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ABSTRACT 

Missing data in decision theory significantly impacts real-world problems, distorting results and potentially leading to biased or 
incorrect decisions. Imputation and deletion of significant survey responses may impair the reliability and validity of the results. In 

order to address non-ignorable missing data, this article suggests new, improved exponential type estimators for estimating the 

study variable's mean using an auxiliary variable that shows non-response during two phases. The study examines the strength of 

estimators using mathematical expressions for bias and 𝑀𝑆𝐸 under stratified two-phase sampling. The theoretical constraints have 

been given to strengthen the performance of the proposed estimators. To mechanize the efficiency of the proposed estimators, a 

numerical analysis on the simulated data-sets (symmetric and asymmetric) and real data-sets has been carried out using statistical 

packages of R-software. 
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RESUMEN 
La ausencia de datos en la teoría de decisiones impacta de manera significativa en problemas del mundo real, distorsionando los 

resultados y pudiendo conducir a decisiones sesgadas o incorrectas. La imputación y eliminación de respuestas relevantes en encuestas 

puede afectar la fiabilidad y validez de los resultados. Para abordar los datos faltantes no ignorables, este artículo propone nuevos 
estimadores de tipo exponencial mejorados para calcular la media de la variable de estudio utilizando una variable auxiliar que presenta 

no respuesta en dos fases. El estudio examina la solidez de los estimadores mediante expresiones matemáticas de sesgo y error 

cuadrático medio bajo muestreo estratificado en dos fases. Se han establecido restricciones teóricas para reforzar el desempeño de los 
estimadores propuestos. Para operacionalizar la eficiencia de los estimadores, se realizó un análisis numérico sobre conjuntos de datos 

simulados (simétricos y asimétricos) y reales, empleando paquetes estadísticos del software R. 

PALABRAS CLAVE: Sesgo, Media, Error cuadrático medio, Submuestreo, Simulación. 

 

1. INTRODUCTION 

1.1. Motivation and Literature Review  

In recent days internet-based platforms such as- online surveys, web-based questionnaire, email surveys, web-

scraping, crowdsourcing etc. are being used extensively to gather information regarding variables under study, 

due to widespread availability of internet and the advantages it offers in terms of cost effectiveness, time 

effectiveness, real- time collection, and accessibility. Instead of having several advantages, internet-based surveys 

may suffer from non-response. Non-response occurs due to attrition of the survey unit, or may be survey unit fails 

to respond the survey invitation. Various fields such as – academics, health care, market research, public policy, 

political polling, behavioural sciences, non-profit and social services etc. use online survey for data collection. 

For instance, in health sector to analyse the preferences, perspectives, experiences, and many other important 

facets of medical assets, online survey to the medical practitioners and interns may be beneficial. Loss of 

information due to non-response or missing data can potentially affect the precision, power and generalizability 

of the results as respondent units may differ from non-respondent units. This necessitates the study of the effect 

of non-response in the estimation of mean of the population under study and its remedies. And so, the primary 

focus of this article is to examine the impact of total non-response of units selected in the sample to estimate the 

population mean of study variable. To address non-response, Hansen and Hurwitz [8] developed an unbiased 

estimator for the population mean by using additional effort to collect data on a sub-sample of non-responding 

units. 

Let us consider 𝒮𝑚 is a sample of size 𝑚 drawn from the population 𝑈𝑁 (of 𝑁 units with survey variables 𝑌, 𝑋,
𝑍) using simple random sampling without replacement (𝑆𝑖𝑅𝑆(𝑤𝑜𝑟)). Hansen and Hurwitz [8] considered that the 

population is made of two mutually exclusive groups, respondent (of size 𝑁(1)) and non-respondent (of size 𝑁(2)) 

such that 𝑁(1) + 𝑁(2) = 𝑁. Further from 𝑚 sampled units, 𝑚(1) and 𝑚(2) denote the size of the respondent units 

and non-respondent units respectively i.e. 𝑚(1) + 𝑚(2) = 𝑚. Again, 𝑟 (𝑟 =
𝑚(2)

𝑘
 ; 𝑘 > 1) is the size of 𝑆𝑖𝑅𝑆(𝑤𝑜𝑟) 
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sub-sample drawn from the 𝑚(2) non-respondents for personal interview in order to obtain information on the 

goal of interest. Hence, based on 𝑚(1) + 𝑟 units, Hansen and Hurwitz [8] defined an unbiased estimator (𝑦̅𝐻𝐻
∗ ) for 

population mean of the study variable as: 

𝑦̅𝐻𝐻
∗ = (𝑚(1) 𝑚⁄ )𝑦̅𝑚(1)

+ (𝑚(2) 𝑚⁄ )𝑦̅𝑟       (1.1) 

where,  𝑦̅𝑚(1)
 and 𝑦̅𝑟 are sample means based on responding units (𝑚(1)) and sub-sampled units (𝑟) and variance 

of 𝑦̅𝐻𝐻
∗   is given by, 

 𝑣𝑎𝑟(𝑦̅𝐻𝐻
∗ ) = 𝜆𝑆𝑌

2 + 𝜃𝑊2𝑆𝑌(2)
2         (1.2) 

where, 𝜆 =
1

𝑚
−

1

𝑁
, 𝜃 =

𝑘−1

𝑚
, 𝑊2 =

𝑁(2)

𝑁
, 𝑆𝑌

2 and 𝑆𝑌(2)
2  are population variance of the study variable based on 

respondent and non-respondent group. Subsequently, a large number of researchers [1], [3], [4], [5], [6], [7], [11], 

[12], [15], [16], [17], [18], [19], [20], [22], [23], [24], and [25] have carried out commendable work to address the 

non-response issue by introducing better estimators of the population parameters.  But, when the population mean 

of auxiliary variable is unknown ahead of time, the majority of authors prefer to use two phase sampling to 

estimate it, taking into account that the auxiliary variable is free from non-response during the first phase and 

suffers from non-response during the second phase. Chaudhary and Kumar [4] took into account the non-response 

during both phases and suggested conventional ratio, product, and regression estimators to estimate the mean of 

study variable (𝑌) when population mean of an auxiliary variable (𝑋) is unknown, as 

 𝑇𝑅 =
𝑦̅𝐻𝐻

∗

𝑥̅𝐻𝐻
∗ 𝑥̅𝐻𝐻

∗′ ,          (1.3) 

 𝑇𝑃 =
𝑦̅𝐻𝐻

∗

𝑥̅𝐻𝐻
∗′ 𝑥̅𝐻𝐻

∗ ,           (1.4) 

 𝑇𝑅𝑒𝑔 = 𝑦̅𝐻𝐻
∗ + 𝑏∗(𝑥̅𝐻𝐻

∗′ − 𝑥̅𝐻𝐻
∗ );        (1.5) 

where 𝑥̅𝐻𝐻
∗′ , 𝑥̅𝐻𝐻

∗   are the Hansen Hurwitz estimators based on first and second phase samples respectively.  

1.2. Notations and Methodology 

On the basis of observance, heterogeneity is classified in to two categories: Observed heterogeneity (presence of 

some factors that can be measure directly  such as : age, gender, education, income, size of the firm, market share, 

supply and demand, blood pressure, cholesterol level and body mass index (BMI), etc.) and Unobserved 

heterogeneity (presence of the factors that cannot be included in the analysis directly such as: unobservable genetic 

factors, variations in immune response, metabolic process, mental process and cognitive factors, etc.). The 

presence of heterogeneity in the study population, as it can affect the variability of the data and so the 

representativeness of the selected sample, is necessary to take in to account. The purpose of the article that is 

being presented is to address the problem of non-response in a heterogeneous population that has been observed. 

Specifically, we have taken into consideration study and auxiliary variables: 𝑌 and 𝑋, both of which have unit 

non-response while another variable, 𝑍, does not (see Rao [13]).  Now we define two different situations for 

variables 𝑋 and 𝑍 as 

Situation-I When auxiliary mean 𝑋̅ is unknown but 𝑍̅ is known. 

Situation-II When auxiliary mean 𝑋̅ and 𝑍̅  both are unknown. 

To elucidate the methodology, let us consider population 𝑈𝑁 can be divided into 𝐿, (ℎ = 1,2,3, … , 𝐿) exhaustive 

and mutually heterogeneous strata, where ℎ𝑡ℎ stratum consist of 𝑁ℎ units such that ∑ 𝑁ℎ = 𝑁𝐿
ℎ=1 . Following 

Hansen and Hurwitz [8] it is assumed that ℎ𝑡ℎ stratum is consist of two mutually exclusive groups, respondents 

(R) and non-respondents (NR) with 𝑁ℎ(1) and   𝑁ℎ(2) units respectively. For defined situations, here we have used 

two phase sampling scheme to obtain the unknown auxiliary mean. Let  𝒮𝑛ℎ
′  and 𝒮𝑛ℎ

are first phase and second 

phase simple random samples (𝑆𝑖𝑅𝑆(𝑤𝑜𝑟)) of size 𝑛ℎ
′  and 𝑛ℎ respectively drawn from ℎ𝑡ℎ stratum. Additionally, 

(𝑌𝑖 , 𝑋𝑖 and 𝑍𝑖) indicates observations made on the 𝑖𝑡ℎ population unit of the ℎ𝑡ℎ stratum for the survey variables 

(𝑌, 𝑋, 𝑍) respectively. Detailed sampling methodology required for these situations can be understand from the 

figure 1 

Here, 𝑘′ > 1, 𝑘 > 1 and 𝑛ℎ < 𝑛ℎ
′  
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Figure 1: Execution of Two-Phase Sampling Technique for hth Stratum 

To determine the variance and covariance of the variables under consideration, let us take into consideration the 

large sample approximations as: 

𝑒0 =
𝑦̅𝑠𝑡

∗

𝑌̅
− 1, 𝑒1 =

𝑥̅𝑠𝑡
∗

𝑋̅
− 1,  𝑒2 =

𝑧̅𝑠𝑡

𝑍
− 1, 𝑒1

′ =
𝑥̅𝑠𝑡

∗′

𝑋̅
− 1, 𝑒2

′ =
𝑧̅𝑠𝑡

′

𝑍
− 1. 

Such that,  𝐸(𝑒𝑖) = 0;∀𝑖 = 0,1,2, 𝐸(𝑒𝑖
′) = 0, ∀𝑖 = 1, 2  

𝜔0 = 𝐸(𝑒0
2) = ∑ (𝜆ℎ𝜏𝑌ℎ

+ 𝜃ℎ𝜏𝑌ℎ(2))𝐿
ℎ=1 ,𝜔1 = 𝐸(𝑒1

2) = ∑ (𝜆ℎ𝜏𝑋ℎ
+ 𝜃ℎ𝜏𝑋ℎ(2))𝐿

ℎ=1 ,𝜔2 = 𝐸(𝑒2
2) = ∑ (𝜆ℎ𝜏𝑍ℎ

)𝐿
ℎ=1 , 

𝜔2
′ = 𝐸(𝑒2

′ 2
) = ∑ (𝜆ℎ

′ 𝜏𝑍ℎ
)𝐿

ℎ=1 ,   𝜔1
′ = 𝐸(𝑒1

′ 2
) = ∑ (𝜆ℎ

′ 𝜏𝑋ℎ
+ 𝜃ℎ

′ 𝜏𝑋ℎ(2))𝐿
ℎ=1 ,    𝜔02 = 𝐸(𝑒0𝑒2) = ∑ (𝜆ℎ𝜏𝑌𝑍ℎ

)𝐿
ℎ=1 , 

𝜔11
′ = 𝐸(𝑒1𝑒1

′ ) = ∑ (𝜆ℎ
′ 𝜏𝑋ℎ

+ 𝜃ℎ
′ 𝜏𝑋ℎ(2))𝐿

ℎ=1 ,    𝜔02
′ = 𝐸(𝑒0𝑒2

′ ) = ∑ (𝜆ℎ
′ 𝜏𝑌𝑍ℎ

)𝐿
ℎ=1 ,    𝜔12 = 𝐸(𝑒1𝑒2) = ∑ (𝜆ℎ𝜏𝑋𝑍ℎ

)𝐿
ℎ=1 , 

𝜔22
′ = 𝐸(𝑒2𝑒2

′ ) = ∑ (𝜆ℎ
′ 𝜏𝑍ℎ

)𝐿
ℎ=1 ,    𝜔12

′ = 𝐸(𝑒1
′𝑒2) = 𝐸(𝑒1𝑒2

′ ) = 𝐸(𝑒1
′ 𝑒2

′ ) = ∑ (𝜆ℎ
′ 𝜏𝑋𝑍ℎ

)𝐿
ℎ=1 , 

𝜔01 = 𝐸(𝑒0𝑒1) = ∑ (𝜆ℎ𝜏𝑌𝑋ℎ
+ 𝜃ℎ𝜏𝑌𝑋ℎ(2))𝐿

ℎ=1 ,     𝜔01
′ = 𝐸(𝑒0𝑒1

′ ) = ∑ (𝜆ℎ
′ 𝜏𝑌𝑋ℎ

+ 𝜃ℎ
′ 𝜏𝑌𝑋ℎ(2))𝐿

ℎ=1 . 

Here, we define a few terms for the variable 𝑉, which acknowledges the responding units 𝑌, 𝑋, and 𝑍. The non-

responding units, which are only taken into account when looking at the variables 𝑌 and 𝑋, are denoted by the 

subscript (2). 

𝜏𝑉ℎ
= 𝑃ℎ

2𝑆𝑉ℎ
2 𝑉̅2     (𝑓𝑜𝑟  𝑉 = 𝑌, 𝑋, 𝑍)⁄  ,       𝜏𝑉ℎ(2) = 𝑃ℎ

2𝑊ℎ(2)𝑆𝑉ℎ(2)
2 𝑉̅2        (𝑓𝑜𝑟 𝑉 = 𝑌, 𝑋)⁄ ,       

𝜏𝑉𝑉′
ℎ

= 𝑃ℎ
2 𝜌𝑉ℎ𝑉ℎ

′𝑆𝑉ℎ
𝑆𝑉ℎ

′ 𝑉̅𝑉̅′⁄     (𝑓𝑜𝑟 𝑉 ≠ 𝑉′ = 𝑌, 𝑋, 𝑍), 𝜏𝑌𝑋ℎ(2) = 𝑃ℎ
2𝑊ℎ(2) 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2) 𝑌̅𝑋̅⁄ , 

𝜆ℎ =
1

𝑛ℎ
−

1

𝑁ℎ
,   𝜆ℎ

′ =
1

𝑛ℎ
′ −

1

𝑁ℎ
,     𝑟ℎ =

𝑛ℎ(2)

𝑘
,  𝑟ℎ

′ =
𝑛ℎ(2)

′

𝑘′ ,   𝜃ℎ =
𝑘−1

𝑛ℎ
, 𝜃ℎ

′ =
𝑘′−1

𝑛ℎ
′ ,    𝑊ℎ(2) =

𝑁ℎ(2)

𝑁ℎ
,       

𝑃ℎ =
𝑁ℎ

𝑁
,  𝛱ℎ = 𝜃ℎ − 𝜃ℎ

′ ,   △ℎ= 𝜆ℎ − 𝜆ℎ
′ , 𝑦̅𝑠𝑡

∗ = ∑ 𝑃ℎ
𝐿
ℎ=1 𝑦̅ℎ

∗ , 𝑥̅𝑠𝑡
∗ = ∑ 𝑃ℎ

𝐿
ℎ=1 𝑥̅ℎ

∗ ,  

𝑥̅𝑠𝑡
∗′ = ∑ 𝑃ℎ

𝐿
ℎ=1 𝑥̅ℎ

∗′,  𝑧𝑠̅𝑡 = ∑ 𝑃ℎ𝑧ℎ̅
𝐿
ℎ=1 ,   𝑧𝑠̅𝑡

′ = ∑ 𝑃ℎ𝑧ℎ̅
′𝐿

ℎ=1 ,   𝑧ℎ̅
′ =

1

𝑛ℎ
′ ∑ 𝑧𝑖

𝑛ℎ
′

𝑖=1 ,                 

𝑦̅ℎ
∗ =

𝑛ℎ(1)𝑦̅ℎ(1)
∗ +𝑛ℎ(2)𝑦̅ℎ(2)

∗

𝑛ℎ
,    𝑥̅ℎ

∗ =
𝑛ℎ(1)𝑥̅ℎ(1)

∗ +𝑛ℎ(2)𝑥̅ℎ(2)
∗

𝑛ℎ
,   𝑥̅ℎ

∗′ =
𝑛ℎ(1)

′ 𝑥̅ℎ(1)
∗′ +𝑛ℎ(2)

′ 𝑥̅ℎ(2)
∗′

𝑛ℎ
′ ,    𝑧ℎ̅ =

1

𝑛ℎ
∑ 𝑧𝑖

𝑛ℎ
𝑖=1 ,   

𝑦̅ℎ(1)
∗ =

1

𝑛ℎ(1)
∑ 𝑦𝑖

𝑛ℎ(1)

𝑖=1
,    𝑦̅ℎ(2)

∗ =
1

𝑟ℎ
∑ 𝑦𝑖

𝑟ℎ
𝑖=1 ,    𝑥̅ℎ(1)

∗ =
1

𝑛ℎ(1)
∑ 𝑥𝑖

𝑛ℎ(1)

𝑖=1
,    𝑥̅ℎ(2)

∗ =
1

𝑟ℎ
∑ 𝑥𝑖

𝑟ℎ
𝑖=1  

 𝑥̅ℎ(1)
∗′ =

1

𝑛ℎ(1)
′ ∑ 𝑥𝑖

𝑛ℎ(1)
′

𝑖=1
,    𝑥̅ℎ(2)

∗′ =
1

𝑟ℎ
′ ∑ 𝑥𝑖

𝑟ℎ
′

𝑖=1 ,       𝑆𝑉ℎ
2 =

1

𝑁ℎ−1
∑ (𝑉𝑖 − 𝑉̅ℎ)2    (𝑓𝑜𝑟  𝑉 = 𝑌, 𝑋, 𝑍)

𝑁ℎ
𝑖=1 ,  

 𝑆𝑉ℎ(2)
2 =

1

𝑁ℎ(2)−1
∑ (𝑉𝑖 − 𝑉̅ℎ(2))2𝑁ℎ(2)

𝑖=1
(𝑓𝑜𝑟 𝑉 = 𝑌, 𝑋) ,     𝜌𝑉ℎ𝑉ℎ

′ =
𝑆

𝑉ℎ𝑉ℎ
′

𝑆𝑉ℎ
𝑆

𝑉ℎ
′

       (𝑓𝑜𝑟 𝑉 ≠ 𝑉′ = 𝑌, 𝑋, 𝑍), 

 𝜌𝑉ℎ𝑉ℎ
′(2) =

𝑆
𝑉ℎ𝑉ℎ

′ (2)

𝑆𝑉ℎ(2)𝑆
𝑉ℎ

′ (2)

  (𝑓𝑜𝑟 𝑉 ≠ 𝑉′ = 𝑌, 𝑋),  𝑆𝑉ℎ𝑉ℎ
′ =

1

𝑁ℎ−1
∑ (𝑉ℎ𝑖

𝑁ℎ
𝑖=1 − 𝑉̅ℎ)(𝑉ℎ

′
𝑖

− 𝑉̅ℎ
′)  (𝑓𝑜𝑟 𝑉 ≠ 𝑉′ = 𝑌, 𝑋, 𝑍), 

𝑆𝑉ℎ𝑉ℎ
′(2) =

1

𝑁ℎ(2)−1
∑ (𝑉ℎ𝑖

𝑁ℎ(2)

𝑖=1
− 𝑉̅ℎ(2))(𝑉ℎ

′
𝑖

− 𝑉̅ℎ(2)
′ )   (𝑓𝑜𝑟 𝑉 ≠ 𝑉′ = 𝑌, 𝑋),       𝑉̅ℎ =

∑ 𝑉𝑖
𝑁ℎ
𝑖=1

𝑁ℎ
    ( 𝑓𝑜𝑟 𝑉 = 𝑌, 𝑋, 𝑍). 
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2. ADOPTED ESTIMATORS 

Due to the heterogeneity of the population under investigation, stratified simple random sampling was employed. 

Within this framework, we adopted several well-known existing estimators, including those proposed by 

Chaudhary and Kumar [4], the conventional regression estimator (𝑡4), and an exponential estimator (𝑡5) 

motivated by the work of Kumar and Bhougal [10] in the context of stratified sampling. These estimators were 

considered to assess and validate the efficiency of the proposed improved exponential estimators, which are 

discussed in the following section. 

The adopted estimators and their corresponding mean square errors (𝑀𝑆𝐸) or minimum mean square errors 

(𝑀. 𝑀𝑆𝐸) are summarized in Table 1. 

 

Estimators (𝑴𝑺𝑬) / (𝑴. 𝑴𝑺𝑬) 

𝑡1 =
𝑦̅𝑠𝑡

∗

𝑥̅𝑠𝑡
∗ 𝑥̅𝑠𝑡

∗′ 

Chaudhary and Kumar [4] 

 ∑ 𝑃ℎ
2𝐿

ℎ=1 (
𝜆ℎ

′ 𝑆𝑌ℎ
2 +△ℎ (𝑆𝑌ℎ

2 + 𝑅2𝑆𝑋ℎ
2 − 2𝑅 𝜌𝑌ℎ𝑋ℎ

𝑆𝑌ℎ
𝑆𝑋ℎ ) +

𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)
2 + 𝑊ℎ(2)(𝑅2𝑆𝑋ℎ(2)

2 − 2𝑅 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2))𝛱ℎ

), 

where 𝑅 = 𝑌̅ 𝑋̅⁄  . 

𝑡2 =
𝑦̅𝑠𝑡

∗

𝑥̅𝑠𝑡
∗′ 𝑥̅𝑠𝑡

∗  

Chaudhary and Kumar [4] 

 ∑ 𝑃ℎ
2𝐿

ℎ=1 (
𝜆ℎ

′ 𝑆𝑌ℎ
2 +△ℎ (𝑆𝑌ℎ

2 + 𝑅2𝑆𝑋ℎ
2 + 2𝑅 𝜌𝑌ℎ𝑋ℎ

𝑆𝑌ℎ
𝑆𝑋ℎ ) +

𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)
2 + 𝑊ℎ(2)(𝑅2𝑆𝑋ℎ(2)

2 + 2𝑅 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2))𝛱ℎ

). 

𝑡3 = 𝑦̅𝑠𝑡
∗ + 𝑏∗(𝑥̅𝑠𝑡

∗′ − 𝑥̅𝑠𝑡
∗ ) 

where 𝑏∗ =
𝑠𝑥𝑦

∗

𝑠𝑥
2∗ 

Chaudhary and Kumar [4] 

 ∑ 𝑃ℎ
2𝐿

ℎ=1 (
(𝜆ℎ

′ +△ℎ (1 − 𝜌𝑌ℎ𝑋ℎ
2 )) 𝑆𝑌ℎ

2 + 𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)
2

+𝑊ℎ(2)(𝛽2𝑆𝑋ℎ(2)
2 − 2𝛽)𝛱ℎ

), where, 𝛽 =
𝑆𝑌𝑋

𝑆𝑋
2 . 

𝑡4 = 𝑦̅𝑠𝑡
∗ + 𝛽̂∗(𝑥̅𝑠𝑡

∗′ − 𝑥̅𝑠𝑡
∗ ); 

where 𝛽̂∗ is estimate of 

regression coefficient. 

 [∑ 𝑃ℎ
2𝐿

ℎ=1 (𝜆ℎ𝑆𝑌ℎ
2 + 𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)

2 )] 

                                −
[∑ 𝑃ℎ

2{△ℎ 𝜌𝑌ℎ𝑋ℎ
𝑆𝑌ℎ

𝑆𝑋ℎ +𝛱ℎ𝑊ℎ(2) 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2)}𝐿
ℎ=1 ]

2

[∑ 𝑃ℎ
2{△ℎ𝑆𝑋ℎ

2 +𝛱ℎ𝑊ℎ(2)𝑆𝑋ℎ(2)
2 }𝐿

ℎ=1 ]
. 

𝑡5 = 𝑦̅𝑠𝑡
∗ 𝑒𝑥𝑝 [𝛼 (

𝑥̅𝑠𝑡
∗′−𝑥̅𝑠𝑡

∗

𝑥̅𝑠𝑡
∗′+𝑥̅𝑠𝑡

∗ )]; 

where 𝛼 is an optimizing 

constant. 

 [∑ 𝑃ℎ
2𝐿

ℎ=1 (𝜆ℎ𝑆𝑌ℎ
2 + 𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)

2 )] 

                                −
[∑ 𝑃ℎ

2{△ℎ 𝜌𝑌ℎ𝑋ℎ
𝑆𝑌ℎ

𝑆𝑋ℎ +𝛱ℎ𝑊ℎ(2) 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2)}𝐿
ℎ=1 ]

2

[∑ 𝑃ℎ
2{△ℎ𝑆𝑋ℎ

2 +𝛱ℎ𝑊ℎ(2)𝑆𝑋ℎ(2)
2 }𝐿

ℎ=1 ]
. 

Table 1: Adopted Estimators and their (𝑀𝑆𝐸) / (𝑀. 𝑀𝑆𝐸) 

 

3. PROPOSED ESTIMATORS: THEORETICAL PROPERTIES AND ADVANTAGES 

Grasping motivation from Chaudhary and Kumar [4], this study introduces a set of novel improved exponential 

estimators aimed at estimating the population mean of the study variable. These estimators are designed to 

accommodate different conditions, particularly when the mean of the auxiliary variable is either known or 

unknown, as outlined in sub-section 1.2. The formulation is carried out under a stratified two-phase sampling 

framework and is presented as follows: 

𝒯𝐼𝐸
(1)

= 𝑦̅𝑠𝑡
∗ 𝑒𝑥𝑝 [𝛾1 (

𝑥̅𝑠𝑡
∗′−𝑥̅𝑠𝑡

∗

𝑥̅𝑠𝑡
∗′+𝑥̅𝑠𝑡

∗ ) + 𝛾2 (
𝑧̅𝑠𝑡−𝑍

𝑧̅𝑠𝑡+𝑍
)], (For Situation-I)     (3.1) 

and  𝒯𝐼𝐸
(2)

= 𝑦̅𝑠𝑡
∗ 𝑒𝑥𝑝 [𝜇1 (

𝑥̅𝑠𝑡
∗′−𝑥̅𝑠𝑡

∗

𝑥̅𝑠𝑡
∗′+𝑥̅𝑠𝑡

∗ ) + 𝜇2 (
𝑧̅𝑠𝑡−𝑧̅𝑠𝑡

′

𝑧̅𝑠𝑡+𝑧̅𝑠𝑡
′ )], (For Situation-II)     (3.2) 

where 𝛾1, 𝛾2, 𝜇1, 𝜇2 are optimizing constants to be used in determining the 𝑀. 𝑀𝑆𝐸 of the proposed estimators 

𝒯𝐼𝐸
(1)

 and 𝒯𝐼𝐸
(2)

. We now state theorems to further clarify the traits of the proposed estimators based on 

approximation to the first degree [Appr 𝑂(𝑛−1)]. Reddy [14] and Srivastava and Jhajj [21] suggested from a 

practical standpoint that the antecedent information from past data on the required parameters or their estimate 

can be used to obtain the values of unknown parameters. It is also possible to use sample observations, which 

won't have an impact on the performance of the estimator up to the first order of approximation. 

The proposed estimators 𝒯𝐼𝐸
(1)

 and 𝒯𝐼𝐸
(2)

 exhibit important theoretical properties, which are rigorously supported 

by the following theorems. 

Theorem 3.1- Bias and  𝑀𝑆𝐸 of the proposed estimator 𝒯𝐼𝐸
(1)

 are given by 

 𝐵𝑖𝑎𝑠(𝒯𝐼𝐸
(1)

 ) = 𝑌̅ [𝛾1
2 {

(𝜔1−𝜔11
′ )

8
} + 𝛾2

2 𝜔2

8
+ 𝛾1

2(𝜔01
′ −𝜔01)−(𝜔1

′ −𝜔1)

4
+ 𝛾2

(2𝜔02−𝜔2)

4
+ 𝛾1𝛾2

(𝜔12
′ −𝜔12)

8
]  (3.3) 

 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) = 𝑌̅2[𝜔0 + 𝛾1
2 (𝜔1 − 𝜔11

′ ) 4⁄ + 𝛾2
2 𝜔2 4⁄ + 𝛾1𝛾2 (𝜔12

′ − 𝜔12) 2⁄ + 𝛾1(𝜔01
′ − 𝜔01) + 𝛾2𝜔02] (3.4) 

Proof: Under the above approximations given in sub-section1.2 the proposed estimator 𝒯𝐼𝐸
(1)

 takes the following 

form as: 
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 𝒯𝐼𝐸
(1)

= 𝑌̅ [1 + 𝑒0 + 𝛾1 {
(𝑒1

′−𝑒1)+(𝑒0𝑒1
′−𝑒0𝑒1)

2
−

(𝑒1
′2

−𝑒1
2)

4
} + 𝛾2 (

𝑒2+𝑒0𝑒2

2
−

𝑒2
2

4
) 

       +𝛾1
2 (𝑒1

′−𝑒1)
2

8
+ 𝛾2

2 𝑒2
2

8
+ 𝛾1𝛾2

(𝑒1
′𝑒2−𝑒1𝑒2)

4
]  (3.5) 

 𝒯𝐼𝐸
(1)

− 𝑌̅ = 𝑌̅ [𝑒0 + 𝛾1 {
(𝑒1

′−𝑒1)+(𝑒0𝑒1
′−𝑒0𝑒1)

2
−

(𝑒1
′ 2

−𝑒1
2)

4
} + 𝛾2 (

𝑒2+𝑒0𝑒2

2
−

𝑒2
2

4
) 

 +𝛾1
2 (𝑒1

′−𝑒1)
2

8
+ 𝛾2

2 𝑒2
2

8
+ 𝛾1𝛾2

(𝑒1
′𝑒2−𝑒1𝑒2)

4
]  (3.6) 

On taking expectations on both side of the equation (3.6), and using the expected values we get the expression of  

𝐵𝑖𝑎𝑠 as: 

 𝐵𝑖𝑎𝑠(𝒯𝐼𝐸
(1)

 ) = 𝑌̅ [𝛾1
2 {

(𝜔1−𝜔11
′ )

8
} + 𝛾2

2 𝜔2

8
+ 𝛾1

2(𝜔01
′ −𝜔01)−(𝜔1

′ −𝜔1)

4
+ 𝛾2

(2𝜔02−𝜔2)

4
+ 𝛾1𝛾2

(𝜔12
′ −𝜔12)

8
] . (3.7) 

Now to study the characterization properties of proposed estimator, we get the expression for 𝑀𝑆𝐸 of 𝒯𝐼𝐸
(1)

 under 

situation-I by squaring and taking expectation of equation (3.6) as,   

 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) = 𝑌̅2[𝜔0 + 𝛾1
2 (𝜔1 − 𝜔11

′ ) 4⁄ + 𝛾2
2 𝜔2 4⁄ + 𝛾1𝛾2 (𝜔12

′ − 𝜔12) 2⁄ + 𝛾1(𝜔01
′ − 𝜔01) + 𝛾2𝜔02]. (3.8) 

Theorem 3.2- Minimum mean square error (𝑀. 𝑀𝑆𝐸) of the proposed estimator 𝒯𝐼𝐸
(1)

 at the optimum value of 

𝛾1and 𝛾2 is   

 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) = [𝐴𝑦 −
(𝐵𝑦𝑥

2 𝐴𝑧+𝐵𝑦𝑧
2 𝐴𝑥−2𝐵𝑦𝑧𝐵𝑥𝑧𝐵𝑦𝑥)

𝐴𝑥𝐴𝑧−𝐵𝑥𝑧
2 ]       (3.9) 

at, 𝛾1(𝑜𝑝𝑡) =
2[𝜔02(𝜔12

′ −𝜔12)−𝜔2(𝜔01
′ −𝜔01)]

(𝜔1
′ +𝜔1−2𝜔11

′ )𝜔2−(𝜔12
′ −𝜔12)

2   and 𝛾2(𝑜𝑝𝑡) =
2[(𝜔01

′ −𝜔01)(𝜔12
′ −𝜔12)−𝜔02(𝜔1

′ +𝜔1−2𝜔11
′ )]

(𝜔1
′ +𝜔1−2𝜔11

′ )𝜔2−(𝜔12
′ −𝜔12)

2 . 

Proof: On minimizing the equation (3.8) with respect to 𝛾1and 𝛾2, we get the optimum value of the optimizing 

constants and then substituting them in the equation (3.8), the expression of 𝑀. 𝑀𝑆𝐸 of proposed estimator is 

obtained.  

Corollary 3.2.1- 𝑀. 𝑀𝑆𝐸 of the proposed estimator 𝒯𝐼𝐸
(1)

 under situation-I can also be obtained in terms of 

𝑀. 𝑀𝑆𝐸 of the conventional regression estimator (𝑡4) as 

 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) = 𝑀. 𝑀𝑆𝐸(𝑡4) −
(𝐵𝑦𝑧𝐴𝑥−𝐵𝑦𝑥𝐵𝑥𝑧)

2

𝐴𝑥(𝐴𝑥𝐴𝑧−𝐵𝑥𝑧
2 )

,                    (3.10) 

here, 𝑀. 𝑀𝑆𝐸(𝑡4) = 𝐴𝑦 −
𝐵𝑦𝑥

2

𝐴𝑥
. 

Proof: Now, on further simplifying the expression of minimum 𝑀𝑆𝐸 of 𝒯𝐼𝐸
(1)

 given in theorem 3.2 and analysing 

theoretically we can have the corollary 3.2.1 easily.   

       

Theorem 3.3- Bias and mean square error ( 𝑀𝑆𝐸) of the proposed estimator 𝒯𝐼𝐸
(2)

 are given by 

 𝐵𝑖𝑎𝑠(𝒯𝐼𝐸
(2)

 ) = 𝑌̅ [𝜇1
2 (𝜔1−𝜔11

′ )

8
+ 𝜇2

2 (𝜔2−𝜔22
′ )

8
+ 𝜇1 {

(𝜔01
′ −𝜔01)

2
−

(𝜔1
′ −𝜔1)

4
} + 

     𝜇2 {
(𝜔02−𝜔02

′ )

2
−

(𝜔2−𝜔2
′ )

4
} + 𝜇1𝜇2

(𝜔12
′ −𝜔12)

8
]  (3.11) 

 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) = 𝑌̅2[𝜔0 + 𝜇1
2 (𝜔1 − 𝜔11

′ ) 4⁄ + 𝜇2
2 (𝜔2 − 𝜔22

′ ) 4⁄ + 𝜇1𝜇2 (𝜔12
′ − 𝜔12) 2⁄ + 

      𝜇1(𝜔01
′ − 𝜔01) + 𝜇2(𝜔02 − 𝜔02

′ )]  (3.12) 

Proof: Similarly, as proof of the previous theorem the proposed estimator 𝒯𝐼𝐸
(2)

 takes the following form as: 

 𝒯𝐼𝐸
(2)

= 𝑌̅ [1 + 𝑒0 + 𝜇1 {
(𝑒1

′−𝑒1+𝑒0𝑒1
′−𝑒0𝑒1)

2
−

(𝑒1
′2

−𝑒1
2)

4
} + 𝜇2 {

(𝑒2−𝑒2
′+𝑒0𝑒2−𝑒0𝑒2

′)

2
−

(𝑒2
2−𝑒2

′2
)

4
} + 

   𝜇1
2 (𝑒1

′−𝑒1)
2

8
+ 𝜇2

2
(𝑒2

2−𝑒2
′2

)

8
+ 𝜇1𝜇2

(𝑒1
′𝑒2−𝑒1𝑒2−𝑒1

′𝑒2
′+𝑒1𝑒2

′)

4
].  (3.13) 

 𝒯𝐼𝐸
(2)

− 𝑌̅ = 𝑌̅ [𝑒0 + 𝜇1 {
(𝑒1

′−𝑒1+𝑒0𝑒1
′−𝑒0𝑒1)

2
−

(𝑒1
′2

−𝑒1
2)

4
} + 𝜇2 {

(𝑒2−𝑒2
′+𝑒0𝑒2−𝑒0𝑒2

′)

2
−

(𝑒2
2−𝑒2

′2
)

4
} + 𝜇1

2 (𝑒1
′−𝑒1)

2

8
+  

     𝜇2
2

(𝑒2
2−𝑒2

′2
)

8
+ 𝜇1𝜇2

(𝑒1
′𝑒2−𝑒1𝑒2−𝑒1

′𝑒2
′+𝑒1𝑒2

′)

4
].  (3.14) 

On taking expectations on both side of the equation (3.14), and using the expected values we get the expression 

of  𝐵𝑖𝑎𝑠 of 𝒯𝐼𝐸
(2)

 as: 

 𝐵𝑖𝑎𝑠(𝒯𝐼𝐸
(2)

 ) = 𝑌̅ [𝜇1
2 (𝜔1−𝜔11

′ )

8
+ 𝜇2

2 (𝜔2−𝜔22
′ )

8
+ 𝜇1 {

(𝜔01
′ −𝜔01)

2
−

(𝜔1
′ −𝜔1)

4
} + 

    𝜇2 {
(𝜔02−𝜔02

′ )

2
−

(𝜔2−𝜔2
′ )

4
} + 𝜇1𝜇2

(𝜔12
′ −𝜔12)

4
].  (3.15) 
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Now to study the characterization properties of proposed estimator, we get the expression for 𝑀𝑆𝐸 of 𝒯𝐼𝐸
(2)

 under 

situation-II by squaring and taking expectation of equation (3.14) as,  

 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) = 𝑌̅2[𝜔0 + 𝜇1
2 (𝜔1 − 𝜔11

′ ) 4⁄ + 𝜇2
2 (𝜔2 − 𝜔22

′ ) 4⁄ + 𝜇1𝜇2 (𝜔12
′ − 𝜔12) 2⁄ + 

      𝜇1(𝜔01
′ − 𝜔01) + 𝜇2(𝜔02 − 𝜔02

′ )]  (3.16) 

Theorem 3.4- Under situation-II the expression for minimum mean square error (𝑀. 𝑀𝑆𝐸) of the proposed 

estimator 𝒯𝐼𝐸
(2)

 at the optimum value of 𝜇1and 𝜇2 is   

 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) = [𝐴𝑦 −
(𝐵𝑦𝑥

2 𝐷𝑧+𝐶𝑦𝑧
2 𝐴𝑥−2𝐶𝑦𝑧𝐵𝑥𝑧𝐵𝑦𝑥)

𝐴𝑥𝐷𝑧−𝐵𝑥𝑧
2 ].      (3.17) 

at,   𝜇1(𝑜𝑝𝑡) =
2[(𝜔02−𝜔02

′ )(𝜔12
′ −𝜔12)−(𝜔2−𝜔22

′ )(𝜔01
′ −𝜔01)]

(𝜔1−𝜔11
′ )(𝜔2−𝜔22

′ )−(𝜔12
′ −𝜔12)

2   and 𝜇2(𝑜𝑝𝑡) =
2[(𝜔01

′ −𝜔01)(𝜔12
′ −𝜔12)−(𝜔02−𝜔02

′ )(𝜔1−𝜔11
′ )]

(𝜔1−𝜔11
′ )(𝜔2−𝜔22

′ )−(𝜔12
′ −𝜔12)

2 . 

Proof: On minimizing the equation (3.16) with respect to 𝜇1and 𝜇2, we get the optimum value of the optimizing 

constants. Substituting these values in the equation (3.16) and after simplifying, we get the expression of minimum 

mean square error.  

Corollary 3.4.1- The expression for 𝑀. 𝑀𝑆𝐸 of the proposed estimator (𝒯𝐼𝐸
(2)

) under situation-II, can also be 

obtained in terms of 𝑀. 𝑀𝑆𝐸 of the conventional regression estimator (𝑡4) as 

 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) = 𝑀. 𝑀𝑆𝐸(𝑡4) −
(𝐶𝑦𝑧𝐴𝑥−𝐵𝑦𝑥𝐵𝑥𝑧)

2

𝐴𝑥(𝐴𝑥𝐷𝑧−𝐵𝑥𝑧
2 )

;      (3.18) 

here, 𝑀. 𝑀𝑆𝐸(𝑡4) = 𝐴𝑦 −
𝐵𝑦𝑥

2

𝐴𝑥
. 

Proof: Now, on further simplifying the expression of minimum 𝑀𝑆𝐸 of 𝒯𝐼𝐸
(2)

 given in theorem 3.4 and analysing 

theoretically we can have the corollary 3.4.1 easily.  
here, 

𝐴𝑦 = ∑ 𝑃ℎ
2(𝜆ℎ𝑆𝑌ℎ

2 + 𝜃ℎ𝑊ℎ(2)𝑆𝑌ℎ(2)
2 )𝐿

ℎ=1 , 𝐴𝑥 = ∑ 𝑃ℎ
2{△ℎ 𝑆𝑋ℎ

2 + 𝛱ℎ𝑊ℎ(2)𝑆𝑋ℎ(2)
2𝐿

ℎ=1 },  𝐴𝑧 = ∑ (𝑃ℎ
2𝜆ℎ𝑆𝑍ℎ

2 )𝐿
ℎ=1  

𝐷𝑧 = ∑ (△ℎ 𝑃ℎ
2𝑆𝑍ℎ

2 )𝐿
ℎ=1 ,    𝐵𝑦𝑥 = − ∑ 𝑃ℎ

2(△ℎ  𝜌𝑌ℎ𝑋ℎ
𝑆𝑌ℎ

𝑆𝑋ℎ + 𝛱ℎ𝑊ℎ(2) 𝜌𝑌ℎ𝑋ℎ(2)𝑆𝑌ℎ(2)𝑆𝑋ℎ(2))𝐿
ℎ=1 ,  

𝐵𝑦𝑧 = ∑ (𝜆ℎ𝑃ℎ
2 𝜌𝑌ℎ𝑍ℎ

𝑆𝑌ℎ
𝑆𝑍ℎ )

𝐿
ℎ=1 , 𝐶𝑦𝑧 = ∑ (△ℎ 𝑃ℎ

2 𝜌𝑌ℎ𝑍ℎ
𝑆𝑌ℎ

𝑆𝑍ℎ )
𝐿
ℎ=1 , 𝐵𝑥𝑧 = − ∑ (△ℎ 𝑃ℎ

2 𝜌𝑋ℎ𝑍ℎ
𝑆𝑋ℎ

𝑆𝑍ℎ )
𝐿
ℎ=1  

Thus, based on the established theorems, the proposed estimators 𝒯𝐼𝐸
(1)

 and 𝒯𝐼𝐸
(2)

 offer significant theoretical 

advantages. They enhance efficiency through exponential adjustments involving auxiliary variables, resulting in 

reduced bias and lower mean squared error (𝑀𝑆𝐸) compared to traditional estimators. Their formulation 

accommodates both known and unknown auxiliary means, ensuring flexibility in diverse practical scenarios. The 

optimal values of the constants 𝛾1, 𝛾2, 𝜇1, and 𝜇2 are derived to minimize the 𝑀𝑆𝐸 under first-order 

approximation. The unknown parameters required in the estimators are estimated from the sample, thereby 

maintaining robustness. Furthermore, the two-phase sampling design effectively integrates auxiliary information, 

improving accuracy while reducing data collection burden. 

 

4. THEORETICAL COMPARISON OF EFFICIENCY 
The efficacy of the proposed estimators has been compared in terms of mean square errors against all previously 

known competing estimators, with limitations arising from the use of various parameters and estimates. On putting 

the expressions of minimum 𝑀𝑆𝐸 of the proposed estimators and respective adopted estimators in the inequality 

(i) to (xii) and on simplifying, we can easily get the following constraints and results for both the situations. The 

obtained results are shown in Table 2. 

 

Situation-I Situation-II 

i. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑣𝑎𝑟(𝑦̅𝑠𝑡
∗ ); if 

(
𝐴𝑧𝐵𝑦𝑥

2 +𝐴𝑥𝐵𝑦𝑧
2

2𝐵𝑦𝑥𝐵𝑥𝑧𝐵𝑦𝑧
− 1) > 0. 

vii. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑣𝑎𝑟(𝑦̅𝑠𝑡
∗ ); if 

(
𝐷𝑧𝐵𝑦𝑥

2 +𝐴𝑥𝐶𝑦𝑧
2

2𝐵𝑦𝑥𝐵𝑥𝑧𝐶𝑦𝑧
− 1) > 0. 

ii. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑀𝑆𝐸(𝑡1); if 

2𝐵𝑦𝑥𝐵𝑥𝑧 + 𝐴𝑥(𝑅𝐵𝑥𝑧 − 𝐵𝑦𝑧) < 𝐴𝑧
(𝑅𝐴𝑥−𝐵𝑦𝑥)2

(𝑅𝐵𝑥𝑧+𝐵𝑦𝑧)
. 

viii. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑀𝑆𝐸(𝑡1); if 

2𝐵𝑦𝑥𝐵𝑥𝑧 + 𝐴𝑥(𝑅𝐵𝑥𝑧 − 𝐶𝑦𝑧) < 𝐷𝑧
(𝑅𝐴𝑥−𝐵𝑦𝑥)2

(𝑅𝐵𝑥𝑧+𝐶𝑦𝑧)
. 

ix. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑀𝑆𝐸(𝑡2); if  

2𝐵𝑦𝑥𝐵𝑥𝑧 − 𝐴𝑥(𝑅𝐵𝑥𝑧 + 𝐵𝑦𝑧) < 𝐴𝑧
(𝑅𝐴𝑥−𝐵𝑦𝑥)2

(𝐵𝑦𝑧−𝑅𝐵𝑥𝑧)
. 

ix. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑀𝑆𝐸(𝑡2); if 

2𝐵𝑦𝑥𝐵𝑥𝑧 − 𝐴𝑥(𝑅𝐵𝑥𝑧 + 𝐶𝑦𝑧) < 𝐷𝑧
(𝑅𝐴𝑥−𝐵𝑦𝑥)2

(𝐶𝑦𝑧−𝑅𝐵𝑥𝑧)
. 
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iv. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑀𝑆𝐸(𝑡3); if 

2𝐵𝑦𝑥𝐵𝑥𝑧 + 𝐴𝑥(𝛽𝐵𝑥𝑧 − 𝐵𝑦𝑧) < 𝐴𝑧
(𝛽𝐴𝑥+𝐵𝑦𝑥)2

(𝛽𝐵𝑥𝑧+𝐵𝑦𝑧)
; 

𝛽 =
𝑆𝑌𝑋

𝑆𝑋
2 . 

x. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑀𝑆𝐸(𝑡3); if 

2𝐵𝑦𝑥𝐵𝑥𝑧 + 𝐴𝑥(𝛽𝐵𝑥𝑧 − 𝐶𝑦𝑧) < 𝐷𝑧
(𝛽𝐴𝑥+𝐵𝑦𝑥)2

(𝛽𝐵𝑥𝑧+𝐶𝑦𝑧)
; 

𝛽 =
𝑆𝑌𝑋

𝑆𝑋
2 . 

v. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑀. 𝑀𝑆𝐸(𝑡4); if 

(𝐵𝑦𝑧𝐴𝑥 − 𝐵𝑦𝑥𝐵𝑥𝑧)
2

> 0;  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑢𝑒. 

xi. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑀𝑆𝐸(𝑡4); if 

(𝐶𝑦𝑧𝐴𝑥 − 𝐵𝑦𝑥𝐵𝑥𝑧)
2

> 0;   𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑢𝑒. 

vi. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(1)

) < 𝑀. 𝑀𝑆𝐸(𝑡5); if 

(𝐵𝑦𝑧𝐴𝑥 − 𝐵𝑦𝑥𝐵𝑥𝑧)
2

> 0;  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑢𝑒. 

xii. 𝑀. 𝑀𝑆𝐸(𝒯𝐼𝐸
(2)

) < 𝑀𝑆𝐸(𝑡5); if 

(𝐶𝑦𝑧𝐴𝑥 − 𝐵𝑦𝑥𝐵𝑥𝑧)
2

> 0;   𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑢𝑒. 

Table 2: Theoretical Constraints of the Proposed Estimators over Adopted Estimators 

 

5. NUMERICAL ANALYSIS OF PERFORMANCE OF PROPOSED ESTIMATORS 
This section aims to conduct two types of analyses for efficiency comparison: a simulation analysis using 

simulated data (symmetric and asymmetric) accounting for population type, and an empirical analysis using two 

different real-world data sets. 

 

5.1. Efficiency Analysis on Simulated Data 

We have used following statistical tools available in R software- mvrnorm (), unonr (), sample (), sampling (), 

moments (). 

Algorithm for simulation study:  

1. Input; 

2. Generate Multivariate Categorical Data, 𝐷 = (𝑌𝑁 , 𝑋𝑁 , 𝑍𝑁) ∈ 𝑀𝑁×3
ℝ ; 

       𝐿 ∶    Number of strata; 

𝑘 ∶    Vector of sub-sampling factor; 

R:     Respondent Group; 

NR:  Non-respondent group; 

Rep: Replication needed; 

3. Initialize; 

4.       𝒮𝑛ℎ
′ = 𝒮𝑛ℎ

= ∅; 

5.       Adopted Estimator (AE) Value = ∅ ; 

6.       Proposed Estimator (PE) Value = ∅ ; 

7. for j=1,…,length (𝒌) do 

8.         Stratify data 𝐷 into 𝐿 strata; 

9.         Split each stratum into R and NR 

10.      for i =1,…,Rep do 

11.          Draw first phase sample of size (𝑛ℎ(1)
′ , 𝑛ℎ(2)

′ , 𝑟ℎ
′ ) with 𝑆𝑖𝑅𝑆(𝑤𝑜𝑟) from R and NR of each stratum. 

12.          Estimate the unknown auxiliary mean from first phase sample. 

13.          Draw second phase sample of size (𝑛ℎ(1), 𝑛ℎ(2), 𝑟ℎ) with 𝑆𝑖𝑅𝑆(𝑤𝑜𝑟) from first phase sample.  

14.          Estimate 𝑌̅ by AE and PE. 

15.     end for 

16. end for 

17. Output; 

18. Get mean square error of the AE and PE by the model; 

                   𝑀𝑆𝐸(𝑇) =
1

𝑅𝑒𝑝
∑ (𝑇𝑖 − 𝑌̅)2𝑅𝑒𝑝

𝑖=1 ; where 𝑇 = AE and PE; 

 

For both situations I and II under two types of (symmetrical and asymmetrical) data sets, the mean square error 

and percentage relative efficiency (𝑃𝑅𝐸) at different levels of 𝑘 of the estimators are shown in Tables 3 to 4. The 

𝑃𝑅𝐸 of the estimators are calculated with respect to 𝑦̅𝑠𝑡
∗  using 𝑃𝑅𝐸(∙)  =  {𝑣𝑎𝑟(𝑦̅𝑠𝑡

∗ ) 𝑀𝑆𝐸(∙)⁄ } × 100.  

We have generated hypothetical data sets - symmetric and asymmetric with parameters (mentioned below with 

respect to variable 𝑐(𝑌, 𝑋, 𝑍) respectively), to perform the test the efficiency of the proposed estimators. The 

parameters are: 

 

Symmetric Data-Set      Asymmetric Data Set 

Mean vector=𝑐(178, 37, 38),     Mean vector=𝑐(1, 2, 3), 



45 
 

Variance-covariance matrix =[
1.00 0.68 0.72
0.68 1.00 0.46
0.72 0.46 1.00

]  Variance-covariance matrix =[
1.00 0.71 0.72
0.71 1.00 0.46
0.72 0.46 1.00

] 

𝜌 = [
1.00 0.69 0.69
0.69 1.00 0.47
0.69 0.47 1.00

]     𝜌 = [
1.00 0.69 0.70
0.69 1.00 0.45
0.70 0.45 1.00

] 

 

 

 Symmetric Data set Asymmetric Data Set 

         𝒌  

Estimators  

2 3 4 2 3 4 

𝒚̅𝒔𝒕
∗  0.002012096 

(100) 

0.00229757 

(100) 

0.002852795 

(100) 

0.001870726 

(100) 

0.002019792 

(100) 

0.002957734 

(100) 

𝒕𝟏 0.03490391 

(5.764672) 

0.04563346 

(5.034836) 

0.06382944 

(4.469402) 

0.001170022 

(159.8881) 

0.001350506 

(149.5581) 

0.001948345 

(151.8075) 

𝒕𝟐 0.05727571 

(3.513001) 

0.07157728 

(3.209916) 

0.0974817 

(2.926492) 

0.003421357 

(54.6779) 

0.003995108 

(50.55663) 

0.005874892 

(50.34533) 

𝒕𝟑 0.001313993 

(153.1284) 

0.001591433 

(144.3712) 

0.002006689 

(142.1643) 

0.001138077 

(164.3761) 

0.001439026 

(140.3582) 

0.002028566 

(145.8042) 

𝒕𝟒 0.001315691 

(152.9308) 

0.001586917 

(144.782) 

0.002004802 

(142.2981) 

0.001135001 

(164.8216) 

0.001393617 

(144.9316) 

0.002023063 

(146.2008) 

𝒕𝟓 0.001315691 

(152.9307) 

0.001586926 

(144.7812) 

0.002004784 

(142.2993) 

0.001136855 

(164.5527) 

0.001395599 

(144.7258) 

0.00202404 

(146.1302) 

𝓣𝑰𝑬
(𝟏)

 0.0009052529 

(222.269) 

0.001122478 

(204.6873) 

0.001570297 

(181.6723) 

0.0007682207 

(243.5142) 

0.000981715 

(205.7411) 

0.00157702 

(187.5521) 

Table 3: 𝑀𝑆𝐸 and 𝑃𝑅𝐸(∙) of the Estimators on Simulated Data-Sets under Situation-I 

 

 

 Symmetric Data-Set Asymmetric Data Set 

         𝒌  

Estimators  

2 3 4 2 3 4 

𝒚̅𝒔𝒕
∗  0.00204137 

(100) 

0.002632348 

(100) 

0.003241607  

(100) 

0.00195045 

(100) 

0.003018519 

(100) 

0.003040825 

(100) 

𝒕𝟏 0.03630133 

(5.623417) 

0.05623772 

(4.680752) 

0.06354986 

(5.100887) 

0.00124344 

(156.8582) 

0.001868144 

(161.5785) 

0.001984735 

(153.2107) 

𝒕𝟐 0.05859142 

(3.484086) 

0.08783845 

(2.996806) 

0.1021647 

(3.172923) 

0.00377029 

(51.73206) 

0.005675361 

(53.18638) 

0.005588416 

(54.413) 

𝒕𝟑 0.00136931 

(149.0803) 

0.001769844 

(148.7333) 

0.002111472 

(153.5235) 

0.00126389 

(154.321) 

0.001824714 

(165.4242) 

0.002010917 

(151.2158) 

𝒕𝟒 0.00136856 

 (149.1619) 

0.001778227 

(148.0322) 

0.002139771 

(151.4931) 

0.00124991 

(156.0469) 

0.001863889 

(161.9473) 

0.002027081 

(150.01) 

𝒕𝟓 0.00136855 

(149.1624) 

0.001778247 

(148.0305) 

0.002139767 

(151.4935) 

0.00125231 

(155.7474) 

0.001867794 

(161.6088) 

0.002025434 

(150.132) 

𝓣𝑰𝑬
(𝟐)

 0.00102721 

(198.73) 

0.001478301 

(178.07) 

0.001841667 

(176.02) 

0.0009721707 

(200.6286) 

0.001532334 

(196.9883) 

0.001740313 

(174.7287) 

Table 4: 𝑀𝑆𝐸 and 𝑃𝑅𝐸(∙) of the Estimators on Simulated Data-Sets under Situation-II 

 

5.2. Efficiency Analysis on Real Data 
We have used Hypertension Arterial Mexico Data Set for the empirical study of numerical analysis available at 

https://www.kaggle.com/datasets/frederickfelix/hipertensin-arterial-mxico. The data set includes raw 

information (such as body mass index, height, gender, weight, different glucose results etc.) taken from the 

national health and nutrition survey (ENSANUT) https://ensanut.insp.mx/encuestas/ensanutcontinua2022/ 

descargas.php. 
In the present investigation, two distinct sets of variables are taken into consideration: 

https://www.kaggle.com/datasets/frederickfelix/hipertensin-arterial-mxico
https://ensanut.insp.mx/encuestas/ensanutcontinua2022/%20descargas.php.
https://ensanut.insp.mx/encuestas/ensanutcontinua2022/%20descargas.php.
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Combination-1     Combination-2 

𝒀: 𝑣𝑎𝑙𝑜𝑟_𝑐𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙_𝑡𝑜𝑡𝑎𝑙   𝒀: 𝑣𝑎𝑙𝑜𝑟_ℎ𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛𝑎_𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑙𝑎𝑑𝑎 

𝑿: 𝑣𝑎𝑙𝑜𝑟_𝑐𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙_ℎ𝑑𝑙    𝑿: 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜_𝑔𝑙𝑢𝑐𝑜𝑠𝑎 

𝒁: 𝑣𝑎𝑙𝑜𝑟_𝑡𝑟𝑖𝑔𝑙𝑖𝑐𝑒𝑟𝑖𝑑𝑜𝑠    𝒁: 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜_𝑔𝑙𝑢𝑐𝑜𝑠𝑎_𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜 

 

Using gender as the primary stratification criterion, we classified 20% of the units as non-respondent groups based 

on the specific circumstances surrounding their non-response. The required parameters are described below 

 Combination-1 𝑌̅ =44.1389 𝑋̅ =36.03025 𝑍̅ =137.2698 

𝒉  𝑵𝒉 𝑵𝒉(𝟐) 𝒏𝒉
′  𝒏𝒉 𝒏𝒉(𝟐)

′  𝒏𝒉(𝟐) 𝒀̅𝒉 𝑿̅𝒉 𝒁̅𝒉 

1 1687 337.4 1349 674 269 134 144.9887 35. 5602 143.508 

2 2676 535.2 2140 1070 428 214 143.603 36.3267 133.337 

 𝒀̅𝒉(𝟐) 𝑿̅𝒉(𝟐) 𝒁̅𝒉(𝟐) 𝑺𝒀𝒉
 𝑺𝑿𝒉

 𝑺𝒁𝒉
 𝑺𝒀𝒉(𝟐) 𝑺𝑿𝒉(𝟐) 𝑺𝒁𝒉(𝟐) 

1 143.7046 35.077 141.4154 29.4789 9.2631 91.4104 19.7273 4.6657 70.9033 

2 142.9943 36.482 130.2079 27.403 7.2266 67.4521 21.3396 6.5817 61.3585 

 
 𝝆𝒀𝒉𝑿𝒉

  𝝆𝒀𝒉𝒁𝒉
  𝝆𝑿𝒉𝒁𝒉

  𝝆𝒀𝒉𝑿𝒉(𝟐)  𝝆𝒀𝒉𝒁𝒉(𝟐)  𝝆𝑿𝒉𝒁𝒉(𝟐)    

1 0.4158 0.5552 0.05756 0.45435 0.46237 -0.1266    

2 0.5598 0.5177 0.00895 0.56319 0.3486 -0.0594    

 

 

Combination-2 𝑌̅ =5.452074 𝑋̅ =96.89466 𝑍̅ =110.3149 

𝒉  𝑵𝒉 𝑵𝒉(𝟐) 𝒏𝒉
′  𝒏𝒉 𝒏𝒉(𝟐)

′  𝒏𝒉(𝟐) 𝒀̅𝒉 𝑿̅𝒉 𝒁̅𝒉 

1 1687 337.4 1349 674 269 134 5.3898 95.65027 108.3106 

2 2676 535.2 2140 1070 428 214 5.4913 97.6792 111.5785 

 𝒀̅𝒉(𝟐) 𝑿̅𝒉(𝟐) 𝒁̅𝒉(𝟐) 𝑺𝒀𝒉
 𝑺𝑿𝒉

 𝑺𝒁𝒉
 𝑺𝒀𝒉(𝟐) 𝑺𝑿𝒉(𝟐) 𝑺𝒁𝒉(𝟐) 

1 5.29331 92.9757 105.550 0.840756 28.1073 24.0496 0.3881 12.4809 11.0681 

2 5.4307 95.0320 109.358 1.0999 53.7513 36.9487 0.9155 27.1248 26.0122 

 
 𝝆𝒀𝒉𝑿𝒉

  𝝆𝒀𝒉𝒁𝒉
  𝝆𝑿𝒉𝒁𝒉

  𝝆𝒀𝒉𝑿𝒉(𝟐)  𝝆𝒀𝒉𝒁𝒉(𝟐)  𝝆𝑿𝒉𝒁𝒉(𝟐)    

1 0.8577 0.9999 0.8582 0.6531 0.9997 0.6528    

2 0.5776 0.8514 0.4867 0.8482 0.9927 0.8126    

For both situations I and II under two types of combinations of variables, the mean square error and percentage 

relative efficiency (𝑃𝑅𝐸) at different levels of 𝑘 of the estimators are shown in Tables 5 and 6. 

 

 

 Combination-1 Combination-2 

         𝒌  

Estimators  

2 3 4 2 3 4 

𝒚̅𝒔𝒕
∗  0.3341742 

(100) 

0.3944839 

(100) 

0.4547936 

(100) 

0.0004302727 

(100) 

0.0005114625 

(100) 

0.0005926524 

(100) 

𝒕𝟏 0.4480475 

(88.0451) 
0.4480475 

(88.0451) 

0.5018696 

(90.61987) 

0.0013886 

(30.98608) 

0.001510897 

(33.85159) 

0.005168526 

(11.46656) 

𝒕𝟐 0.9809442 

(34.06659) 

1.118271 

(35.27623) 

1.270098 

(35.80775) 

0.003417028 

(12.59201) 

0.003793379 

(13.48303) 

0.00842079 

(7.037966) 

𝒕𝟑 0.2682137 

(124.5925) 

0.3222577 

(122.4126) 

0.3693938 

(123.1189) 

0.0003001237 

 (143.3651) 

0.0003602162 

(141.9877) 

0.0005687025 

(104.2113) 

𝒕𝟒 0.2681772 

 (124.6095) 

0.3222515 

(122.4149) 

0.3692491 

(123.1671) 

0.000299904 

(143.4701) 

0.0003593573 

(142.327) 

0.0004860617 

(121.9295) 

𝒕𝟓 0.2681772 

(124.6095) 

0.3222515 

(122.4149) 

0.3692491 

(123.1671) 

0.000299904 

(143.4701) 

0.0003593573 

(142.327) 

0.0004860617 

(121.9295) 

𝓣𝑰𝑬
(𝟏)

 0.1946878 

(171.6462) 

0.2487106 

(158.6116) 

0.2958468 

(153.726) 

0.0001426275 

(301.6759) 

0.0002116649 

(241.6379) 

0.0002835951 

(208.9783) 

Table 5: 𝑀𝑆𝐸 and 𝑃𝑅𝐸(∙) of the Estimators on Empirical Data-Sets under Situation-I 
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 Combination-1 Combination-2 

         𝒌  

Estimators  

2 3 4 2 3 4 

𝒚̅𝒔𝒕
∗  0.3341742 

(100) 

0.3944839 

(100) 

0.4547936 

 (100) 

0.0004302727 

(100) 

0.0005114625 

(100) 

0.0005926524 

(100) 

𝒕𝟏 0.3808453 

(87.7454) 

0.4493367 

(87.79249) 

0.5140582 

(88.47121) 

0.001398142 

(30.77462) 

0.00151616 

(33.73407) 

0.001562741 

(37.9239) 

𝒕𝟐 0.9770939 

(34.20083) 

1.101085 

(35.82683) 

1.274506 

(35.68392) 

0.00345917 

(12.43861) 

0.00375117 

(13.63475) 

0.003949056 

(15.00745) 

𝒕𝟑 0.269741 

(123.8871) 

0.3247531 

(121.4719) 

0.3725691 

(122.0696) 

0.0002976758 

(144.5441) 

0.0003649452 

(140.1478) 

0.0004299789 

(137.8329) 

𝒕𝟒 0.2697316 

(123.8914) 

0.3247528 

(121.472) 

0.3725558 

(122.0739) 

0.0002974204 

(144.6682) 

0.0003643492 

(140.377) 

0.0004281283 

(138.4287) 

𝒕𝟓 0.2697316 

123.8914 () 

0.3247528 

(121.472) 

0.3725558 

(122.0739) 

0.0002974204 

(144.6682) 

0.0003643492 

(140.377) 

0.0004281283 

 (138.4287) 

𝓣𝑰𝑬
(𝟐)

 0.09851726 

(339.2037) 

0.1675565 

(235.4334) 

0.2334231 

(194.8366) 

0.0001856999 

(231.7033) 

0.0002623509 

(194.9536) 

0.0003370512 

(175.8345) 

Table 6: 𝑀𝑆𝐸 and 𝑃𝑅𝐸(∙) of the Estimators on Empirical Data-Sets under Situation-II 

 

6. CONCLUSION AND INTERPRETATION 

Using a two-phase sampling scheme, several authors, including Singh and Kumar ([16], [18]), Khare and Kumar 

[9], Bhushan and Pandey [2], and many more, have produced promising research in parameter estimation under 

missing data due to non-response when auxiliary mean is unknown. Whereas, the majority of authors have taken 

into account that, although it appears implausible in real-world situations, the auxiliary variable does not suffer 

non-response during the first phase but does at the second. This article concerns the problem of having non-

response at both the phases of survey sampling. In this regard, the main objective of this present paper is to produce 

exponential estimators that are more effective in estimating the mean of the variable under study using an 

enhanced methodology.  

To justify the efficiency of the proposed estimators we have performed the test of efficiency using mean square 

error (𝑀𝑆𝐸) and percentage relative efficiency (𝑃𝑅𝐸) under the defined situations (I and II) of non-response for 

different values of sub-sampling factor (𝑘). The 𝑀𝑆𝐸 and 𝑃𝑅𝐸 of the estimators are shown in table 3 to 6 for 

hypothetical data sets (symmetrical and asymmetrical) as well as empirical data-sets (Combination 1 and 

Combination 2). At last, after a thorough analysis of the data, we conclude that our suggested estimators 

outperform all adopted existing and conventional estimators in terms of 𝑃𝑅𝐸. Strong evidence is presented by the 

research findings for the preference of the proposed estimators in the context of non-response under observed 

heterogeneous population to obtain effective population mean estimate in the real-time problem domain. 
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