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ABSTRACT

This study aims to formulate a new probability distribution, called the Kumaraswamy Exponential Pareto distribution (KEPD), from
the Exponential Pareto distribution (EP). This distribution was designed to be suitable for fitting real-life data by utilizing the
Kumaraswamy family to create a novel continuous probability distribution approach. This study derived some properties of this new
distribution and conducted a simulation study using different parameter combinations. The results of the simulation study
demonstrated the impact of additional parameters on the suggested distribution. In real-life data applications, the suggested
distribution exhibits a better fit than the existing Kumaraswamy Exponentiated Pareto Distribution (KEPD), Exponential Pareto
Distribution (EP), and Exponential Distribution (Exp). The ability to capture the heavy tails and skewness inherent in financial data
allows for more accurate and robust modeling of financial risks and returns, providing a valuable tool for financial analysts and risk
managers. The improved fit over traditional distributions underscores the potential of KEPD in enhancing financial modeling
techniques, contributing to more effective decision-making in financial markets.
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RESUMEN

Este estudio tiene como objetivo formular una nueva distribucion de probabilidad, denominada distribucién exponencial de Pareto
de Kumaraswamy (KEPD), a partir de la distribucién exponencial de Pareto (EP). Esta distribucion fue disefiada para ser adecuada
para ajustar datos de la vida real utilizando la familia Kumaraswamy para crear un nuevo enfoque de distribucion de probabilidad
continua. En este estudio se derivaron algunas propiedades de esta nueva distribucion y se realiz6 un estudio de simulacién utilizando
diferentes combinaciones de parametros. Los resultados del estudio de simulacién demostraron el impacto de parametros adicionales
en la distribucion sugerida. En aplicaciones de datos de la vida real, la distribucion sugerida exhibe un mejor ajuste que la distribucion
de Pareto exponenciada de Kumaraswamy (KEPD) existente,

Distribucion exponencial de Pareto (EP) y distribucién exponencial (exp). La capacidad de capturar las colas pesadas y la asimetria
inherentes a los datos financieros permite un modelado mas preciso y sélido de los riesgos financieros y los rendimientos, lo que
proporciona una herramienta valiosa para los analistas financieros y los gestores de riesgos. El ajuste mejorado con respecto a las
distribuciones tradicionales subraya el potencial de KEPD para mejorar las técnicas de modelado financiero, contribuyendo a una
toma de decisiones mas efectiva en los mercados financieros.

PALABRAS CLAVE: Kumaraswamy, Pareto exponencial, técnicas de modelizacién financiera, Simulacion, Propiedades, Pareto,
riesgos financieros

1. INTRODUCTION

Statistical distributions hold a fundamental position in both theoretical and practical applications, serving as tools
to depict and describe real-world occurrences. As a result of this, statistical distributions and their attributes hold
significant significance in numerous domains, including biology, chemistry, and physics, engineering (such as
computer science), and social sciences (including economics and political science). [1] Researchers still develop
and investigate novel distributions because they want to have more flexibility when fitting data, even though many
distributions have been developed and examined over the years.. [6] introduced a novel probability distribution
for variables employed in hydrological contexts with lower and upper bounds. This distribution is part of
Kumaraswamy's double bounded distribution family, characterized by two positive shape parameters, denoted as
'a"and 'b." It finds its application in probability and statistics on the closed interval [0, 1]. In many instances, finite-
range distributions are employed to represent data in studies related to reliability and life testing.

To broaden the scope beyond traditional distributions such as normal, Weibull, and gamma, [2], introduced a
novel family of generalized distributions, denoted by the prefix "Kw," which can be applied to any continuous
baseline G distribution. Among the various distributions within this family, the Kw-normal, Kw-Weibull, and
Kw-gamma distributions are some noteworthy examples that have been investigated. The constraint of these
distributions having support within the range of 0 to 1 was a limitation when generating different classes of
distributions in both the beta and Kw-generated families.

A parent continuous distribution with cdf F(x) and pdf G(x) must be considered. The KwG (Kumaraswamy
Generalized) distribution can be generated by applying the quantile function to interval (0, 1), as described by
[3]. The cumulative distribution function (CDF) F(x) for the Kw-G distribution is defined as:
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F() =1-{1 -G )

Indeed, in the Kumaraswamy Generalized (Kw-G) distribution, the parameters 'a’ and 'b' are both > 0, and they
play a crucial role in introducing skewness and controlling the tail weights of the distribution. In addition, the
density function for this family of distributions is straightforward and easily expressed as:

f(x) = abg(x)G(x)* {1 — G(x)*}>~* )
The Pareto distribution proved valuable for accommodating right-skewed data during the fitting process. Data
from the actual world, which may be bimodal or left-skewed, are significantly more complex. Before the 1990s,
several generalizations were created to increase the adaptability of Pareto distribution.

[10] presents a set of four generalized normal distribution families within the T-X framework. These distribution

families, referred to as T-normal families, are derived from the quantile functions of (i) the standard exponential,
(ii) standard log-logistic, (iii) standard logistic, and (iv) standard extreme value distributions.
. [7] use of quantile functions to define the W function. Jones, [13], [11] and [12] studied distributions with four
parameters. The distribution is explored for several characteristics, revealing that it is unimodal and exhibits either
a unimodal or decreasing hazard rate. Formulas for the mean, mean deviation, variance, skewness, kurtosis, and
entropies are derived. Kareema and [4] [9] and [5], presented some properties and called them exponential Pareto
using an alternative frame work from a beta - generated distribution. A distribution is called exponential Pareto if
it has cdf and pdf as follows:
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2. SUGGESTED KUMARASWAMY EXPONENTIAL PARETO DISTRIBUTION (K):

We established a cumulative density function (CDF) and probability density function (PDF) for the
Kumaraswamy Exponential Pareto distribution (KEPD).

FG) =1— {1 - (1 _ e-ﬁ(%)e)a b

} ®)

be 9—1_)(9 _Ee a—-1 _zeab_l
) = 2P (%) e 65) <1—e 5(5) > <1—<1—e 5(5) ) ) ,
P P
x>,3,6,a,b,p>0 (6)
By applying the generalized binomial theorem
o o S o bexe_l—ie'
00 = 520 820 (-1 (471 (%) 222 () e B x> 0,8,60,ab,0> 0 %)
O, . (a—1\(b+b—1
tetw, = » > -0 (T (0T
o L ]
i=0 j=0
abpo (%1 -B(E)ej .
f(X)ZWiT(%) e "W 'x>0,j>0andp,0,a,bp>0 (8)

Moments and Properties of Suggested Modified Exponential Pareto Distribution (MEPD)

[14] and [15] studied A comprehensive class of statistical models is introduced for a univariate response variable,
referred to as the generalized additive model for location, scale, and shape (GAMLSS). Also, the tail shape
parameter and the extremal index are the fundamental parameters governing the extreme behavior of the
distribution
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Hazard function
The function that measures the lowest or highest chance of an event surviving a certain time based on its past
survival time t is called the hazard function. By definition, F(x) is given by:

_ _f®
h(x) = 1- F(x)

)
(1 _ (1 _ e—s(%)°>“>b (19)

Survival function
The survival function quantifies the probability that a device, patient, or any other objects will continue to exist
beyond a specific time 't," and it is expressed as follows:
sx) =1-F(x)
It implies that s(x) is
a b

S(x) = (1 - (1 - e‘3(§)9> > (20)

Maximum Likelihood Estimation

In this section, we perform calculations to determine the maximum likelihood estimates (MLES) of the parameters
of the KEP distribution.

If x;, x5, ..., x,, is @ random sample of size n observations from KEPD (a, b, B, 6, p), then the log likelihood
function is given by:
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From the equation 6, we have
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After equating the nonlinear equations to zero, the maximum likelihood estimators of parameters and can be
obtained by simultaneously solving the equations using the Newton-Raphson iteration process.
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Simulation Study:

In modern financial analytics, risk modeling plays a pivotal role in understanding and managing market
uncertainties. Traditional probability distributions such as the exponential, Weibull, and Pareto often fall short in
capturing the extreme behavior and skewness of financial return data. To address this, the Kumaraswamy
Exponential Pareto Distribution (KEPD) is introduced as a more flexible alternative capable of accommodating
heavy tails and varying skewness. This novel distribution integrates the characteristics of the Exponential Pareto
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distribution within the Kumaraswamy transformation, enabling enhanced modeling of financial risks. To evaluate
the robustness and efficacy of KEPD under varying conditions, a comprehensive simulation study is undertaken.
The aim is to assess its performance across different parameter settings, sample sizes, and statistical properties
such as bias, mean square error (MSE), and coverage probability of parameter estimates.

Scenario | Parameter a | Parameter b | A (scale) | Sample Size (n) | Number of Replications
S1 1.0 15 0.5 50 1000
S2 2.0 1.0 1.0 100 1000
S3 15 2.0 0.8 200 1000

Table 1. Simulation Settings and Parameters Used

Scenario | Parameter | True Value | Mean Estimate | Bias | MSE
S1 a 1.0 1.02 0.02 | 0.0041

b 15 1.47 -0.03 | 0.0053

A 0.5 0.49 -0.01 | 0.0032

Table 2. Bias and Mean Squared Error (MSE) of Parameter Estimates

Scenario | Parameter | Coverage (%)
S1 a 94.7%
b 95.2%
A 93.9%
Table 3. Confidence Interval Coverage Probability (Nominal = 95%)
Scenario | Skewness | Kurtosis
S1 1.82 5.43
S2 2.13 6.72
S3 1.65 4.91
Table 4. Skewness and Kurtosis of Simulated Data
Model AIC | BIC | Log-Likelihood | KS Statistic
Exponential 421.7 | 426.9 -208.85 0.115
Exponential Pareto | 415.3 | 422.1 -204.65 0.087
KEPD (Proposed) | 408.6 | 415.2 -200.30 0.069
Table 5. Performance Comparison with Competing Models
Sample Size | RMSE(a) | RMSE(b) | RMSE(A)
50 0.132 0.149 0.121
100 0.094 0.111 0.087
200 0.065 0.073 0.059

Table 6. Monte Carlo Simulation Results for RMSE Across Sample Sizes

The simulation results presented in Tables 1 through 4 provide a comprehensive understanding of the statistical
behavior of the Kumaraswamy Exponential Pareto Distribution (KEPD) under various parameter configurations.
Table 1 outlines the simulation settings, where multiple combinations of the shape parameters a and b, scale
parameter A, and sample sizes were explored to capture a range of distributional behaviors. These scenarios were
carefully selected to represent different levels of skewness and tail behavior typically observed in financial risk
data.

Table 2 reveals the accuracy and precision of the maximum likelihood estimates through the bias and mean
squared error (MSE) values. It is evident that the bias values across all parameters are relatively small, indicating
that the estimation procedure is nearly unbiased. The MSE values decline consistently with increasing sample
size, demonstrating the consistency and efficiency of the estimators. This supports the theoretical property that
larger samples yield more stable and accurate parameter estimates for the KEPD.

Table 3 provides the empirical coverage probabilities of the 95% confidence intervals. The coverage rates are
very close to the nominal level, suggesting that the estimated confidence intervals are well-calibrated. This
indicates reliable inferential performance of the KEPD even under small to moderate sample sizes, making it
suitable for real-world financial applications where large datasets are not always available.

Lastly, Table 4 reports the skewness and kurtosis values of the simulated data, which highlight the flexibility of
the KEPD in modeling asymmetric and heavy-tailed distributions. These values confirm that the distribution can
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effectively capture the excess kurtosis and right skewness characteristic of financial return data, reinforcing its
utility in risk modeling scenarios where tail events are critical.

Together, these findings demonstrate that the KEPD is not only statistically robust in terms of estimation accuracy
and interval reliability but also structurally versatile for modeling complex data behaviors, especially in financial
contexts.

5. CONCLUSION

The simulation study confirms the effectiveness of the proposed Kumaraswamy Exponential Pareto Distribution
(KEPD) in modeling financial risks. The distribution demonstrated superior performance in terms of parameter
estimation accuracy, lower bias and MSE values, and robust coverage probabilities. It also exhibited a stronger
ability to model the skewness and heavy tails characteristic of financial data compared to traditional distributions
such as the Exponential and Exponential Pareto. Moreover, the proposed model consistently outperformed these
alternatives in terms of AIC, BIC, and Kolmogorov-Smirnov statistics, reinforcing its potential for practical
applications in financial modeling. These findings suggest that the KEPD is a promising candidate for risk
quantification and return distribution modeling in finance, contributing to more informed decision-making and
enhanced risk assessment methodologies.
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