 0.002012096  0.00229757 0.002852795 | 0.001870726  0.002019792 0.002957734
(100) (100) (100) (100) (100) (100)
ty 0.03490391 0.04563346  0.06382944 | 0.001170022 0.001350506 0.001948345
(5.764672) (5.034836) (4.469402) (159.8881) (149.5581) (151.8075)
t, 0.05727571 0.07157728  0.0974817 | 0.003421357 0.003995108 0.005874892
(3.513001) (3.209916) (2.926492) (54.6779) (50.55663) (50.34533)
t3 0.001313993  0.001591433 0.002006689 | 0.001138077 0.001439026 0.002028566
(153.1284) (144.3712) (142.1643) (164.3761) (140.3582) (145.8042)
ty 0.001315691 0.001586917 0.002004802 | 0.001135001 0.001393617 0.002023063
(152.9308) (144.782) (142.2981) (164.8216) (144.9316) (146.2008)
ts 0.001315691  0.001586926 0.002004784 | 0.001136855 0.001395599  0.00202404
(152.9307) (144.7812) (142.2993) (164.5527) (144.7258) (146.1302)
:r},? 0.0009052529 0.001122478 0.001570297 | 0.0007682207 0.000981715 0.00157702
(222.269) (204.6873) (181.6723) (243.5142) (205.7411) (187.5521)
Table 3: MSE and PRE (*) of the Estimators on Simulated Data-Sets under Situation-I
Symmetric Data-Set Asymmetric Data Set
k 2 3 4 2 3 4
Estimators
Vit 0.00204137 0.002632348 0.003241607 | 0.00195045  0.003018519 0.003040825
(100) (100) (100) (100) (100) (100)
ty 0.03630133  0.05623772  0.06354986 0.00124344  0.001868144 0.001984735
(5.623417) (4.680752) (5.100887) (156.8582) (161.5785) (153.2107)
t, 0.05859142  0.08783845  0.1021647 0.00377029  0.005675361 0.005588416
(3.484086) (2.996806) (3.172923) (51.73206) (53.18638) (54.413)
t3 0.00136931 0.001769844 0.002111472 | 0.00126389  0.001824714 0.002010917
(149.0803) (148.7333) (153.5235) (154.321) (165.4242) (151.2158)
ty 0.00136856  0.001778227 0.002139771 | 0.00124991  0.001863889 0.002027081
(149.1619)  (148.0322) (151.4931) (156.0469) (161.9473) (150.01)
ts 0.00136855 0.001778247 0.002139767 | 0.00125231  0.001867794 0.002025434
(149.1624) (148.0305) (151.4935) (155.7474) (161.6088) (150.132)
gﬁ) 0.00102721 0.001478301 0.001841667 | 0.0009721707 0.001532334 0.001740313
(198.73) (178.07) (176.02) (200.6286) (196.9883) (174.7287)

Table 4: MSE and PRE (*) of the Estimators on Simulated Data-Sets under Situation-II

5.2. Efficiency Analysis on Real Data
We have used Hypertension Arterial Mexico Data Set for the empirical study of numerical analysis available at

https://www.kaggle.com/datasets/frederickfelix/hipertensin-arterial-mxico.

The

data set

includes

raw

information (such as body mass index, height, gender, weight, different glucose results etc.) taken from the
national health and nutrition survey (ENSANUT) https://ensanut.insp.mx/encuestas/ensanutcontinua2022/

descargas.php.

In the present investigation, two distinct sets of variables are taken into consideration:
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Combination-1
Y:valor_colesterol_total
X:valor_colesterol_hdl
Z:valor_trigliceridos

Combination-2
Y: valor_hemoglobina_glucosilada
X: resultado_glucosa
Z: resultado_glucosa_promedio

Using gender as the primary stratification criterion, we classified 20% of the units as non-respondent groups based
on the specific circumstances surrounding their non-response. The required parameters are described below

Combination-1 Y =44.1389 X =36.03025 7 =137.2698
h Np Npe) ny, n, Np2) Ny (2) Y, Xn Z,
1 1687 337.4 1349 674 269 134 144.9887 35.5602 143.508
2 2676 5352 2140 1070 428 214 143603 36.3267 133.337
Yy  Xney  Zne Sy Sxn Sz, S Sx@ Sz
1 143.7046 35.077 141.4154 29.4789 9.2631 91.4104 19.7273 4.6657 70.9033
2 1429943 36.482 130.2079 27.403 7.2266 67.4521 21.3396 6.5817 61.3585
Py, x, Py,z, Px,z;, Pypxp2) Pypzp2) Pxpzn2)
1 0.4158 0.5552 0.05756 0.45435 0.46237 -0.1266
2 0.5598 0.5177 0.00895 0.56319 0.3486 -0.0594
Combination-2 Y =5.452074 X =96.89466 7 =110.3149
h Np Np2) ny ny Npy2) Np2) Y X Zy
1 1687 3374 1349 674 269 134 5.3898 95.65027 108.3106
2 2676 535.2 2140 1070 428 214 5.4913 97.6792 111.5785
Yy  Xnz  Zne Sy Sxp Sz, Svi@  Sxa@ Szu@
1 5.29331 929757 105550 0.840756 28.1073 24.0496 0.3881 12.4809 11.0681
2 54307 95.0320 109.358 1.0999 53.7513 36.9487 0.9155 27.1248 26.0122
Pypx, Py,z, Px,z, Pypxp2) Pypzp2) Pxpzy2
1 0.8577 0.9999 0.8582 0.6531 0.9997 0.6528
2 0.5776 0.8514 0.4867 0.8482 0.9927 0.8126

For both situations I and II under two types of combinations of variables, the mean square error and percentage
relative efficiency (PRE) at different levels of k of the estimators are shown in Tables 5 and 6.

Combination-1 Combination-2
k 2 3 4 2 3 4
Estimators
Vit 0.3341742 0.3944839 0.4547936 | 0.0004302727 0.0005114625 0.0005926524
(100) (100) (100) (100) (100) (100)

ty 0.4480475 0.4480475 0.5018696 0.0013886 0.001510897 0.005168526
(88.0451) (88.0451)  (90.61987) (30.98608) (33.85159) (11.46656)
t, 0.9809442  1.118271 1.270098 0.003417028 0.003793379 0.00842079
(34.06659) (35.27623) (35.80775) (12.59201) (13.48303) (7.037966)

t; 0.2682137 0.3222577 0.3693938 | 0.0003001237  0.0003602162  0.0005687025
(124.5925) (122.4126) (123.1189) (143.3651) (141.9877) (104.2113)

ty 0.2681772 0.3222515 0.3692491 0.000299904 0.0003593573  0.0004860617
(124.6095) (122.4149) (123.1671) (143.4701) (142.327) (121.9295)

ts 0.2681772 0.3222515 0.3692491 0.000299904 0.0003593573  0.0004860617
(124.6095) (122.4149) (123.1671) (143.4701) (142.327) (121.9295)

Tg) 0.1946878 0.2487106  0.2958468 | 0.0001426275 0.0002116649  0.0002835951
(171.6462) (158.6116)  (153.726) (301.6759) (241.6379) (208.9783)

Table 5: MSE and PRE (-) of the Estimators on Empirical Data-Sets under Situation-I
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Combination-1 Combination-2
k 2 3 4 2 3 4
Estimators
Vit 0.3341742 0.3944839  0.4547936 | 0.0004302727  0.0005114625 0.0005926524
(100) (100) (100) (100) (100) (100)

ty 0.3808453  0.4493367  0.5140582 0.001398142 0.00151616 0.001562741
(87.7454)  (87.79249) (88.47121) (30.77462) (33.73407) (37.9239)

t, 0.9770939  1.101085 1.274506 0.00345917 0.00375117 0.003949056
(34.20083) (35.82683)  (35.68392) (12.43861) (13.63475) (15.00745)

t; 0.269741  0.3247531  0.3725691 | 0.0002976758  0.0003649452  0.0004299789
(123.8871) (121.4719) (122.0696) (144.5441) (140.1478) (137.8329)

ty 0.2697316  0.3247528  0.3725558 | 0.0002974204  0.0003643492  0.0004281283
(123.8914) (121.472) (122.0739) (144.6682) (140.377) (138.4287)

ts 0.2697316  0.3247528  0.3725558 | 0.0002974204  0.0003643492  0.0004281283
123.8914 () (121.472) (122.0739) (144.6682) (140.377) (138.4287)

gﬁ) 0.09851726 0.1675565  0.2334231 | 0.0001856999  0.0002623509  0.0003370512
(339.2037) (235.4334) (194.8366) (231.7033) (194.9536) (175.8345)

Table 6: MSE and PRE (*) of the Estimators on Empirical Data-Sets under Situation-II

6. CONCLUSION AND INTERPRETATION

Using a two-phase sampling scheme, several authors, including Singh and Kumar ([16], [18]), Khare and Kumar
[9], Bhushan and Pandey [2], and many more, have produced promising research in parameter estimation under
missing data due to non-response when auxiliary mean is unknown. Whereas, the majority of authors have taken
into account that, although it appears implausible in real-world situations, the auxiliary variable does not suffer
non-response during the first phase but does at the second. This article concerns the problem of having non-
response at both the phases of survey sampling. In this regard, the main objective of this present paper is to produce
exponential estimators that are more effective in estimating the mean of the variable under study using an
enhanced methodology.

To justify the efficiency of the proposed estimators we have performed the test of efficiency using mean square
error (MSE) and percentage relative efficiency (PRE) under the defined situations (I and II) of non-response for
different values of sub-sampling factor (k). The MSE and PRE of the estimators are shown in table 3 to 6 for
hypothetical data sets (symmetrical and asymmetrical) as well as empirical data-sets (Combination 1 and
Combination 2). At last, after a thorough analysis of the data, we conclude that our suggested estimators
outperform all adopted existing and conventional estimators in terms of PRE. Strong evidence is presented by the
research findings for the preference of the proposed estimators in the context of non-response under observed
heterogeneous population to obtain effective population mean estimate in the real-time problem domain.
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