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ABSTRACT
This paper presents an investigation into estimation and prediction problems pertaining to life data

derived from Kies distribution, utilizing type II censored data. The estimation of scale and shape

parameters for Kies Distribution is accomplished through the utilization of both Maximum Likelihood

and Bayesian methodologies. The Gibbs sampling technique is employed for generating Markov

Chain Monte Carlo (MCMC) samples, and it has been utilized for the purpose of computing Bayes

estimates and constructing symmetric credible intervals. The method also includes an approach to

estimate the density of future ordered data points before deriving their associated predictions. The

proposed estimation and predictor method’s performance has been evaluated through simulation

studies. In order to validate the outcomes of the simulation, empirical data on the operational

lifespan of turbochargers is utilized and subsequently scrutinized.
KEYWORDS: Kies distribution, type II censored data, maximum likelihood estimation, Bayes

estimation, Bayes prediction, Gibbs sampling, MCMC samples.

MSC: 94A17, 62F10, 62F15, 62N01.

RESUMEN
Este documento presenta una investigación sobre problemas de estimación y predicción relacionados

con datos de vida derivados de la distribución de Kies, utilizando datos censurados de tipo II. La

estimación de los parámetros de escala y forma para la distribución de Kies se lleva a cabo mediante

la utilización de metodoloǵıas de Máxima Verosimilitud y Bayesiana. La técnica de muestreo de

Gibbs se emplea para generar muestras de Monte Carlo por Cadenas de Markov (MCMC), y se ha

utilizado con el propósito de calcular estimaciones de Bayes y construir intervalos créıbles simétricos.

El método también incluye un enfoque para estimar la densidad de futuros puntos de datos ordenados

antes de derivar sus predicciones asociadas. El rendimiento del método de estimación y predicción

propuesto se ha evaluado a través de estudios de simulación. Para validar los resultados de la

simulación, se utilizan datos emṕıricos sobre la vida operativa de los turbos y se someten a un

escrutinio posterior.
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1. INTRODUCTION

The Kies distribution was first suggested by Kies in 1958. It is based on the Weibull distribution.

Kumar and Dharmaja (2014) looked into the Kies distribution, which has a growing, declining, and

“bathtub” hazard rate function. They also showed that it is a good choice to the extended Weibull

distribution. Kumer and Dharmaja (2013) looked into the reduced Kies distribution, which is a type

of the Kies distribution with one parameter. They found that it has some unique characteristics

that are similar to those of the Weibull distribution. Kumar and Dharmaja (2017) also showed and

looked into an exponented version of the reduced Kies distribution with only two factors. Kumar

and Dharmaja (2017) also came up with a new distribution called the modified Kies distribution,

which is a broader version of the extended reduced Kies distribution. Kundu and Raqib (2012) wrote

about Bayesian inference and forecast of the two parameters of the Weibull distribution for type

II censored data. Kundu and Howlader (2010) wrote about Bayesian inference and forecast of the

inverse Weibull distribution for type II censored data. Ghassan and el at. (2016) looked into how to

use Rayleigh type II filtered data to figure out the remaining life of ball bearings. Pradhan and Kundu

(2011) looked into how the Bayesian method can be used to measure and predict the two-parameter

Gamma distribution. Bayes estimation with a squared error loss function was looked at. For the scale

parameter, a Gamma prior was used, and for the shape parameter, a log-concave prior was used. They

came up with a method called Gibbs sampling to get samples from the posterior density that could be

used to make approximate Bayes estimates and build believable intervals. Al-Hussaini (1999) looked

into the Bayesian prediction problem for a wide range of life distributions. Nesreen and el at (2021)

examined Bayesian and classical inference for the Kies distribution parameters using recorded data.

The probability density function (PDF) and cumulative distribution function (CDF) of the two pa-

rameters Kies distribution are:

f(x;β, λ) =
βλxβ−1

(1− x)β+1
e−λ( x

1−x )
β

, (1.1)

and

F (x;β, λ) = 1− e−λ( x
1−x )

β

, (1.2)

where 0 < x < 1, and λ > 0 and β > 0 are the scale and shape parameters, respectively.

2. TYPE II CENSORED DATA

Assume that a set of n objects are being monitored until the point of failure. The objects under

consideration in reliability study experiments may include systems, components, or computer chips,

while in clinical trials, patients may be subjected to specific drug or clinical conditions. In such

cases, the lifetimes X = (X1, X2, ..., Xn) of these objects or patients may be modeled using the Kies

distribution, which is characterized by a probability density function (PDF).
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It is possible to conclude an experiment at the rth failure, resulting in a type II censored sample at

time Xr:n. The variable r is held constant, whereas the duration of the experiment, denoted as Xr:n,

is subject to randomness. The probability function in this instance can be expressed as:

L(β, λ|X) =
n!

(n− r)!

r∏
i=1

f(xi|β, λ)[1− F (xr;β, λ)]
n−r, x1 < x2 < ... < xr. (2.1)

3. MAXIMUM LIKELIHOOD ESTIMATION

Using type II censored data, we calculate the maximum likelihood estimators (MLEs) for the Kies

model parameters β and λ.

Consider X1:n < X2:n < ... < Xr:n as a type II censored sample of size r (1 < r < n). Using (1), (2),

and (3), the likelihood function is given as

L(β, λ|data) = n!

(n− r)!
βrλr

r∏
i=1

xβ−1
i

(1− xi)β+1
e
−λ

∑r
i=1

(
xi

1−xi

)β

e−λ(n−r)( xr
1−xr

)
β

.

The differentiation of the natural logarithm of the likelihood function with respect to both β and λ

when set to zero allows us to obtain

r

β
+

r∑
i=1

lnxi −
r∑

i=1

ln(1− xi)−
r

[∑r
i=1 ln

(
xi

1−xi

)
·
(

xi

1−xi

)β
+ (n− r) ln

(
xr

1−xr

)
·
(

xr

1−xr

)β]
∑r

i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β = 0,

(3.1)

and

λ =
r∑r

i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β . (3.2)

The MLE of β, denoted as β̂, is a numerical solution of Eq. (4). After calculating the MLE of β,

Eq.(5) provides the MLE of λ, denoted as λ̂. Balakrishnan and Kateri (2008) provide additional

information on the existence and uniqueness of these MLEs.

4. BAYES ESTIMATE AND CREDIBLE INTERVALS

The Bayesian inference and life testing plan requires specific assumptions about prior distributions to

calculate Bayes estimates and credible intervals for β as well as λ using type II censored data. The

natural choice for the joint prior distribution of β and λ appears as follows:

g(β, λ) ∝ λa1−1e−b1λβa2−1e−b2β ,

with the hyperparameters a1, a2, b1, b2 > 0.

The joint posterior distribution for parameters β and λ can be derived using the joint prior while

working with Type II censoring data where X1:n < X2:n < ... < Xr:n, (1 ≤ r ≤ n).

π(β, λ|data) ∝ βr+a2−1
∏r

i=1
xβ−1
i

(1−xi)β+1 e
−b2βλr+a1−1

×e
−λ

[∑r
i=1

(
xi

1−xi

)β
+(n−r)( xr

1−xr
)
β
+b1

]
.
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For parameters estimations, authors in the literature employ a variety of error loss functions to address

the challenge of estimating parameters. The most two common error loss functions are:

First: square error loss function, defined as:

LS

(
θ, θ̂
)
=
(
θ − θ̂

)2
Second: LINEX loss function, defined as:

LL

(
θ, θ̂
)
=

(
θ̂

θ

)a∗

− a∗ ln

(
θ̂

θ

)
− 1, a∗ ̸= 0,

where θ̂ is the estimate of θ.

4.1. Case I: Shape Parameter Known

From π(β, λ|data), the posterior density of λ given β and data is:

π1(λ|β, data) ∝ λr+a1−1e
−λ

[∑r
i=1

(
xi

1−xi

)β
+(n−r)( xr

1−xr
)
β
+b1

]

That is the conditional density of λ given β and data is:

Gamma

(
r + a1 − 1,

r∑
i=1

(
xi

1− xi

)β

+ (n− r)

(
xr

1− xr

)β

+ b1

)
(4.1)

Therefore, the Bayes estimate of λ with respect to square error loss function the posterior mean,

namely,

λ̂Bayes,S =
r + a1 − 1∑r

i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β
+ b1

and the Bayes estimate of λ with respect to LINEX loss function is:

λ̂Bayes,L =
[
Eπ1

(
λ−a∗ |β, data

)]− 1
a∗

=

[
Γ(r+a1−a∗)

Γ(r+a1)

(∑r
i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β
+ b1

)a∗]− 1
a∗

To obtain the (1− α)100% Bayesian credible interval (L,U) for λ such that∫ U

L

π1(λ|β, data)dλ = 1− α

Therefore,

Pr(L < λ < ∞) = 1− α

2
and Pr(U < λ < ∞) =

α

2

Using π1(λ|β, data) and Pr(L < λ < ∞) = 1− α
2 we obtain:

Γ

(
r + a1,

(
r∑

i=1

(
xi

1− xi

)β

+ (n− r)

(
xr

1− xr

)β

+ b1

)
L

)
=
(
1− α

2

)
Γ(r + a1)
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Similarly for U we obtain:

Γ

(
r + a1,

(
r∑

i=1

(
xi

1− xi

)β

+ (n− r)

(
xr

1− xr

)β

+ b1

)
U

)
=

α

2
Γ(r + a1)

The solution of above two equations utilizing proper numerical approaches enables the derivation of

Bayesian CIs for λ.

4.2. Case II: Shape Parameter Unknown

The conditional density of β given λ and data is:

π2(β|λ, data) =
∫ ∞

0

π(β, λ|data)dλ

= βr+a2−1e−b2β
r∏

i=1

xβ−1
i

(1− xi)β+1
· Γ(r + a1)(∑r

i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β
+ b1

)r+a1

Therefore,

π2(β|λ, data) ∝ βr+a2−1e−b2β
r∏

i=1

xβ−1
i

(1− xi)β+1
· 1(∑r

i=1

(
xi

1−xi

)β
+ (n− r)

(
xr

1−xr

)β
+ b1

)r+a1
(4.2)

There exists no explicit solution for π2(β|λ, data) so we differentiate Eq.(8) twice with respect to β

after applying natural logarithms to the both sides of π2(β|λ, data) to obtain ∂2

∂β2 lnπ2(β|λ, data) < 0.

Since π2(β|λ, data) is Log-Concave we apply Deveroye’s (1984) method to generate samples of β from

the density function π2(β|λ, data) before using them to estimate BEs of β and λ under both square

error and LINEX loss functions.

We propose using Gibbs sampling to generate samples of parameters {(βj , λj); j = 1, 2, ...,M} which

we will use to obtain BEs as well as to form CIs.

Algorithm (1):

1. Genarate β from the Log-Concave density function π2(β|λ, data).

2. Produce a λ value after sampling from the conditional distribution π1(λ|β, data) at every instance

of β.

3. Repeate step 1 and step 2, M times to obtain Markov Chain Monte Carlo (MCMC) samples

{(βj , λj); j = 1, 2, ...,M}.

4. Obtain the BEs of β and λ under square error loss function as:

β̂Bayes,S =
1

M

M∑
i=1

βi,

λ̂Bayes,S =
1

M

M∑
i=1

λi
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and

ˆV ar(β|data) = 1

M

M∑
i=1

(
βi − β̂Bayes,S

)2
,

ˆV ar(λ|data) = 1

M

M∑
i=1

(
λi − λ̂Bayes,S

)2
5. Obtain the BEs of β and λ under LINEX loss function as:

β̂Bayes,L =

[
1

M

M∑
i=1

1

βa∗
i

]− 1
a∗

,

λ̂Bayes,L =

[
1

M

M∑
i=1

1

λa∗
i

]− 1
a∗

and

ˆV ar(β|data) = 1

M

M∑
i=1

(
βi − β̂Bayes,L

)2
,

ˆV ar(λ|data) = 1

M

M∑
i=1

(
λi − λ̂Bayes,L

)2
6. To compute the credible interval, we order:

λ1, λ2, ..., λM as λ(1) < λ(2) < ... < λ(M)

and

β1, β2, ..., βM as β(1) < β(2) < ... < β(M)

and then, the (1− α)100% symmetric credible intervals (CIs) of β and λ respectively are:[
β[M α

2 ], β[M(1−α
2 )]

]
and

[
λ[M α

2 ], λ[M(1−α
2 )]

]
5. BAYES PREDICTION AND PREDICTIVE INTERVALS

An essential Bayes analytical component makes use of prediction methods for future sample observa-

tions based on current “informative sample” data collection. Our main assessment revolves around

determining the posterior predictive densities for future observations based on the present data col-

lection. We produce future experimental observations through predictions made by analyzing results

obtained from an informative experiment.

The observed data sequence x1:n < x2:n < ... < xr:n serves as a known informative sample. We aim

to predict values from Xs:n where r < s ≤ n. Posterior predictive density of Xs:n given observed data

X = (x1:n, x2:n, ..., xr:n) appears as follows:

πXs
(x|data) =

∫ ∞

0

∫ ∞

0

hXs|data(x|β, λ)π(β, λ|data)dβdλ, xs > xr,
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where hXs|data(x|β, λ) is the conditional density of Xs given β, λ and data X, see for example Chen,

Shao and Ibrahim (2000).

The Markovian property of conditional order statistics according to David and Nagaraja (2003) allows

us to determine that the conditional PDF of Xs:n given X reduces to the conditional PDF of Xs:n

given Xr:n such that r + 1 ≤ s ≤ n.

hXs|data(x|β, λ) = hXs|Xr
(x|β, λ) = hr,s:n(xr, xs)

hr:n(xr)
(5.1)

The joint PDF of these order statistics consists of hr,s:n(xr, xs) components from n sampled values

drawn from G(·). The conditional density ofXs:n under the condition thatXr:n occurs simply matches

the marginal density of the (s− r)th order statistic derived from a sample of (n− r) elements drawn

from a left-truncated version of G(·) starting from xr.

Using Eq.(1), Eq.(2) and Eq.(9), we get:

hXs|data(x|β, λ) = c2

[
1− e

−λ

[
( x
1−x )

β−
(

xr
1−xr

)β
]]s−r−1

× e
−λ(n−s+1)

[
( x
1−x )

β−
(

xr
1−xr

)β
]

βλxβ−1

(1− x)β+1

where c2 = (n−r)!
(s−r−1)!(n−s)! .

By using the binomial expansion, we have:

hXs|data(x|β, λ) = c2

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)ie

−λ(n−s+i+1)
[
( x

1−x )
β−( xr

1−xr
)
β
]

βλxβ−1

(1− x)β+1

So, the posterior predictive density of Xs:n at any point x > xr is:

πXs(x|data) = c2

∫ ∞

0

∫ ∞

0

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)ie

−λ(n−s+i+1)
[
( x

1−x )
β−( xr

1−xr
)
β
]

βλxβ−1

(1− x)β+1

× π(β, λ|data)dβdλ

Posterior predictive density function exists in the above format yet it fails to achieve attractibility

status and therefore prevents the derivation of an explicit predictive Bayes estimate. The Bayes

predictor (BP) determines the distribution of Xs:n when using an SEL function according to:

XBP
s:n = EπXs

(x|data)

= c2

∫ 1

xr

x

∫ ∞

0

∫ ∞

0

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)i

× e
−λ(n−s+i+1)

[
( x
1−x )

β−
(

xr
1−xr

)β
]

xβ−1

(1− x)β+1
π(λ, µ|data)dβdλdx. (5.2)

The Gibbs sampling method produces MC samples {(βj , λj); j = 1, 2, ...,M} to determine the simu-

lation Bayes predictor

X̂BP
s:n =

c2
M

M∑
j=1

βjλj

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)ieλj(n−s+i+1)( xr

1−xr
)
βj

×
∫ 1

xr

x · xβj

(1− x)βj+1
e−λj(n−s+i+1)( x

1−x )
βj

dx
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By applying transformation z =
(

x
1−x

)βj

and incomplete gamma function definition as Γ(a, c) =∫∞
c

xa−1e−xdx, a > 0, c > 0 the Bayes predictor computes Xs:n as follows:

X̂BP
s:n =

c2
M

M∑
j=1

λj

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)ieλj(n−s+i+1)( xr

1−xr
)
βj

×
∞∑
k=0

(−1)k
Γ

(
βj+k+1

βj
, λj(n− s+ i+ 1)

(
xr

1−xr

)βj
)

[λj(n− s+ i+ 1)]
βj+k+1

βj

(5.3)

Algorithm (2):

1. Genarate MCMC sampling {(βj , λj); j = 1, 2, ...,M}.

2. Compute X̂BP
s:n based on βj and λj obtained in step 1.

3. Repeate step 1 and step 2, M times to obtain {X̂1, X̂2, ..., X̂M}.

4. Compute mean square error (MSE) as follows:

MSE(X̂s:n) =
1

M

M∑
i=1

(
X̂i −AverageX̂

)2
, where AverageX̂ =

1

M

M∑
i=1

X̂i

Research seeks to develop dual prediction intervals for order statistics Xs. To achieve this we require

the predictive survival function of Xs defined as:

SXs|data(x|β, λ) = Pr(X > x) =

∫ 1

x

hXs|data(z|β, λ)dz

= c2

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)i

∫ 1

x

e
−λ(n−s+i+1)

[
( z

1−z )
β−( xr

1−xr
)
β
]

zβ−1

(1− z)β+1
dz.

Using the transformation z =
(

x
1−x

)β
we get:

SXs|data(x|β, λ) = c2

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)i

(n− s+ i+ 1)
e
−λ(n−s+i+1)

[
( x

1−x )
β−( xr

1−xr
)
β
]

The predictive survival function for Xs follows the SEL function.

SP
Xs|data(x|β, λ) =

∫ ∞

0

∫ ∞

0

c2

s−r−1∑
i=0

(
s− r − 1

i

)
(−1)i

(n− s+ i+ 1)
e
−λ(n−s+i+1)

[
( x

1−x )
β−( xr

1−xr
)
β
]

π(β, λ|data)dβdλ.

The collected MCMC samples {(βj , λj); j = 1, 2, ...,M} from the Gibbs sampling lead to the following

simulation estimator of the predictive survival function

ŜP
Xs|data(x|β, λ) = c2

M∑
j=1

[
s−r−1∑
i=0

(
s− r − 1

i

)
(−1)i

(n− s+ i+ 1)
e
−λj(n−s+i+1)

[
( x

1−x )
βj−( xr

1−xr
)
βj

]]
.

Using a suitable numerical technique solve the following non-linear equations to find the (1−α)100%

predictive interval of Xs for both the lower bound (L) and the upper bound (U).

ŜP
Xs|data(L) = 1− α

2
and ŜP

Xs|data(U) =
α

2
(5.4)
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6. SIMULATIONS AND DATA ANALYSIS

6.1. Simulations

In this section, we conduct a series of numerical experiments to evaluate the performance of the

proposed methods under different sampling schemes and priors using type II censored data. The data

is generated from Kies distribution by assuming β = 2, λ = 1. When computing Bayesian Estimates

(BEs) using the square error loss function and LINEX loss function, two types of priors are considered

for both variables β and λ. The two priors considered are Prior 0 and Prior 1.

Prior 0 is a non-informative prior with a1 = b1 = a2 = b2 = 0. Prior 1, on the other hand, is an

informative prior with a1 = 2, b1 = 1, a2 = 1, b2 = 1. The Maximum Likelihood Estimates (MLEs)

and the Bayesian Estimates (BEs) based on square error loss function and LINEX loss function are

calculated for each sampling scheme. Addition,1000 Monte Carlo (MC) samples are used to produce

95% credible intervals. This simulation study presents the average Bayes estimates, mean squared

errors (MSEs), and coverage percentages lengths that are calculated from 1000 replications. Algorithm

(1) is used to calculate the numerical results of the Bayesian estimates for both parameters, as well

as their corresponding mean squared errors (MSEs). Table 1 and table 2 show that the maximum

likelihood estimators (MLEs) and the Bayesian estimates with respect to square error loss function

and LINEX loss function and show improvement as the available information (as r becomes larger).

The aforementioned observation holds for both Prior 0 and Prior 1. Addition—it is worth noting that

the Bayesian estimators perform commendably compared to the maximum likelihood estimators of

parameter and (as shown in Table 1) for both priors. when comparing the Bayes estimates (BEs)

obtained under Prior 0 and Prior 1 with respect two loss functions, it is evident that the BEs obtained

with Prior 1 (an informative prior) perform better than those obtained with Prior 0 (a non-informative

prior), as measured by the mean squared errors (MSEs). Furthermore, it is noteworthy that all BEs

associated with the squared error loss function and LINEX loss function for both β and λ fall within

their respective credible intervals (CLs). Table 3 shows that the average length of credible intervals

decreases as r increases while holding n constant for both β and λ.

In order to calculate the predictors, we only consider the prior 1 and the square error loss function.

Using type II censored data, we have derive point predictors by algorithm (2) and 95% prediction

intervals (PIs) by using Eq.(10) for the absent order statistics Xs:n, r+ 1 ≤ s ≤ n. We then simulate

the Bayesian predictors for the absent order statistics Xs:n, r + 1 ≤ s ≤ n, based on MC samples

{(βi, λi), i = 1, 2, ...,M}, where M = 1000. Table 4 shows that the expected values for the absent

order statistics Xs:n are very close to each other and remain within their respective prediction intervals

across all schemes.

6.2. Data analysis

We analyze the real lifetimes data of size n = 40 from Xu et al.(2003), which represents the time to

failure (103h) of turbocharger of one type of engine. The data are: 1.6, 3.5, 4.8, 5.4, 6.0, 6.5, 7.0, 7.3,

7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3, 7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8, 6.3, 6.7, 7.3, 7.7, 7.9,

8.3, 8.5, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0.
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Table 1: MLEs, Bayes estimates and credible interval based on type II censored data with respect to

square error loss function, when Prior 0 and Prior 1 are used.

Scheme MLE Bayes estimates (Prior 0) Bayes estimates (Prior 1)

β λ β λ β λ

Scheme 1: 2.4602 1.0996 2.2075 1.2742 2.2314 1.1330

n = 25, r = 10 (1.2358) (1.1578) (0.8540) (0.9069) (0.3656) (0.4029)

95%CIs (1.0126; 3.6495) (0.2717; 3.0619) (1.2711; 3.2543) (0.3389; 2.0300)

Scheme 2: 2.2967 1.0030 2.0380 1.0568 2.0578 0.9516

n = 25, r = 15 (0.4792) (0.1676) (0.1880) (0.1485) (0.1631) (0.0926)

95%CIs (1.1679; 3.0267) (0.3871; 1.9601) (1.2805; 2.9153) (0.4190; 1.7777)

Scheme 3: 2.1224 1.0448 2.0480 1.0113 2.0254 1.0260

n = 25, r = 20 (0.1494) (0.1287) (0.1156) (0.1264) (0.1019) (0.0723)

95%CIs (1.3425; 2.8188) (0.4625; 1.6429) (1.3467; 2.7270) (0.4699; 1.5992)

Scheme 4: 2.2774 1.1608 2.1933 1.0929 2.1406 0.9982

n = 40, r = 20 (0.4064) (0.1928) (0.3134) (0.1802) (0.2432) (0.1559)

95%CIs (1.2916; 2.9254) (0.4748; 1.8264) (1.3696; 2.8464) (0.4579; 1.7499)

Scheme 5: 2.1679 1.0640 2.1089 1.0222 2.0652 1.0279

n = 40, r = 25 (0.1897) (0.1424) (0.1500) (0.0988) (0.1143) (0.0873)

95% CIs (1.3536; 2.7422) (0.5083; 1.6856) (1.3864; 2.7194) (0.5049; 1.5942)

Scheme 6: 2.1101 1.0543 2.0808 1.0152 2.0863 1.0080

n = 40, r = 30 (0.1423) (0.0356) (0.1209) (0.0585) (0.0971) (0.0730)

95% CIs (1.4144; 2.6389) (0.5350; 1.5032) (1.4402; 2.5744) (0.5509; 1.4937)
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Table 2: Bayes estimates and credible interval based on type II censored data with respect to LINEX

loss function, when Prior 0 and Prior 1 are used.

Scheme a∗ Bayes estimates (Prior 0) Bayes estimates (Prior 1)

β λ β λ

Scheme 1: 0.1 2.1931 (0.4732) 1.0607 (0.2979) 2.1092 (0.2504) 1.0593 (0.1355)

n = 25, r = 10 95% CIs (1.2231; 3.8731) (0.4673; 2.5242) (1.2058; 3.2341) (0.5003; 1.8947)

1.0 2.1922 (0.4733) 1.0035 (0.2661) 2.1087 (0.2504) 1.0082 (0.1239)

95% CIs (1.2215; 3.8719) (0.4429; 2.3644) (1.2053; 3.2333) (0.4769; 1.8132)

3.0 2.1900 (0.4736) 0.8760 (0.2014) 2.1074 (0.2505) 0.8894 (0.1032)

95% CIs (1.2173; 3.8690) (0.3918; 1.9967) (1.2044; 3.2317) (0.4250; 1.6538)

Scheme 2: 0.1 2.0977 (0.3253) 1.0076 (0.1593) 2.0841 (0.1804) 0.9736 (0.0578)

n = 25, r = 15 95%CIs (1.3883; 3.6002) (0.5911; 2.1491) (1.3460; 2.9860) (0.6491; 1.6128)

1.0 2.0973 (0.3253) 0.9740 (0.1486) 2.0838 (0.1804) 0.9437 (0.0544)

95%CIs (1.3885; 3.5997) (0.5725; 2.0711) (1.3457; 2.9857) (0.6296; 1.5600)

3.0 2.0965 (0.3254) 0.8982 (0.1268) 2.0832 (0.1505) 0.8769 (0.0474)

95% CIs (1.3878; 3.5985) (0.5242; 1.8719) (1.3451; 2.9851) (0.5874; 1.4594)

Scheme 3: 0.1 2.0821 (0.1603) 0.9914 (0.0498) 1.9860 (0.1305) 0.9531 (0.0455)

n = 25, r = 20 95%CIs (1.4206; 3.001) (0.5929; 1.4919) (1.3342; 2.7638) (0.6255; 1.4171)

1.0 2.0919 (0.1603) 0.9675 (0.0474) 1.9858 (0.1305) 0.9313 (0.0435)

95%CIs (1.4204; 3.0009) (0.5782; 1.4607) (1.3341; 2.7636) (0.6120; 1.3764)

3.0 2.0815 (0.1603) 0.9148 (0.0423) 1.9854 (0.1305) 0.8827 (0.0392)

95% CIs (1.4198; 3.0003) (0.5464; 1.3949) (1.3335; 2.7634) (0.5809; 1.2964)

Scheme 4: 0.1 2.0560 (0.2039) 1.0633 (0.1604) 2.0803 (0.1394) 0.9961 (0.0696)

n = 40, r = 20 95%CIs (1.2822; 3.0161) (0.6558; 1.9932) (1.4947; 2.9992) (0.6326; 1.6825)

1.0 2.0558 (0.2039) 1.0375 (0.1532) 2.0802 (0.1394) 0.9728 (0.0663)

95%CIs (1.2819; 3.0180)) (0.6398; 1.9471) (1.4945; 2.9991) (0.6159; 1.6389)

3.0 2.0556 (0.2040) 0.9799 (0.13875) 2.0799 (0.1394) 0.9219 (0.0594)

95%CIs (1.2812; 3.0179) (0.5959; 1.8443) (1.4942; 2.9989) (0.5815; 1.5201)

Scheme 5: 0.1 2.0628 (0.1358) 1.0277 (0.0557) 2.0576 (0.1111) 1.0104 (0.0473)

n = 40, r = 25 95%CIs (1.3797; 2.8294) (0.6695; 1.6729) (1.4985; 2.7977) (0.6766; 1.3765)

1.0 2.0627 (0.1359) 1.0082 (0.0538) 2.0576 (0.1111) 0.9921 (0.0456)

95%CIs (1.3796; 2.8294) (0.6586; 1.6362) (1.4984; 2.7977) (0.6632; 1.3502)

3.0 2.0578 (0.1111) 0.9514 (0.0420) 2.0575 (0.1111) 0.9514 (0.0420)

95%CIs (1.4983; 2.7976) (0.6332; 1.2868) (1.4983; 2.7976) (0.6332; 1.2867)

Scheme 6: 0.1 2.0406 (0.1017) 0.9693 (0.0394) 2.0264 (0.0822) 0.9902 (0.0333)

n = 40, r = 30 95% CIs (1.4879; 2.6313) (0.6311; 1.4775) (1.4923; 2.5491) (0.6666; 1.3279)

1.0 2.0405 (0.1016) 0.9544 (0.0382) 2.0263 (0.0822) 0.9753 (0.0324)

95% CIs (1.4878; 2.6312) (0.6211; 1.4574) (1.4923; 2.5490) (0.6552; 1.2996)

3.0 2.0404 (0.1017) 0.9214 (0.0355) 2.0262 (0.0822) 0.9422 (0.0304)

95% CIs (1.4876; 2.6311) (0.5945; 1.4133) (1.4922; 2.5488) (0.6316; 1.2500)
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Table 3: Average credible intervals lengths based on type II censored data and the coverage percent-

ages, when Prior 0 and Prior 1 are used.

Scheme Bayes (Prior0) Bayes (Prior1)

β λ β λ

Scheme 1: n = 25; r = 10 2.4573 2.4885 1.8097 1.5425

(0.87) (0.90) (0.91) (0.85)

Scheme 2: n = 25; r = 15 1.9831 1.6910 1.7587 1.4729

(0.97) (0.94) (0.90) (0.97)

Scheme 3: n = 25; r = 20 1.5587 1.1519 1.3563 1.1815

(0.96) (0.94) (0.94) (0.94)

Scheme 4: n = 40; r = 20 1.5772 1.3625 1.3803 1.3293

(0.92) (0.91) (0.88) (0.91)

Scheme 5: n = 40; r = 25 1.4091 1.1395 1.2768 1.2928

(0.93) (0.95) (0.95) (0.92)

Scheme 6: n = 40; r = 30 1.3330 1.0893 1.1528 0.9358

(0.91) (0.95) (0.93) (0.90)

Table 4: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n.

Scheme 1: n = 25, r = 10 Predicted Values MSE 95% PI

X11:n 0.4203 0.0248 (0.4040; 0.4601)

X12:n 0.4361 0.0368 (0.4081; 0.4838)

X13:n 0.4512 0.0426 (0.4152; 0.5032)

X14:n 0.4655 0.0482 (0.4239; 0.5200)

X15:n 0.4798 0.0542 (0.4338; 0.5362)

X16:n 0.4933 0.0604 (0.4442; 0.5508)

X17:n 0.5068 0.0672 (0.4552; 0.5652)

X18:n 0.5199 0.0743 (0.4668; 0.5797)

X19:n 0.5344 0.0829 (0.4787; 0.5941)

X20:n 0.5483 0.0919 (0.4913; 0.6086)

X21:n 0.5637 0.1027 (0.5049; 0.6246)

X22:n 0.5796 0.1147 (0.5192; 0.6414)

X23:n 0.5974 0.1293 (0.5351; 0.6606)

X24:n 0.6196 0.1473 (0.5540; 0.6856)

X25:n 0.6524 0.1403 (0.5802; 0.7253)
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Table 5: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n.

Scheme 2: n = 25, r = 15 Predicted Values MSE 95% PI

X16:n 0.4958 0.0404 (0.4818; 0.5306)

X17:n 0.5099 0.0657 (0.4853; 0.5531)

X18:n 0.5242 0.0757 (0.4916; 0.5726)

X19:n 0.5388 0.0849 (0.4998; 0.5909)

X20:n 0.5538 0.0949 (0.5096; 0.6091)

X21:n 0.5694 0.1060 (0.5207; 0.6265)

X22:n 0.5867 0.1193 (0.5335; 0.6463)

X23:n 0.6058 0.1349 (0.5483; 0.6682)

X24:n 0.6288 0.1517 (0.5662; 0.6949)

X25:n 0.6623 0.1283 (0.5908; 0.7364)

Table 6: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n.

Scheme 3: n = 25, r = 20 Predicted Values MSE 95% PI

X21:n 0.5657 0.0426 (0.5501; 0.6038)

X22:n 0.5831 0.0955 (0.5544; 0.6310)

X23:n 0.6028 0.1169 (0.5630; 0.6580)

X24:n 0.6263 0.1271 (0.5760; 0.6885)

X25:n 0.6602 0.0789 (0.5961; 0.7332)

Before we analyzing the data, we divide each data value by 10. The well-known Kolomogrov-Smirnov

(K-S) goodness of fit test is used to test whether the Kies distribution adequately fits this data set or

not, we compuetd the MLE estimatores of β and λ and they are: 1.2740 and 0.2705 respectively, then

the corresponding (K-S) distance become 0.0765 and the corresponding P-value is 0.9449. Therefore,

we can not reject the hypothesis that the data comes from Kies distribution, so we can use it to

analyze the real life turbocharger data set.

First, under the scheme: n = 40; r = 25, we compute the MLEs of β and λ and they are 1.3335 and

0.2691, respectively. Second, we compute the Bayes estimates and the 95% cerdible intervals of β and

λ with respect to square error loss function and LINEX loss function under prior 0 and the results

are represented in Table 5.

We now consider the prediction of the missing order statistics under the scheme: n = 40; r = 25. The

predicted values and the 95% PI of the order statistics are shown in Table 6 when Prior 1 is used. It

is observed that all predicted values with respect to square error loss function are all ordered and fall

in their corresponding PI.

7. CONCLUSION

In this paper, classical and Bayesian estimation are proposed for the two parameter Kies distribution

based on type II censored data. Gibbs sampling technique is used to generate samples for computing
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Table 7: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n for Scheme 4.

Scheme 4: n = 40, r = 20 Predicted Values MSE 95% PI

X21:n 0.4550 0.0356 (0.4461; 0.4781)

X22:n 0.4638 0.0465 (0.4482; 0.4919)

X23:n 0.4726 0.0506 (0.4519; 0.5056)

X24:n 0.4812 0.0543 (0.4565; 0.5170)

X25:n 0.4897 0.0582 (0.4617; 0.5274)

X26:n 0.4983 0.0623 (0.4675; 0.5379)

X27:n 0.5066 0.0666 (0.4735; 0.5477)

X28:n 0.5151 0.0711 (0.4799; 0.5574)

X29:n 0.5231 0.0757 (0.4865; 0.5665)

X30:n 0.5321 0.0810 (0.4935; 0.5764)

X31:n 0.5409 0.0865 (0.5007; 0.5863)

X32:n 0.5485 0.0919 (0.5083; 0.5961)

X33:n 0.5462 0.0972 (0.5162; 0.6055)

X34:n 0.4873 0.1037 (0.5248; 0.6165)

X35:n 0.5780 0.1131 (0.5336; 0.6276)

X36:n 0.5904 0.1230 (0.5433; 0.6400)

X37:n 0.6029 0.1338 (0.5541; 0.6536)

X38:n 0.6170 0.1467 (0.5660; 0.6697)

X39:n 0.6428 0.1826 (0.5809; 0.6913)

X40:n 0.6623 0.1593 (0.6012; 0.7264)

Table 8: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n.

Scheme 5: n = 40, r = 25 Predicted Values MSE 95% PI

X26:n 0.4973 0.0471 (0.4886; 0.5197)

X27:n 0.5056 0.0650 (0.4906; 0.5335)

X28:n 0.5146 0.0708 (0.4943; 0.5466)

X29:n 0.5231 0.0757 (0.4989; 0.5578)

X30:n 0.5323 0.0812 (0.5044; 0.5695)

X31:n 0.5398 0.0859 (0.5097; 0.5787)

X32:n 0.5500 0.0925 (0.5169; 0.5906)

X33:n 0.5595 0.0991 (0.5237; 0.6019)

X34:n 0.5699 0.1067 (0.5316; 0.6143)

X35:n 0.5789 0.1135 (0.5385; 0.6260)

X36:n 0.5909 0.1234 (0.5479; 0.6393)

X37:n 0.6050 0.1354 (0.5595; 0.6544)

X38:n 0.6207 0.1498 (0.5720; 0.6732)

X39:n 0.6421 0.1690 (0.5895; 0.6971)

X40:n 0.6666 0.1520 (0.6061; 0.7309)
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Table 9: Point predictors and PIs for the missing order statistics Xs:n, r + 1 ≤ s ≤ n.

Scheme 6: n = 40, r = 30 Predicted Values MSE 95% PI

X31:n 0.5444 0.0584 (0.5358; 0.5667)

X32:n 0.5535 0.0908 (0.5380; 0.5821)

X33:n 0.5630 0.1005 (0.5418; 0.5960)

X34:n 0.5727 0.1083 (0.5470; 0.6091)

X35:n 0.5831 0.1165 (0.5532; 0.6225)

X36:n 0.5945 0.1258 (0.5605; 0.6367)

X37:n 0.6071 0.1366 (0.5691; 0.6524)

X38:n 0.6216 0.1492 (0.5794; 0.6704)

X39:n 0.6399 0.1622 (0.5923; 0.6933)

X40:n 0.6672 0.1316 (0.6104; 0.7301)

Table 10: MLEs, Bayes estimates and credible interval based on type II censored turbocharger real

life data.
MLE Bayes estimates

β λ with respect to squar error loss function

β λ

Scheme: n = 40, r = 25 1.3335 0.2691 1.2735 0.2715

95% CIs (1.2342; 1.2916) (0.1709; 0.3934)

with respect to LINEX loss function

a∗ β λ

0.1 1.4339 0.2608

95%CIs (1.4323; 1.4377) (0.2541; 0.2681)

1.0 1.4338 0.2544

95%CIs (1.4322; 1.4377) (0.2472; 0.2613)

3.0 1.4336 0.2400

95%CIs (1.4319; 1.4375) (0.2299; 0.2478)
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Table 11: Point predictores and 95% PIs for the missing real life turbocharger data.

Scheme: n = 40, r = 25 Predicted Values 95% PI

X26:n 7.4008 (7.3026; 7.6576)

X27:n 7.4996 (7.3259; 7.8222)

X28:n 7.6054 (7.3688; 7.9748)

X29:n 7.7060 (7.4217; 8.1217)

X30:n 7.7932 (7.4810; 8.2009)

X31:n 7.8978 (7.5558; 8.3140)

X32:n 7.9967 (7.6152; 8.4675)

X33:n 8.0928 (7.7010; 8.5349)

X34:n 8.1826 (7.7763; 8.6306)

X35:n 8.2867 (7.8632; 8.7375)

X36:n 8.3973 (7.9657; 8.8434)

X37:n 8.4773 (8.0358; 8.9062)

X38:n 8.6057 (8.1516; 9.0385)

X39:n 8.7466 (8.2663; 9.1879)

X40:n 8.9473 (8.4665; 9.3686)

the Bayes estimates and to constructe credible intervals. In addition, the posterior predictive density

of a future observation based on the current data is estimated to predicte the missing order data.

The behavior of the proposed methods for different sampling schemes and priors are listed. In terms

of the MSE, the scale and shape parameters estimated from the Bayesian method are better than

the ones from MLE. Moreover, the Bayes estimate are significant under prior one. Furthermore,

when the observed data are increased and the sample size is fixed, the average lenght of the credible

intervals is decreased.Finally, the Bayesian predicted values are found to increase and to lie within

the corresponding predictive intervals.
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