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ABSTRACT
Among all mosquito-transmitted diseases, dengue is one of the most widespread, causing millions on
infections and thousands of deaths, especially in Latin America. Lately, the Sterile Insect Technique
has been applied successfully to reduce wild mosquito populations in several regions, and therefore
control the spread of mosquito-transmitted diseases such as dengue. In this paper we introduce
an ODE model that combines a mosquito population model with introduced sterile males with the
SIR (Susceptible, Infected, Recovered) model for human epidemics. We aim to obtain a better
understanding of the evolution of a dengue pandemic in an area where the Sterile Insect Technique
(SIT) is used by taking into account both the mosquito and human population. We will calculate
the reproduction number R0 for this model, and show that the use of the SIT will lead to a lower
total number of human infections than in a similar situation with no mosquito controls. We also
perform numerical simulations to illustrate our results.
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MSC: 92D30

RESUMEN
En este trabajo introducimos un modelo de EDOs que combina las ecuaciones de un modelo de
poblaciones de mosquitos con el modelo epidemiológico SIR (Susceptibles, Infectados, Recuperados).
Nuestro objetivo es mejorar la comprensión de la evolución de una epidemia de dengue en una
región donde se aplica la Técnica del Insecto Estéril (SIT), teniendo en cuenta tanto la población
de mosquitos como la población humana. Se calcula el coeficiente de reproducción R0 para este
modelo, y se demuestra que el uso de la SIT lleva a un total de infecciones humanas menor que en
una población similar sin un método de control de vectores.

PALABRAS CLAVE: Ecuaciones diferenciales, modelo SIR, Técnica del Insecto

Estéril/Incompatible, número de reproducción R0, matrices de la siguiente generación.

1. INTRODUCTION

Mosquitoes of the Aedes genus are vectors for multiple infectious viral diseases, most notably dengue, which
causes millions of infections and thousands of deaths each year, especially in Latin America; according to
Panamerican Health Organization (PAHO) statistics [17], during epidemiological weeks 1−49 of 2023, there
have been approximately 4.2 million reported cases, including more than 6500 severe cases and 2050 deaths.
Dengue has only two licensed vaccines, with limited application: Dengvaxia [18] and Qdenga [7]. This short-
age of effective, widely available vaccines means the most efficient method for preventing and controlling
outbreaks of these arboviruses is to lower or eliminate the vector hosts, that is, the mosquito populations.
However, the use of insecticides over a prolonged period of time has issues, for example increased resistance
to insecticides [19]. Therefore in recent years alternative control methods have been employed to control
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mosquito populatios, and one of these methods is the Sterile/Incompatible Insect Technique (SIT-IIT).

The SIT was first proposed by Raymond C. Bushland and Edward F. Knipling [13] in the 1950s. It is a
technique that has been employed to eliminate and control different pests and vectors, for example screw
worms and fruit flies (see [6] for a detailed list of SIT trials and programs). It consists of the breeding and
release of a large number of sterilized males into the wild. This increases the probability that females in the
already present population will mate with the introduced sterile males, thus producing no viable offspring.
Over time, this leads to a progressive reduction of the total population. In the case of the Incompatible Insect
Technique (IIT) for mosquitoes, the released mosquitoes are not sterilized chemically or with radiation expo-
sure, but rather infected with bacteria of the genus Wolbachia, which shortens their lifespan and reduces their
capacity for transmitting dengue [11]. In addition, the Wolbachia bacteria cause cytoplasmic incompatibility:
an uninfected female that mates with a Wolbachia infected male will not have viable offspring [21]. On the
other direction, Wolbachia is inherited from infected female mosquitos to their descendants, regardless of the
infection status of the male mosquito they mate with. When only Wolbachia-bearing incompatible males
are released, the IIT is equivalent to the SIT; when both male and female Wolbachia-infected mosquitoes
are released, the expected result is that the existing population will be replaced by the Wolbachia-infected
population [10].

The SIT/IIT has already been applied with success to reduce mosquito populations in several regions, such
as Polynesia and Reunion Island (see e.g. [22], [16]). Pilot field studies in Cuba and Northern Italy showed
the reduction of egg densities and mosquito populations’ fertility after applying the SIT [4] [8]. More re-
cently, combined SIT/IIT releases have been done in China [25] and Thailand [12], while the release of
Wolbachia-infected mosquitoes in the city of Yogyakarta, Indonesia, led to a reduction of 77% in the number
of dengue cases [23].

2. MODELLING

The classic SIR model for humans divides the human population in three compartments: susceptible, in-
fectious and recovered. When a susceptible individual comes into contact with an infectious individual,
there’s a chance the susceptible individual will become infected; on the other hand, infected individuals have
a chance of either recovering or dying of the disease. The equations of the classic SIR model are as follows [9]:



dS
dt = −β IS

N
dI
dt = β IS

N − γI
dR
dt = γI
S(0), I(0), R(0) ≥ 0
N = S(t) + I(t) +R(t) = S(0) + I(0) +R(0)

(2.1)

In this model, the total human population is denoted by N = S + I +R; we note that dS
dt + dI

dt +
dR
dt = 0, so

the human population is considered to be constant over time. This means that the dynamics of the epidemic
are considered to be much faster than the birth and death of the human population. The fraction β IS

N
represents the transmissions from infected to susceptible individuals, where β is the transmission rate, while
γ is the recovery rate.

In [15], the authors perform a systematic review of mathematical models of dengue transmission and vector
control methods during the decade 2010 − 2020. Although the reviewed models encompass a wide variety
of objectives and modelling methods, a majority of the models are deterministic models that either focus
on either the mosquito populations with ODE/PDE systems, or use SIR/SEIR epidemiology models for the
dengue transmission. Some models that include both mosquito populations and SIR equations are [3] and
[11], as well as [20] and [14] in more recent years. The main differences between these works and ours is the
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introduction of a strong Allee effect (which will be described further below) following the work of Strugarek,
Bossin and Dumont [22], and including both the aquatic phase and the male mosquitos, as opposed to only
including the female mosquitos, divided into susceptible and infected compartments, and using a logistic
growth model [20].

Our model consists of seven ordinary differential equations, four of them for the female and male adult
mosquitos and three of them for the susceptible, infected and recovered humans. We assume that the
dengue mortality in humans is low enough to disregard. We include vital dynamics for the human popu-
lation in our model by setting equal birth and death rates, so that the human population renews while its
total remains constant over time. We also assume there is a single strain of dengue present, and that the
recovered humans become immune to this strain for the rest of their lives. Additionally, we assume that the
mosquitos, once infected, become carriers for the rest of their lives (i.e. there’s no Recovered compartment
for the mosquitos) and that a dengue infection does not impact the mosquito mortality rate. The transmis-
sion of dengue from infected to susceptible individuals can only happen when a infected female mosquito
bites a susceptible human, or when a susceptible female mosquito bites an infected human; male mosquitos
do not bite humans.

We take the system of equations (2.1) in our previous work [1], without the diffusion operators, as the base
for modelling the mosquito population dynamics:

dE

dt
= b(1− E

K
)F − (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE(1− e−A(M+γsMs))

M

M + γsMs
− µFF,

dMs

dt
= u− µsMs.

(2.2)

In this system, the mosquito population is divided into the following compartments: the aquatic phase (eggs,
larvae and pupae) is denoted E, while M and F denote respectively the number of adult wild males and
adult females which have been fertilized; Ms is the number of sterile mosquitoes which are released, the
release function being denoted u = u(t).

We assume that the dynamic of the egg compartment is fast, which boils down to replacing the first equation
by

dE

dt
= 0 ⇒ E =

KbF

K(νE + µE) + bF

We substitute E in the second and third equations and include the SIR equations, taking into account the
female mosquito-human interactions, to arrive at our model:

F = Fs + Fi, N = S + I +R

dFi

dt = αFsI
N − µFFi

dFs

dt =
KbrνEMF(1−e−A(M+γsMs))
(K(µE+νE)+bF )(M+γsMs)

− αFsI
N − µFFs

dM
dt = (1−r)νEKbF

K(µE+νE)+bF − µMM

dMs

dt = u− µMs
Ms

dS
dt = −β FiS

N + δN − δS

dI
dt = β FiS

N − γI − δI

dR
dt = γI − δR

(2.3)
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The variables and parameters of our model are listed below. First we will list the variables:

� Fs Susceptible female mosquitos

� Fi Dengue infected female mosquitos

� F = Fs + Fi Total female mosquitos

� M Wild male mosquitos

� Ms Introduced sterile male mosquitos

� S, I,R Susceptible, Infected and Recovered humans respectively

� N = S + I +R Total humans

� u = u(t) Control function for sterile males’ release

The parameters of our hybrid model are the following:

� b Female mosquito birth rate

� r Proportion of eggs that are female

� K is an upper bound for the environmental capacity of the aquatic phase, taking also into account
intraspecies competition

� νE is the transition rate from the aquatic phase to the adult phase

� µM , µMs
Wild and sterile male mosquito death rates respectively

� µF Female mosquito death rate

� γs Competitiveness of the introduced sterile male mosquitos compared to their wild counterparts

� A Allee effect parameter

� γ Human recovery rate

� β Transmission rate from infected female mosquito to susceptible human

� α Transmission rate from infected human to susceptible female mosquito

� δ Human replacement rate

The fractions β FiS
N and αFsI

N represent the transmissions from infected female mosquitos to susceptible hu-
mans and from infected humans to susceptible female mosquitos, with respective transmission rates α and β.
We assume that the birth and death rates for the human population are both equal to δ, so that we have an
inflow of newborns into the susceptible compartment at a rate of δN and an outflow of deaths in each com-
partment at rates δS, δI, δR respectively. Just like in the classic model 2.1, we have dN

dt = dS
dt +

dI
dt +

dR
dt = 0,

so the human population remains constant over time; we note however that unlike 2.1 where dR
dt ≥ 0, the

inclusion of the birth and death rates for the human population means that dR
dt can be negative in our model

if I is close to zero.

The term (1 − e−A(M+γsMs)) has been introduced to model a strong Allee effect. The strong Allee effect
describes a relation between a population’s size (or density) and its growth rate: when the population size
is below a certain threshold, its growth rate will be negative. For mosquito populations, if the proportion
of fertile males is close to zero, then it will be very difficult for a female to find a fertile male to mate with
during her whole life, and therefore a strong Allee effect is present.
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The competitiveness parameter γs represents the ability for sterile males to mate with females, compared
to their wild counterparts; for example, γs = 1 would mean both sterile and wild males are evenly matched
when competing for females, while γs < 1 means wild mosquito males have an advantage over the introduced
sterile males. This is reflected by the fraction M

M+γsMs
, which corresponds to the adjusted probability that

a female mates with a wild male.

We remark that we have changed the Allee effect parameter β and the competitiveness parameter γ in [1] to
A and γs respectively in order to avoid confusion and keep β and γ as parameter names in the SIR part of
our model. All parameters are taken as constant over time and strictly positive; in particular, the proportion
of female eggs r, the mosquito transition rate νe, the mosquito death rates µM , µMs , µF , the human recovery
rate γ and the human replacement rate δ all lie in the interval (0, 1), due to their biological interpretations.

3. CALCULATION OF THE BASIC REPRODUCTION NUMBER R0

To calculate the basic reproduction number R0 we follow the strategy developed in [5]. The idea is to study
the stability of the disease free equilibrium for a reduced system obtained by only considering the infected
states. The condition R0 < 1 guarantees the stability of this disease free equilibrium, which mean that a
small introduction of infected individuals will not generate an epidemic.

We begin by finding the infection free steady state: Fi = 0, F = Fs = F ∗, M = M∗, S = N , I = R = 0.
We then focus on the infection subsystem:{

dFi

dt = αFsI
N − µFFi

dI
dt = β FiS

N − γI − δI

We perform a linearization around the infection free steady state Fi = 0, I = 0. After substituting Fs = F ∗

on the first equation and S = N on the second equation, taking the partial derivatives with respect to Fi

and I and evaluating at Fi = 0, I = 0, we get the following linearized infection subsystem:{
dFi

dt = αF∗

N I − µFFi
dI
dt = βFi − (γ + δ)I

We decompose the right hand side into a transmission matrix T , which contains the terms involved in the
transmission of the disease, and a transition matrix Σ, which contains the terms involved in the transition
out of the infected status, to either death or recovery:

T =

(
0 αF∗

N
β 0

)
,Σ =

(
−µF 0
0 −(γ + δ)

)
,

The next generation matrix is defined as K = −TΣ−1, and in our model it equals

K =

(
0 αF∗

N(γ+δ)
β
µF

0

)

Thus R0, which is the dominant eigenvalue of K [5], equals
√

αβF∗

µF (γ+δ)N .

Let’s consider now a constant control function u(t) = c > 0. The equation for the sterile males with
Ms(0) = 0 has the explicit solution Ms(t) =

c
µs
(1− e−µst), which tends to M∗

s = c
µs

when t → +∞. For an

infection-free equilibrium, dF
dt = 0 reduces to

KbrνEM
∗F ∗ (1− e−A(M∗+γsM

∗
s )
)

(K(µE + νE) + bF )(M∗ + γsM∗
s )

− µFF
∗ = 0 (3.1)
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while dM
dt = 0 is equivalent to

(1− r)νEKbF ∗

K(µE + νE) + bF ∗ − µMM∗ = 0 ⇒ M∗ =
(1− r)νEKbF ∗

µM (K(µE + νE) + bF ∗)

Lemma 1 Let g(F,M,Ms) =
KbrνEMF(1−e−A(M+γsMs))
(K(µE+νE)+bF )(M+γsMs)

− µFF . Then g(F,M,Ms) is decreasing in Ms for

all M,F > 0.

Proof : Setting aside the positive factors that do not depend on Ms, we only need to analyze the monotony

of 1−e−A(M+γsMs)

M+γsMs
. Let f(x) = 1−e−A(M+x)

M+x : we have that

f ′(x) =
(AMe−AM +Axe−AM + e−AM )e−Ax − 1

(M + x)2

Therefore it is enough to prove that (AMe−AM +Axe−AM + e−AM )e−Ax − 1 < 0, for all A,M, x > 0.
From the classic inequality ex ≥ x+ 1, ∀x ∈ R (with equality only if x = 0) we can deduce xe−x < 1− e−x,
∀x > 0. We can apply this inequality twice to get

(AMe−AM +Axe−AM + e−AM )e−Ax − 1 < e−Ax(1− e−AM +Axe−AM + e−AM )− 1

= (Axe−AM + 1)e−Ax − 1

< (Ax+ 1)e−Ax − 1 < 0.

Proposition 1 If the initial conditions M(0), F (0) satisfy 0 < M(0) < K(1−r)νE

µM
, 0 < F (0) < KrνE

µF
, then

there exists c > 0 such that if Ms(t) >
c
µs
, then g(F (t),M(t),Ms(t)) < 0 for all t > 0 large enough.

Proof: Since dM
dt = (1−r)νEKbF

K(µE+νE)+bF − µMM < K(1 − r)νE − µMM and M(0) < K(1−r)νE

µM
, then dM

dt < 0 in

a neighborhood of M = K(1−r)νE

µM
, and therefore M(t) must stay below K(1−r)νE

µM
for all t > 0. Likewise,

dF
dt =

KbrνEMF(1−e−A(M+γsMs))
(K(µE+νE)+bF )(M+γsMs)

− µFF < KrνE − µFF , and since F (0) < KrνE

µF
, F (t) < KrνE

µF
for all t > 0.

On the other hand, in a similar manner to Lemma 4.6 in [1], we have that for M = 0, F > 0, dM
dt > 0, and

for M,F > 0
dF

dt
=

KbrνEMF
(
1− e−A(M+γsMs)

)
(K(µE + νE) + bF )(M + γsMs)

− µFF

is decreasing in Ms as proven above, and increasing in M , since F > 0 and M
M+γsMs

, 1 − e−A(M+γsMs) are
both increasing in M . Therefore the mosquito-related half of 2.3 is a monotone system, and nonnegative
initial conditions will remain nonnegative for all t > 0.

We have thus proven that F (t),M(t) are uniformly bounded for all t > 0, and when Ms → +∞,

KbrνEM
(
1− e−A(M+γsMs)

)
(K(µE + νE) + bF )(M + γsMs)

→ 0

uniformly on (F,M) ∈ [0, KrνE

µF
] × [0, K(1−r)νE

µM
]. Then by taking Ms = c∗ large enough, we can as-

sure
KbrνEM(1−e−A(M+γsMs))
(K(µE+νE)+bF )(M+γsMs)

< µF

2 , and thus for c = µsc
∗, we have Ms(t) → c∗ when t → +∞, and

g(F (t),M(t),Ms(t)) < −µF

2 F < 0, for all t > 0 large enough as desired.

From dM
dt = 0 we have M∗ = (1−r)νEKbF∗

µM (K(µE+νE)+bF∗) < K(1−r)νE

µM
. Isolating F ∗, we get F ∗ = K(νE+µE)µMM∗

K(1−r)νE−µMM∗

(since M∗ < K(1−r)νE

µM
then F ∗ is well defined and positive).
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We first substitute M∗ into 3.1 to get

dF

dt
= 0 ⇒

rµM (M∗)2
(
1− e−A(M∗+γsM

∗
s )
)

(1− r)(M + γsMs)
− µFF

∗ = 0

We then substitute F ∗ = h(M∗) to get dF
dt = 0 ⇒ g(h(M∗),M∗,M∗

s ) = 0, where

g(h(M∗),M∗,M∗
s ) = µMM∗

[
rM∗ (1− e−A(M∗+γsM

∗
s )
)

(1− r)(M∗ + γsM∗
s )

− K(νE + µE)

K(1− r)νE − µMM∗

]
. (3.2)

Proposition 2 Let g(h(M),M,Ms) = µMM

[
rM(1−e−A(M+γsMs))

(1−r)(M+γsMs)
− K(νE+µE)

K(1−r)νE−µMM

]
.

Assume that for the given parameters, g(h(M),M, 0) has three nonnegative roots 0,M−,M+, with
M− < M+. Then g(h(M),M, 0) is bistable, and dF

dt = g(h(M),M, 0) has 0,M+ as stable equilibria and
M− as an unstable equilibrium.

Proof: We have that g(h(M),M, 0) = µMM
[
r(1−eAM )

(1−r) − KµF (νE+µE)
K(1−r)νE−µMM

]
. M = 0 is always a root for

all parameters; set g1(M) = r(1−eAM )
(1−r) , g2(M) = KµF (νE+µE)

K(1−r)νE−µMM . Then for M > 0, g1(M), g2(M) are

both increasing, but g2(M) is convex and g1(M) is concave, therefore g1(M) − g2(M) = 0 has at most
two positive roots, and if there are two positive roots M−,M+ then neither of them is a double root.

Since g(h(M),M, 0) ∼ −µMµF (νE+µE)
(1−r)νE

M when M → 0+, then g < 0 when M ∈ (0,M−), g > 0 when

M ∈ (M−,M+) and g′(0), g′(M+) ̸= 0, therefore g is bistable, 0,M+ are stable equilibria, and M− is an
unstable equilibrium.

It follows that as the value of u(t) = c increases, then the limit M∗
s increases; for values of c small enough so

that g(h(M),M, c/µs) remains bistable, the largest stable positive root M∗ of g(h(M),M, c/µs) decreases

as c increases, due to the monotonicity of g respect to Ms. Since M∗ = (1−r)νEKbF∗

µM (K(µE+νE)+bF∗) is increasing

with respect to F ∗, decreasing M∗ also decreases F ∗, which in turn decreases R0 =
√

αβF∗

µF (γ+δ)N . Under the

hypothesis of Proposition 1 for the initial conditions, eventually for c large enough, all nonnegative equilibria
have M∗ = F ∗ = 0. This means increasing the release of sterile males will decrease the value of R0, until
for a large enough release the only equilibrium is the mosquito-free equilibrium, at which point R0 = 0.

4. NUMERICAL SIMULATIONS

The values of most mosquito-related parameters are taken from Table 3 in [22] and are listed below, in Table 1.

Parameter A b r µE νE µF µM γs µs

Value 10−2 10 0.49 0.03 0.05 0.04 0.1 1 0.12
Units day−1 day−1 day−1 day−1 day−1 day−1

Table 1: Values of the mosquito parameters used for the numerical simulations. These values are taken from
[22].

The parameter K, which gives an upper bound for the environmental carrying capacity of the aquatic phase,
is very hard to estimate in field conditions; we will take K = 5000 for our numerical simulations. We take
the dengue transmission rate and recovery rate parameters from the vector-host model in [24]. Additionally,
we will set δ = 0.001 as the human replacement rate.
All numerical simulations were performed in MATLAB R2018a, using the ode45 solver to find numerically
the solutions of our ODE system. We will first find the solutions of our ODE system, focusing on the mosquito
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Parameter α β γ δ
Value 1.255 1.361 0.224 0.001

Table 2: Values of the dengue parameters used for the numerical simulations. These values are taken from
[24].

variables (F,M,Ms), with zero infected mosquitos and humans, and different constant values for our release
function u(t). Our initial conditions will be F (0) = Fs(0) = M(0) = 1000, Fi(0) = Ms(0) = I = R = 0,
N = S = 10000, and the values of the release function u(t) will be u(t) = 0, 1000, 10000 respectively.

Figure 1: Mosquito variables, sterile male release u(t) = 0 on the left and u(t) = 1000 on the right.

Figures 1 and 2 show the evolution of the mosquito populations over time for sterile male releases of u(t) = 0,
u(t) = 1000 and u(t) = 10000 respectively. We observe that in the absence of sterile males the mosquito
population reaches an equilibrium (F,M,Ms) ≈ (3023, 1258, 0), that for a low release (u(t) = 1000) a smaller
equilibrium (F,M,Ms) ≈ (327, 1136, 0) is reached, and for a high enough release (u(t) = 10000) we succeed
in leading the wild mosquito population towards extinction.

Figure 2: Mosquito variables, sterile male release u(t) = 10000.
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Next we will take as initial conditions F (0) = Fi(0) = M(0) = 1000, Fs(0) = Ms(0) = R = 0, N = 10000,
I = 1000. Most of the initial conditions are the same as in the previous simulations, but now we have a
nonzero amount of initially infected mosquitos and humans. Once again, the values of the release function
u(t) will be u(t) = 0, 1000, 10000 respectively, and for this set of simulations we will focus on the human
variables (S, I,R).

Figure 3 shows, in the absence of a sterile male release, the evolution of the human variables over time
on the left, while the right graph zooms in on the susceptible and infected variables S, I. We note that
the variables converge towards a nonzero equilibrium (S, I,R) ≈ (198, 44, 9758), which indicates the dengue
outbreak becomes endemic, with the transfer rates between the S, I,R compartments balancing each other.

Figure 3: Human variables, sterile male release u(t) = 0.

Figure 4: Human variables, sterile male release u(t) = 1000.

Likewise, figure 4 shows, for a sterile male release of u(t) = 1000, the evolution of the human variables
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over time on the left, while the right graph zooms in on the infected variable I. Compared to the pre-
vious simulation, we note that this sterile male release is not enough to eradicate the mosquito popula-
tion, and consequently the number of infected humans bounces back before converging to a equilibrium
(S, I,R) ≈ (1823, 39, 8138) with a slightly lower infected value. On the other hand, the equilibrium values
for the susceptible and recovered values are significantly higher and lower respectively.

Figure 5: Human variables, sterile male release u(t) = 10000.

Figure 6: Graph of the reproduction number R0 as a function of the sterile male release M∗
s .

Finally, for a sterile male release of u(t) = 10000, figure 5 shows that the infected variable I converges to
zero, which in turn will lead the recovered variable R and the susceptible variable S to converge to 0 and
N respectively. We conclude our numerical simulations with a graph of the reproduction number R0 in
terms of the sterile male equilibrium M∗

s , shown in figure 6. We note that R0 is indeed decreasing as a
function of M∗

s , and it drops off to zero after reaching a left limit of R0 ≈ 0.9246 for M∗
s = 23754; this

indicates that M∗
s = 23754 is close to the critical value M∗

s for which the function g(F ∗,M∗,M∗
s ) crosses

from being a bistable function with three nonnegative roots to having the zero-mosquito equilibrium as its
only nonnegative root.
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5. CONCLUSIONS

In this work we have presented a hybrid model than combines a model for a mosquito population on which
the Sterile Insect Technique is applied, with the classic SIR epidemiology model. We show that increasing
the release of sterile male mosquitoes leads to the extinction of the wild mosquito population. We find an
explicit formula for the basic reproduction number R0 that links the spread of the epidemic with the larger
stable equilibrium of the female mosquito population, which is reduced by increasing the density of the sterile
male release. We conclude that by linking the mosquito population equations with the SIR epidemiology
equations, we get a more direct picture where it is clearer than the release of sterile males can have an impact
not only on the mosquito population, but also on the spread of an arbovirus epidemic.

The numerical simulations performed in this work are just a preliminary exploration for a very simplistic
release function u(t) = c constant, and we would like to investigate more realistic release functions, such as
a discrete instant release u(t) = c for t = 0 and u(t) = 0 for t > 0, or periodic discrete releases, for which we
can pose optimal control problems and hopefully obtain optimality conditions, in a similar manner as [2].
We expect that as long as the solutions of the sterile male equation dMs

dt = u(t)−µMsMs are such that Ms(t)
is kept at a high enough value for a significant period of time, then the main results of this work, namely
the extinction of the wild mosquito population and the decrease of the reproduction number R0, should still
hold.
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