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ABSTRACT
Researchers often have problems getting truthful responses when asking questions related to sensitive

personal, financial, or societal topics. The randomized response technique was developed to guarantee

the respondents privacy by concealing their true response, thus ensuring more truthful cooperation.

This paper introduces a two stage randomized response model for sensitive quantitative data. The

model and its estimator are developed for use with simple and stratified random sampling. Under

each sampling scheme, the efficiency of the estimator is investigated with respect to various estimators

and it is found to be more efficient. A Simulation study using data on age of first alcohol consumption

is conducted to showcase the gains in efficiency when using the proposed estimator compared to other

competing estimators.

KEYWORDS: Estimation of mean, Quantitative data, Randomized response technique, Sensitive

questions, Two stage, Scrambling variable.
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RESUMEN

Los investigadores a menudo tienen problemas para obtener respuestas veraces cuando hacen

preguntas relacionadas con temas personales, financieros o sociales delicados. La técnica de

respuesta aleatoria se desarrolló para garantizar la privacidad de los encuestados ocultando su

verdadera respuesta, asegurando aśı una cooperación más veraz. Este art́ıculo presenta un modelo

de respuesta aleatoria en dos etapas para datos cuantitativos sensibles.El modelo y su estimador

están desarrollados para su uso con muestreo aleatorio simple y estratificado. En cada esquema de

muestreo, se investiga la eficiencia del estimador con respecto a varios estimadores y se encuentra

que es más eficiente. Se lleva a cabo un estudio de simulación utilizando datos sobre la edad del

primer consumo de alcohol para mostrar las ganancias en eficiencia cuando se utiliza el estimador

propuesto en comparación con otros estimadores de la competencia.

PALABRAS CLAVE: Estimación de la media, Datos cuantitativos, Técnica de respuesta aleato-

ria, Preguntas sensibles, Dos etapas, Variable de aleatorización.
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1. INTRODUCTION

Researchers often have problems getting truthful responses when asking questions related to sensitive

personal, financial, or societal topics. Questions related to tax evasions, sexual tendencies, or drug

usage causes respondents to either avoid getting questioned altogether, or provide incorrect informa-

tion. Warner (1965) was the first to suggest a technique, called the randomized response technique

(RRT), to induce more cooperation from respondents. Warner’s model was designed for dichotomous

variables, where the respondent may belong to either a stigmatizing group “A”, or it’s complement

“Ac”. The respondent, based on the outcome of the randomization device, provides an answer to one

of the two questions “Do you belong to group A?”, or “Do you belong to Ac?”, with probabilities p and

1−p, respectively, with p ∈ (0, 1). A randomization device, which could be a spinner, a deck of cards,

or a box with different colored balls, is used to determine which question the respondent answers.

This process is carried out without the involvement of the interviewer and without his knowledge of

the outcome, therefore encouraging more cooperation from the respondents.

Since then, the RRT has been used in many surveys and proved to provide better response rates and

more reasonable estimates of the parameters under study. For example, Goodstadt and Gruson (1975)

used an RR model to inquire about drug usage and reported that using RRT resulted in a significantly

reduced non-response figure compared to the direct question method. Lensvelt-Mulders et al. (2005)

conducted meta-analyses that compared the performance of RR models and direct questioning and

found that RRT elicited more socially undesirable answers. Krumpal (2013) has a review on many

comparative studies that show that the added cost of RRT is balanced by a better estimate of the

parameter under study.

To estimate the mean of a quantitative random variable, Greenberg et al. (1971) provided an RR

model using an unrelated question for the randomization. The problem with the unrelated question

method is the need to find another variable with known parameters that can be used in the random-

ization. The unrelated question should have a matching range to the sensitive study question. If

no such variable is available, two samples would need to be drawn in order to estimate the averages

of the sensitive and the unrelated variables. For this reason, the scrambled response technique was

considered and developed by many researchers. According to this technique, the respondent multi-

plies (or adds) an independently generated value to his/her answer, discretely, before reporting to the

interviewer.

The first to study the usage of a scrambling variable to obtain the mean of a sensitive random

variable in extensive details were Eichhorn and Hayre (1983). According to Eichhorn and Hayre (1983)

multiplicative model, each respondent in a simple random sample of size n provides the interviewer

with the answer Z = XS, where X is the answer to the sensitive question, S is a random variable

independent of X. This means that the respondent never has to reveal his answer to the sensitive

question as P (S = 1) = 0. Assume that X ≥ 0 and S > 0, and let µX and σ2
X be the mean and

variance of X, respectively, while, µS and σ2
S be the known mean and variance of S. Based on a simple
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random sample with replacement (SRSWR) of size n, an unbiased estimator for µX is given by:

µ̂E =
Z̄

µS

where Z̄ is the moment estimator of the mean of the responses.

The variance of µ̂E is given by:

V (µ̂E) =
µ2
X

n
[C2

X + C2
S(1 + C2

X)]

where CX and CS are the coefficients of variation of the sensitive variable X and the scrambling

variable S, respectively.

Bar-Lev et al. (2004) proposed a quantitative RR model that combines a randomization mechanism

with the scrambling technique used by Eichhorn and Hayre (1983). According to this model, the

interviewee’s response is as follows:

Z =

X, with probability p

XS, with probability 1− p

where p ∈ (0, 1). The respondents conduct a simple Bernoulli experiment and based on the outcome

either report the true value of X, or report the scrambled response XS. The experiment is conducted

away from the interviewer and its result is not disclosed.

Based on a SRSWR of size n, an unbiased estimator of µX is given by:

µ̂B =
Z̄

p+ µS(1− p)

with variance:

V (µ̂B) =
µ2
X

n
[C2

X + C∗
S(p)(1 + C2

X)] (1.1)

where

C∗
S(p) =

p+ (1− p)(µ2
S + σ2

S)

(p+ µS(1− p))2
− 1

They showed that their estimator, µ̂B , is more efficient than Eichhorn and Hayre (1983) estimator,

µ̂E if the distribution of the scrambling variable S satisfies the following condition

0 < µS <
2E(S2)

1 + E(S2)
(1.2)

They also suggested the exponential distribution with mean µS = 1/λ, where 2−
√
2 < λ < 2+

√
2, to

be used for the variable S since it satisfies the aforementioned condition in Equation 1.2 for uniform

efficiency.

Ryu et al. (2005) suggested the following two-stage RR model.

Z =


X, with probability p

go to R2, with probability 1− p

X, with probability t

XS, with probability 1− t
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In their analysis they set the mean of the scrambling variable, µS , equal to 1 and obtained the following

unbiased estimator of µX :

µ̂R = Z̄

with variance given by:

V (µ̂R) =
µ2
X

n
[C2

X + (1− p)(1− t)σ2
S(1 + C2

X)] (1.3)

They showed that their estimator is more efficient than that of Greenberg et al. (1971), and Gupta

et al. (2002) optional RR model’s estimator. Unlike the aforementioned compulsory RR models, the

optional randomized response technique (ORRT) proposed in Gupta et al. (2002) suggests that in-

stead of conducting a Bernoulli trial to determine whether the respondent answers X or the scrambled

response XS, it is up to the respondents themselves whether they answer truthfully or use the scram-

bling method. The respondents make the choice without informing the researcher and report their

answers. Thus, if ORRT is to be used, the question sensitivity which determines the proportion that

would report the scrambled response needs to be estimated along with µX to determine the variance

of the estimator.

They also extended their model to the stratified random sampling. Suppose a population of size N is

divided to k strata each having Nh individuals, where h = 1, 2, ..., k, and k independent SRSWRs are

selected, each of size nh, with n =
∑k

h=1 nh as the total sample size. Each respondent in a SRSWR

of size nh from stratum h is provided with two random devices R1h and R2h. The first randomization

device, R1h, has two statements (i) report your true response Xh for the sensitive question, and (ii) go

to R2h, with probabilities ph and 1−ph, respectively. The second randomization device, R2h, has two

statements (i) report your true response Xh for the sensitive question, and (ii) report the scrambled

response XhSh, with probabilities th and 1− th, respectively.

Assuming that µSh
= 1, for h = 1, . . . , k, they obtained the following unbiased estimator of µX :

µ̂S
R =

k∑
h=1

whZ̄h

with variance given by:

V (µ̂S
R) =

k∑
h=1

w2
hµ

2
Xh

nh

[
C2

Xh
+ (1− ph)(1− th)σ

2
Sh

(1 + C2
Xh

)
]

(1.4)

where wh = Nh/N is the weight of the hth stratum in the population.

They also obtained the variance of their estimator in case of Neyman’s optimal allocation

NeyV (µ̂S
R) =

1

n

( k∑
h=1

whµXh

√
C2

Xh
+ (1− ph)(1− th)σ2

Sh
(1 + C2

Xh
)
)2

(1.5)

Afterwards, Tarray and Singh (2017) suggested a modification on Bar-Lev et al. (2004) model, which
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made it more efficient than the original. According to their model the response is given by:

Z =

X, with probability p

XS∗, with probability 1− p

where S∗ = aS+bµS

a+b and a and b are positive real numbers. The estimator of µX is given by:

µ̂T =
Z̄

[p+ µS(1− p)]

with variance equal to:

V (µ̂T ) =
µ2
X

n

[
C2

X + C∗
S∗(p)(1 + C2

X)
]

(1.6)

where

C∗
S∗(p) =

p+ (1− p)(µ2
S + η2σ2

S)

[p+ (1− p)µS ]2
− 1 and η =

a

(a+ b)

Comparing V (µ̂T ) and V (µ̂B) in (1.6) and (1.1), it is easy to observe that V (µ̂T ) is always less than

V (µ̂B).

Most recently, Bouza-Herrera et al. (2022) proposed an RRT design with two scrambling procedures.

The respondent performs a Bernoulli experiment which decides which procedure to be used. The

respondent then gives an answer without disclosing which procedure was used. The response is as

follows:

Z =

X +A, with probability p

X +AB, with probability 1− p

where A and B are two independent scrambling variables, independent from the sensitive variable X.

The estimator of µX is given by:

µ̂CB = Z̄ − µA(p+ (1− p)µB)

with variance equal to:

V (µ̂CB) =
σ2
X + σ2

A(p+ (1− p)σ2
B)

n
(1.7)

where µA, µB , σ
2
A and σ2

B are the means and variances of the scrambling variables A and B, respec-

tively.

The authors extended their model to the case of stratified random sampling and obtained an unbiased

estimator for µX .

In the next section, we introduce our proposed model for the estimation of the mean of a sensitive

quantitative random variable in case of simple random sampling. It is shown, in section 3, that the

proposed estimator is more efficient than all the previously discussed estimators. In section 4, the

proposed model is extended to stratified random sampling, and the stratified estimator is shown to be

more efficient than that of Ryu et al. (2005). In section 5, a simulation study is conducted using real

data to assess the efficiency of all the competing estimators. The last section contains a summary of

the results presented in the paper.

77



2. PROPOSED MODEL IN CASE OF SIMPLE RANDOM SAMPLING

The proposed model suggests a modification on Ryu et al. (2005) model using an alternative form

of the scrambled variable, S∗, suggested by Tarray and Singh (2017). According to the proposed

model, each respondent in a SRSWR of size n, from a population of size N , is provided with two

randomization devices R1 and R2. Using R1, the respondent either reports the true value of X, or

goes to R2, with probabilities p, and 1− p, respectively. Based on the outcome of R2, the respondent

either reports X, or the scrambled response XS∗, with probabilities t and 1 − t, respectively. The

respondent’s response, Z, can be represented as follows:

Z =


X, with probability p

go to R2, with probability 1− p

X, with probability t

XS∗, with probability 1− t

where S∗ = ηS + (1− η)µS , and η ∈ (0, 1).

At η = 1, the model reduces to that of Ryu et al. (2005). It should also be noted that at t = 0

the proposed model reduces to Tarray and Singh (2017) model, and at t = 1 it reduces to a direct

response question.

It is clear that the expected value of S∗, and its variance are given by:

E(S∗) = µS

V (S∗) = η2σ2
S

It is easy to show for the responses, Z, that

E(Z) = µX(p+ (1− p)t+ (1− p)(1− t)µS) (2.1)

and E(Z2) = (µ2
X + σ2

X)[p+ (1− p)t+ (1− p)(1− t)(µ2
S + η2σ2

S)] (2.2)

Therefore, an unbiased estimator for the mean of the sensitive random variable, µX , is given by:

µ̂∗
R =

Z̄

p+ (1− p)t+ (1− p)(1− t)µS
(2.3)

Theorem 1: µ̂∗
R is an unbiased estimator for µX with variance equal to:

V (µ̂∗
R) =

µ2
X

n
[C2

X + C∗
S∗(p, t)(1 + C2

X)] (2.4)

where

C∗
S∗(p, t) =

p+ (1− p)t+ (1− p)(1− t)(µ2
S + η2σ2

S)

[p+ (1− p)t+ (1− p)(1− t)µS ]2
− 1 (2.5)

Proof:

The unbiasedness of µ̂∗
R follows by taking the expected values of both sides of equation 2.3 and
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substituting for E(Z) from equation 2.1.

E(µ̂∗
R) =

E(Z)

p+ (1− p)t+ (1− p)(1− t)µS

=
µX [p+ (1− p)t+ (1− p)(1− t)µS ]

p+ (1− p)t+ (1− p)(1− t)µS

= µX

V (µ̂∗
R) =

V (Z)

n[p+ (1− p)t+ (1− p)(1− t)µS ]2

=
E(Z2)− E2(Z)

n[p+ (1− p)t+ (1− p)(1− t)µS ]2
(2.6)

substituting 2.1 and 2.2 into 2.6 gives:

V (µ̂∗
R) =

(µ2
X + σ2

X)[p+ (1− p)t+ (1− p)(1− t)(µ2
S + η2σ2

S)]

n[p+ (1− p)t+ (1− p)(1− t)µS ]2
− µ2

X

n

=
µ2
X(1 + C2

X)

n
(C∗

S∗(p, t) + 1)− µ2
X

n

=
µ2
X

n

[
C2

X + C∗
S∗(p, t)(1 + C2

X)
]
.

where C∗
S∗(p, t) is as defined in 2.5.

3. EFFICIENCY COMPARISON

In what follows, the efficiency of our proposed estimator is investigated relative to that of Ryu et al.

(2005), Tarray and Singh (2017) and Bouza-Herrera et al. (2022) estimators.

3.1. Efficiency comparison with Ryu et al. (2005) estimator

The efficiency of the proposed estimator µ̂∗
R relative to Ryu et al. (2005) estimator, µ̂R, is given by:

R.E =
V (µ̂R)

V (µ̂∗
R)

,

where V (µ̂R) and V (µ̂∗
R) are as given in equations 1.3 and 2.4, respectively.

To compare the proposed estimator to that of Ryu et al. (2005), we have to set µS = 1 as is done in

their model. In this case, the variance of the proposed model, given by equation 2.4, reduces to the

following:

V (µ̂∗
R) =

µ2
X

n
[C2

X + (1− p)(1− t)η2σ2
S(1 + C2

X)]

Consequently,

R.E =
V (µ̂R)

V (µ̂∗
R)

=
C2

X + (1− p)(1− t)σ2
S(1 + C2

X)

C2
X + (1− p)(1− t)η2σ2

S(1 + C2
X)
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It is clear that the relative efficiency of the proposed estimator to that of Ryu et al. (2005) will always

be greater than 1, for all values of η ∈ [0, 1), and the lower the value of η, the higher the relative

efficiency. Knowing that Ryu et al. (2005) already proved that their estimator is more efficient than

Greenberg et al. (1971) and Gupta et al. (2002) estimators, then so is the proposed estimator.

3.2. Efficiency comparison with Tarray and Singh (2017) estimator

As noted before, the proposed model reduces to the Tarray and Singh (2017) model at t = 0, while

at t = 1 it reduces to a direct response question. Therefore, to compare the efficiency of the proposed

estimator to that of Tarray and Singh (2017) it is sufficient to prove that V (µ̂∗
R) is a decreasing

function in t for t ∈ (0, 1). To do so we show that the first derivative of V (µ̂∗
R) with respect to t is

negative for all t ∈ (0, 1).

Theorem 2: The proposed estimator is more efficient than that of Tarray and Singh (2017) provided

that µS satisfies the following condition:

0 ≤ µS <
2E(S∗2)

1 + E(S∗2)
(3.1)

Proof: By looking at V (µ̂∗
R) in 2.4, we can see that the first derivative of V (µ̂∗

R) with respect to t

reduces to the first derivative of C∗
S∗(p, t), given in equation 2.5, with respect to t.

Let a = E(S∗2) = η2σ2
S + µ2

S

δC∗
S∗(p, t)

δt

=
[p+ (1− p)t+ (1− p)(1− t)µS ]

2[(1− p)− a(1− p)]

[p+ (1− p)t+ (1− p)(1− t)µS ]4

−
[p+ (1− p)t+ (1− p)(1− t)a]

[
2(p+ (1− p)t+ (1− p)(1− t)µS)((1− p)− (1− p)µS)

]
[p+ (1− p)t+ (1− p)(1− t)µS ]4

=
[p+ (1− p)t+ (1− p)(1− t)µS ][(1− p)− a(1− p)]

[p+ (1− p)t+ (1− p)(1− t)µS ]3

−
[p+ (1− p)t+ (1− p)(1− t)a]

[
2((1− p)− (1− p)µS)

]
[p+ (1− p)t+ (1− p)(1− t)µS ]3

=
(1− p)

[
(1− a)[p+ (1− p)t+ (1− p)(1− t)µS ]− 2(1− µS)[p+ (1− p)t+ (1− p)(1− t)a]

]
[p+ (1− p)t+ (1− p)(1− t)µS ]3

≡ N(t)

D(t)
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Assuming that µS > 0, then D(t) > 0 ∀ t ∈ (0, 1). Therefore, we need N(t) to be negative.

N(t) = (1− p)
[
(1− a)(1− p)t− (1− a)(1− p)µSt− 2(1− µS)(1− p)t+ 2(1− µS)(1− p)at

+ (1− a)p+ (1− a)(1− p)µS − 2(1− µS)p− 2(1− µS)(1− p)a
]

= (1− p)
[
(1− a)(1− p)(1− µS)t− 2(1− µS)(1− p)(1− a)t+ (1− a)p

− (1− a)µSp− 2(1− µS)p+ 2(1− µS)ap+ (1− a)µS − 2(1− µS)a
]

= (1− p)
[
− (1− a)(1− p)(1− µS)t+ µS − aµS − 2a

+ 2µSa+ (1− a− µS + aµS − 2 + 2µS + 2a− 2µSa)p
]

= (1− p)
[
− (1− a)(1− p)(1− µS)t+ (a+ µS − µSa− 1)p+ µS(1 + a)− 2a

]
= (1− p)

[
− (1− a)(1− p)(1− µS)t− (1− a)(1− µS)p− [2a− µS(1 + a)]

]
= (1− p)

[
− (1− a)(1− µS)[(1− p)t+ p]− [2a− µS(1 + a)]

]
For the derivative to be negative, we need N(t) < 0. We have two terms, for the second term to be

negative, we need 2a > µS(1 + a), which means that we need µS < 2a
1+a . Meanwhile, the first term

attains its greatest value at t = 1, where p+ t(1− p) = 1. So,

N(t) < (1− p)
[
− (1− a)(1− µS)− [2a− µS(1 + a)]

]
< (1− p)[−(1 + a) + 2µS ]

Therefore, µS should be less than (1 + a)/2, however this term is larger than 2a/(1 + a).

The following theorem gives a good candidate for the probability distribution of the scrambling vari-

able, S, that satisfies the condition given in Equation 3.1.

Theorem 3: The exponential distribution, with mean 1/λ, where

1 + η2 − η
√
1 + η2 < λ ≤ 1 + η2 + η

√
1 + η2, (3.2)

satisfies the condition in Equation 3.1 for S.

Proof: First we need µS < 2E(S∗2)
1+E(S∗)2 , then under the exponential distribution:

1

λ
<

2( 1
λ2 + η2

λ2 )

1 + ( 1
λ2 + η2

λ2 )

λ2 − 2(1 + η2)λ+ (1 + η2) < 0

Solving the corresponding quadratic equation, we get:

λ = (1 + η2)±
√
η2(1 + η2)

Under the condition in 3.2, the proposed estimator is more efficient than that of Tarray and Singh

(2017). Moreover, Tarray and Singh (2017) showed that their estimator is more efficient than that of

Bar-Lev et al. (2004), and Bar-Lev et al. (2004) showed that their estimator is more efficient than
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Eichhorn and Hayre (1983) estimator. Therefore, the proposed estimator is more efficient than that

of Eichhorn and Hayre (1983), Bar-Lev et al. (2004) and Tarray and Singh (2017) under condition

3.1.

3.3. Efficiency comparison with Bouza-Herrera et al. (2022) estimator

A theoretical comparison between the variances of the proposed estimator and Bouza-Herrera et al.

(2022) estimator is hard due to both models having different parameters. Therefore, in this section,

a simulation study is conducted to compare the two estimators. Investigation of the possible distri-

butions of the parameters and the sensitive variable is necessary for the simulation study of relative

efficiency. In the additive model of Bouza-Herrera et al. (2022) the scrambling variable A should have

similar range and variance to the sensitive variable X in order to adequately conceal the response.

On the other hand, the multiplicative scrambling variables S and B should be centered around 1

regardless of the range of X. Thus, the Exp (1) distribution was used for both S and B.

Next, There are two possible forms of quantitative sensitive variables, either count data or continuous

data. The Poisson (θ) and the exponential (λ) distributions can be used for count and continuous

data, respectively. The following values of θ were considered in the comparison {2, (2), 10}. For

the exponential distribution, we considered the mean 1/λ = {20000, (10000), 60000}. Banerjee et al.

(2006) discusses the use of the exponential distribution for modelling personal income in Australia.

In all cases, we let the additive scrambling variable A assume the same distribution as X.

Finally, we restrict the range of possible values of p, t, and η in the model to {0.3, (0.1), 0.7}. The

considered range takes into account the privacy of the respondents and the efficiency of the estimators.

Approximate relative efficiency R̂.E.(µ̂∗
R, µ̂CB) was calculated by generating 10,000 samples of size

n = 100 for X, A, B, and S from the above mentioned distributions. In addition, two Bernoulli

random variables were generated with probabilities p and t for the randomization process. The results

for the first case where X is count data is summarized in Table 1. As we can see, the proposed

estimator is more efficient than that of Bouza-Herrera et al. (2022) with minimum relative efficiency

of 1.348 which occurs at θ = 2, p = η = 0.7, and t = 0.3. Meanwhile, the maximum efficiency of 3.545

occurs at θ = 10, p = 0.5, t = 0.7, and η = 0.3. This shows that we do not need to maximize the

values of p or t to achieve much better efficiency than Bouza-Herrera et al. (2022) estimator.

Table 1: Summary of R̂.E.(µ̂∗
R, µ̂CB) for X ∼ Poisson (θ)

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.

R̂.E.(µ̂∗
R, µ̂CB) 1.348 1.775 2.055 2.140 2.445 3.545

For the case where X is a continuous variable, Table 2 shows the results of the simulation. Once more

we find that the proposed estimator is more efficient than that of Bouza-Herrera et al. (2022) under
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the considered parameters. The minimum efficiency is 1.202 and occurs at 1/λ = 60, 000, p = η = 0.7,

and t = 0.7. The maximum efficiency is 1.9 and occurs at 1/λ = 30000, p = η = 0.3, and t = 0.7.

Again this shows that much higher efficiency can be achieved even with low value of p. The simulation

was done using R and the code is available upon request from the corresponding author.

Table 2: Summary of R̂.E.(µ̂∗
R, µ̂CB) for X ∼ Exp (λ)

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.

R̂.E.(µ̂∗
R, µ̂CB) 1.202 1.453 1.552 1.552 1.650 1.906

4. PROPOSED MODEL IN CASE OF STRATIFIED RANDOM SAMPLING

If the population, of size N , is divided into k non-overlapping strata, each of size Nh, where h =

1, 2, ..., k, and
∑k

h=1 Nh = N , then a simple random sample with replacement of size nh, is selected

from each stratum, and
∑k

h=1 nh = n is the total sample size. The selections in different strata are

made independently. The respondent’s response from the hth stratum is given by:

Zh =


Xh, with probability ph

go to R2, with probability 1− ph

Xh, with probability th

XhS
∗
h, with probability 1− th

where S∗
h = ηhSh + (1− ηh)Sh, ηh ∈ (0, 1), ph ∈ (0, 1), th ∈ (0, 1), and h = 1, 2, ..., k.

The expected value, and the variance of the response from the hth stratum is given by:

E(Zh) = µXh
(ph + (1− ph)th + (1− ph)(1− th)µSh

)

E(Z2
h) = (µ2

Xh
+ σ2

Xh
)[ph + (1− ph)th + (1− ph)(1− th)(µ

2
Sh

+ η2hσ
2
Sh

)]

V (Zh) = E(Z2
h)− E2(Zh)

Therefore an unbiased estimator for the mean of the sensitive variable in stratum h, µXh
, is given by:

µ̂Xh
=

Z̄h

ph + (1− ph)th + (1− ph)(1− th)µSh

(4.1)

and its variance is given by:

V (µ̂Xh
) =

µ2
Xh

nh
[C2

Xh
+ C∗

S∗
h
(ph, th)(1 + C2

Xh
)]

where

C∗
S∗
h
(ph, th) =

ph + (1− ph)th + (1− ph)(1− th)(µ
2
Sh

+ η2hσ
2
Sh

)

[ph + (1− ph)th + (1− ph)(1− th)µSh
]2

− 1

Then, an unbiased estimator for the population mean of the sensitive attribute, µX , is:

µ̂s
X =

k∑
h=1

whµ̂Xh
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where wh = Nh/N is the weight of stratum h, such that
∑k

h=1 wh = 1, and µ̂Xh
is given in 4.1.

The variance of the proposed estimator is given by:

V (µ̂s
X) =

k∑
h=1

w2
hV (µ̂Xh

)

Using Neyman’s optimum allocation minimizes the variance under the stratified random sample by

taking nh = n whsh∑
whsh

, where sh is the standard deviation of the responses in the hth stratum. On

doing so, the variance of the estimator of the mean of the sensitive variable becomes as follows:

NeyV (µ̂S
X) =

k∑
h=1

w2
hV (Zh)

n[ph + (1− ph)th + (1− ph)(1− th)µSh
]

=
1

n

k∑
h=1

wh

√
V (Zh)

[ph + (1− ph)th + (1− ph)(1− th)µSh
]

k∑
h=1

wh

√
V (Zh)

Neyman’s method requires prior estimates on the mean and variance of the sensitive variable which

can be obtained from a pilot study or prior research.

4.1. Efficiency comparison with Ryu et al. (2005) estimator

As mentioned in section 1, Ryu et al. (2005) obtained their estimator at µSh
= 1, for h = 1, . . . , k.

Therefore to compare the efficiency of our proposed estimator to that of Ryu et al. (2005), we set

µSh
= 1, for h = 1, . . . , k. In this case, the variance of our proposed estimator reduces to the following:

V (µ̂s
X) =

k∑
h=1

w2
hµ

2
Xh

nh

[
C2

Xh
+ (1− ph)(1− th)η

2
hσ

2
Sh

(1 + C2
Xh

)
]

Comparing the variance above with that in 1.4, we can see that ours is always smaller due to the fact

that η2h is less than 1, h = 1, 2, ..., k.

In addition, if we also let µSh
= 1 under Neyman’s optimal allocation, the minimum variance reduces

to

minV (µ̂S
X) =

1

n

[ k∑
h=1

wh

√
V (Zh)

]2
where

V (Zh) = µ2
Xh

[
C2

Xh
+ (1− ph)(1− th)η

2
hσ

2
Sh

(1 + C2
Xh

)
]

Therefore the minimum variance of our proposed estimator is smaller than that of Ryu et al. (2005)

in 1.5.

5. APPLICATION ON ALCOHOL EXPOSURE

In this section, to compare the efficiency of all the discussed estimators, we use data from The 2021

National Survey on Drug Use and Health (NSDUH). The NSDUH is annually conducted by the Sub-

stance Abuse and Mental Health Services Administration (SAMHSA) which is an agency within the

U.S. Department of Health and Human Services (HHS). More on the survey can be found in Center
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for Behavioral Health Statistics and Quality (2022). Our variable of interest is the age, in years, of

first alcoholic beverage consumption, denoted X, for those who have consumed alcohol at any point

in their lives. This variable is very important in assessing risk of alcohol dependence, see Sartor et al.

(2009). While the question itself might not be sensitive, unusually young responses can be socially

undesirable for the respondents.

The data of the 41,354 respondent in the sample are considered the population. To approximate the

relative efficiency of the different estimators using the data, we drew 10,000 times a SRSWR, each of

size n = 100. Similar to the procedure in subsection 3.3., for each sample, we generated 100 values

for the scrambling variables S and B from Exp (1) distribution. For the additive variable A, we used

the Poisson (θ = 17) distribution. This distribution provides a reasonable range for A and its average

is within the expected average of the study variable (16 − 18). For p, t, and η, we considered the

reasonable range of {0.3, (0.1), 0.7}.

Table 3 presents a summary of the simulation results. It is clear that the proposed estimator is more

efficient relative to the rest of the estimators under study. In particular, the percent efficiency of

the proposed estimator is at least 377%, 239%, and 207% relative to Eichhorn and Hayre (1983),

Bouza-Herrera et al. (2022), and Bar-Lev et al. (2004) estimators, respectively. Relative to Ryu et

al. (2005) and Tarray and Singh (2017), respectively, the percent efficiency of the proposed estimator

is at least 141% and 107%. Tarray and Singh (2017) can be considered as having the second best

efficiency among all the considered estimators. Of course these numbers are subject to the data and

the distributions used in the simulation.

Table 3: Summary of R̂.E.(µ̂∗
R, µ̂.) using 2021 NSDUH data

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.

R̂.E.(µ̂∗
R, µ̂E) 3.777 7.418 10.042 10.204 12.619 17.364

R̂.E.(µ̂∗
R, µ̂B) 2.075 3.572 4.579 4.890 5.773 10.476

R̂.E.(µ̂∗
R, µ̂R) 1.409 1.829 2.315 2.603 3.050 5.374

R̂.E.(µ̂∗
R, µ̂T ) 1.066 1.275 1.443 1.536 1.681 3.260

R̂.E.(µ̂∗
R, µ̂CB) 2.392 3.903 4.936 5.328 6.416 10.962

6. SUMMARY AND CONCLUSION

This paper introduces an improved two-stage RR model for estimating the mean of a sensitive quan-

titative random variable. The proposed estimator is derived under both simple and stratified random

sampling. In case of simple random sampling, the proposed estimator is more efficient compared to

Ryu et al. (2005) estimator, and the relative efficiency increases as η decreases. Consequently, the

proposed estimator is also more efficient than Gupta et al. (2002) estimator for ORRT.
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As for the comparison with Tarray and Singh (2017) and subsequently Bar-Lev et al. (2004) and

Eichhorn and Hayre (1983) estimators, the proposed estimator is more efficient under an achievable

condition discussed in Theorem 2. The efficiency of the proposed estimator relative to Bouza-Herrera

et al. (2022) is also explored numerically using simulation and the results show that the proposed

estimator is more efficient under all the cases considered.

In reality most surveys have a more complex structure than SRSWR. In addition, the stratified ran-

dom sample allows us to retain some information on the respondents that the randomization technique

obstructs. Therefore, the proposed estimator is derived under stratified random sampling with replace-

ment in general, and also under Neyman’s optimum allocation. The proposed estimator is shown to

be more efficient than that of Ryu et al. (2005) under both cases.

To explore the relative efficiency of the proposed estimator compared to its competitors, a simulation

study is carried out using the NSDUH data on age of first alcoholic beverage consumption. The vari-

able is considered a sensitive variable for those that have been exposed to alcohol from an abnormally

young age. The results of the simulation show that the proposed estimator is more efficient than the

rest of the estimators under different settings of the parameters. On average, the percent efficiency

of the proposed estimator is 1020%, 489%, 260%, 153%, and 532% relative to Eichhorn and Hayre

(1983), Bar-Lev et al. (2004), Ryu et al. (2005), Tarray and Singh (2017), and Bouza-Herrera et al.

(2022) estimators, respectively.

To conclude, we recommend using the proposed RR model when the sensitive study variable is quan-

titative. The proposed estimator offers great gains in efficiency and its implementation should not

be difficult. As Rueda et al. (2016) explores in their review, there are many software programs

designed to generate random values from different distributions that can be used in RRT studies.

These programs make it easier for the respondent to trust the randomization process and to ensure

correct calculations of the final response. The proposed model can also be extended to other sampling

schemes such as stratified sampling.
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