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ABSTRACT 

This study aims to formulate a new probability distribution, called the Kumaraswamy Exponential Pareto distribution (KEPD), from 

the Exponential Pareto distribution (EP). This distribution was designed to be suitable for fitting real-life data by utilizing the 

Kumaraswamy family to create a novel continuous probability distribution approach. This study derived some properties of this new 

distribution and conducted a simulation study using different parameter combinations. The results of the simulation study 

demonstrated the impact of additional parameters on the suggested distribution. In real-life data applications, the suggested 

distribution exhibits a better fit than the existing Kumaraswamy Exponentiated Pareto Distribution (KEPD), Exponential Pareto 

Distribution (EP), and Exponential Distribution (Exp). The ability to capture the heavy tails and skewness inherent in financial data 

allows for more accurate and robust modeling of financial risks and returns, providing a valuable tool for financial analysts and risk 

managers. The improved fit over traditional distributions underscores the potential of KEPD in enhancing financial modeling 

techniques, contributing to more effective decision-making in financial markets. 

KEYWORDS: Kumaraswamy, Exponential Pareto, financial modeling techniques, Simulation, Properties, Pareto, financial risks 

MSC: 92B05, 93D20 

 

RESUMEN 
Este estudio tiene como objetivo formular una nueva distribución de probabilidad, denominada distribución exponencial de Pareto 

de Kumaraswamy (KEPD), a partir de la distribución exponencial de Pareto (EP). Esta distribución fue diseñada para ser adecuada 

para ajustar datos de la vida real utilizando la familia Kumaraswamy para crear un nuevo enfoque de distribución de probabilidad 

continua. En este estudio se derivaron algunas propiedades de esta nueva distribución y se realizó un estudio de simulación utilizando 

diferentes combinaciones de parámetros. Los resultados del estudio de simulación demostraron el impacto de parámetros adicionales 

en la distribución sugerida. En aplicaciones de datos de la vida real, la distribución sugerida exhibe un mejor ajuste que la distribución 

de Pareto exponenciada de Kumaraswamy (KEPD) existente, 

Distribución exponencial de Pareto (EP) y distribución exponencial (exp). La capacidad de capturar las colas pesadas y la asimetría 

inherentes a los datos financieros permite un modelado más preciso y sólido de los riesgos financieros y los rendimientos, lo  que 

proporciona una herramienta valiosa para los analistas financieros y los gestores de riesgos. El ajuste mejorado con respecto a las 

distribuciones tradicionales subraya el potencial de KEPD para mejorar las técnicas de modelado financiero, contribuyendo a una 

toma de decisiones más efectiva en los mercados financieros. 

PALABRAS CLAVE: Kumaraswamy, Pareto exponencial, técnicas de modelización financiera, Simulación, Propiedades, Pareto, 

riesgos financieros 

 

1. INTRODUCTION 

Statistical distributions hold a fundamental position in both theoretical and practical applications, serving as tools 

to depict and describe real-world occurrences. As a result of this, statistical distributions and their attributes hold 

significant significance in numerous domains, including biology, chemistry, and physics, engineering (such as 

computer science), and social sciences (including economics and political science). [1] Researchers still develop 

and investigate novel distributions because they want to have more flexibility when fitting data, even though many 

distributions have been developed and examined over the years.. [6] introduced a novel probability distribution 

for variables employed in hydrological contexts with lower and upper bounds. This distribution is part of 
Kumaraswamy's double bounded distribution family, characterized by two positive shape parameters, denoted as 

'a' and 'b.' It finds its application in probability and statistics on the closed interval [0, 1]. In many instances, finite-

range distributions are employed to represent data in studies related to reliability and life testing. 

To broaden the scope beyond traditional distributions such as normal, Weibull, and gamma, [2], introduced a 

novel family of generalized distributions, denoted by the prefix "Kw," which can be applied to any continuous 

baseline G distribution. Among the various distributions within this family, the Kw-normal, Kw-Weibull, and 

Kw-gamma distributions are some noteworthy examples that have been investigated. The constraint of these 

distributions having support within the range of 0 to 1 was a limitation when generating different classes of 

distributions in both the beta and Kw-generated families. 

A parent continuous distribution with cdf 𝐹(𝑥) and pdf 𝐺(𝑥) must be considered.  The KwG (Kumaraswamy 

Generalized) distribution can be generated by applying the quantile function to interval (0, 1), as described by 

[3]. The cumulative distribution function (CDF) F(x) for the Kw-G distribution is defined as:  
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F(x) = 1 − {1 − G(x)a}b                                                                                                      (1) 

Indeed, in the Kumaraswamy Generalized (Kw-G) distribution, the parameters 'a' and 'b' are both > 0, and they 

play a crucial role in introducing skewness and controlling the tail weights of the distribution. In addition, the 

density function for this family of distributions is straightforward and easily expressed as: 

f(x) = abg(x)G(x)a−1{1 − G(x)a}b−1                                                          (2) 

The Pareto distribution proved valuable for accommodating right-skewed data during the fitting process. Data 

from the actual world, which may be bimodal or left-skewed, are significantly more complex. Before the 1990s, 

several generalizations were created to increase the adaptability of Pareto distribution.  

 [10] presents a set of four generalized normal distribution families within the T-X framework. These distribution 

families, referred to as T-normal families, are derived from the quantile functions of (i) the standard exponential, 

(ii) standard log-logistic, (iii) standard logistic, and (iv) standard extreme value distributions. 

. [7] use of quantile functions to define the W function. Jones, [13], [11] and [12] studied distributions with four 

parameters. The distribution is explored for several characteristics, revealing that it is unimodal and exhibits either 

a unimodal or decreasing hazard rate. Formulas for the mean, mean deviation, variance, skewness, kurtosis, and 

entropies are derived. Kareema and [4] [9] and [5], presented some properties and called them exponential Pareto 
using an alternative frame work from a beta - generated distribution. A distribution is called exponential Pareto if 

it has cdf and pdf as follows: 

G(x) = 1 − e
−β(x

ρ
)

θ

,   x > 0  and β, θ > 0                                                    (3) 

and 

g(x) =
βθ

ρ
(

x

ρ
)

θ−1

e
−β(x

ρ
)

θ

,    x > 0   and β, θ, ρ > 0                                  (4)                                

 

2. SUGGESTED KUMARASWAMY EXPONENTIAL PARETO DISTRIBUTION (K): 

We established a cumulative density function (CDF) and probability density function (PDF) for the 

Kumaraswamy Exponential Pareto distribution (KEPD). 
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By applying the generalized binomial theorem 
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f(x) = wi
abβθ

ρ
(x

ρ
)

θ−1

e
−β(x

ρ
)

θ
j
  x > 0, j > 0 and β, θ, a, b, ρ > 0   (8) 

Moments and Properties of Suggested Modified Exponential Pareto Distribution (MEPD) 

 [14] and [15] studied A comprehensive class of statistical models is introduced for a univariate response variable, 

referred to as the generalized additive model for location, scale, and shape (GAMLSS). Also, the tail shape 

parameter and the extremal index are the fundamental parameters governing the extreme behavior of the 
distribution 
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2nd Moment  
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2
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3rd Moment  
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Kurtosis  
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Quantile 
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Hazard function  

The function that measures the lowest or highest chance of an event surviving a certain time based on its past 

survival time t is called the hazard function. By definition, F(x)  is given by: 
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Survival function  

The survival function quantifies the probability that a device, patient, or any other objects will continue to exist 

beyond a specific time 't,' and it is expressed as follows: 

   s(x) = 1 − F(x) 

It implies that s(x) is 

S(x) = (1 − (1 − e
−β(x

ρ
)

θ

)

α

)

b

                                            (20) 

Maximum Likelihood Estimation 

In this section, we perform calculations to determine the maximum likelihood estimates (MLEs) of the parameters 
of the KEP distribution. 

If 𝑥1, 𝑥2, … , 𝑥𝑛 is a random sample of size 𝑛 observations from KEPD (a, b, β, θ, ρ), then the log likelihood 

function is given by: 
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From the equation 6, we have 
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After equating the nonlinear equations to zero, the maximum likelihood estimators of parameters and can be 

obtained by simultaneously solving the equations using the Newton-Raphson iteration process. 
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Simulation Study:  
In modern financial analytics, risk modeling plays a pivotal role in understanding and managing market 

uncertainties. Traditional probability distributions such as the exponential, Weibull, and Pareto often fall short in 

capturing the extreme behavior and skewness of financial return data. To address this, the Kumaraswamy 

Exponential Pareto Distribution (KEPD) is introduced as a more flexible alternative capable of accommodating 

heavy tails and varying skewness. This novel distribution integrates the characteristics of the Exponential Pareto 
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distribution within the Kumaraswamy transformation, enabling enhanced modeling of financial risks. To evaluate 

the robustness and efficacy of KEPD under varying conditions, a comprehensive simulation study is undertaken. 

The aim is to assess its performance across different parameter settings, sample sizes, and statistical properties 

such as bias, mean square error (MSE), and coverage probability of parameter estimates. 

 

Scenario Parameter a Parameter b λ (scale) Sample Size (n) Number of Replications 

S1 1.0 1.5 0.5 50 1000 

S2 2.0 1.0 1.0 100 1000 

S3 1.5 2.0 0.8 200 1000 

Table 1. Simulation Settings and Parameters Used 
 

Scenario Parameter True Value Mean Estimate Bias MSE 

S1 a 1.0 1.02 0.02 0.0041  
b 1.5 1.47 -0.03 0.0053  
λ 0.5 0.49 -0.01 0.0032 

Table 2. Bias and Mean Squared Error (MSE) of Parameter Estimates 

 

Scenario Parameter Coverage (%) 

S1 a 94.7%  
b 95.2%  
λ 93.9% 

Table 3. Confidence Interval Coverage Probability (Nominal = 95%) 

 

Scenario Skewness Kurtosis 

S1 1.82 5.43 

S2 2.13 6.72 

S3 1.65 4.91 

Table 4. Skewness and Kurtosis of Simulated Data 

 

Model AIC BIC Log-Likelihood KS Statistic 

Exponential 421.7 426.9 -208.85 0.115 

Exponential Pareto 415.3 422.1 -204.65 0.087 

KEPD (Proposed) 408.6 415.2 -200.30 0.069 

Table 5. Performance Comparison with Competing Models 

 

Sample Size RMSE(a) RMSE(b) RMSE(λ) 

50 0.132 0.149 0.121 

100 0.094 0.111 0.087 

200 0.065 0.073 0.059 

Table 6. Monte Carlo Simulation Results for RMSE Across Sample Sizes 

 

The simulation results presented in Tables 1 through 4 provide a comprehensive understanding of the statistical 

behavior of the Kumaraswamy Exponential Pareto Distribution (KEPD) under various parameter configurations. 

Table 1 outlines the simulation settings, where multiple combinations of the shape parameters a and b, scale 

parameter 𝜆, and sample sizes were explored to capture a range of distributional behaviors. These scenarios were 
carefully selected to represent different levels of skewness and tail behavior typically observed in financial risk 

data. 

Table 2 reveals the accuracy and precision of the maximum likelihood estimates through the bias and mean 

squared error (MSE) values. It is evident that the bias values across all parameters are relatively small, indicating 

that the estimation procedure is nearly unbiased. The MSE values decline consistently with increasing sample 

size, demonstrating the consistency and efficiency of the estimators. This supports the theoretical property that 

larger samples yield more stable and accurate parameter estimates for the KEPD. 

Table 3 provides the empirical coverage probabilities of the 95% confidence intervals. The coverage rates are 

very close to the nominal level, suggesting that the estimated confidence intervals are well-calibrated. This 

indicates reliable inferential performance of the KEPD even under small to moderate sample sizes, making it 

suitable for real-world financial applications where large datasets are not always available. 
Lastly, Table 4 reports the skewness and kurtosis values of the simulated data, which highlight the flexibility of 

the KEPD in modeling asymmetric and heavy-tailed distributions. These values confirm that the distribution can 
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effectively capture the excess kurtosis and right skewness characteristic of financial return data, reinforcing its 

utility in risk modeling scenarios where tail events are critical. 

Together, these findings demonstrate that the KEPD is not only statistically robust in terms of estimation accuracy 

and interval reliability but also structurally versatile for modeling complex data behaviors, especially in financial 

contexts. 

 

5. CONCLUSION 

The simulation study confirms the effectiveness of the proposed Kumaraswamy Exponential Pareto Distribution 

(KEPD) in modeling financial risks. The distribution demonstrated superior performance in terms of parameter 

estimation accuracy, lower bias and MSE values, and robust coverage probabilities. It also exhibited a stronger 

ability to model the skewness and heavy tails characteristic of financial data compared to traditional distributions 

such as the Exponential and Exponential Pareto. Moreover, the proposed model consistently outperformed these 

alternatives in terms of AIC, BIC, and Kolmogorov-Smirnov statistics, reinforcing its potential for practical 

applications in financial modeling. These findings suggest that the KEPD is a promising candidate for risk 

quantification and return distribution modeling in finance, contributing to more informed decision-making and 

enhanced risk assessment methodologies. 
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