REVISTA INVESTIGACION OPERACIONAL VOL. 46, NO. 4, 555-570, 2025

A QUANTITATIVE COMPULSORY RANDOMIZED
RESPONSE TECHNIQUE. SIMULATION WITH
SENSITIVE DATA ON VIOLENCE IN MEXICO

Carlos N. Bouza-Herrera*, Pablo O. Juarez-Moreno**, Agustin Santiago-Moreno** and José M. Sautto-
Vallejo**

*Universidad de La Habana, Cuba.

**Universidad Auténoma de Guerrero, México

ABSTRACT

In the literature we can find a classification of randomized response techniques as compulsory and optional. In this work we
present a compulsory randomized response technique with the purpose of having a double random scrambling of the sensitive
variable Y through a Bernoulli experiment and a Ri report, and that this translates into a greater protection of the information
it provides the interviewee. The document specifies the properties of the population mean of the sensitive variable Y with
simple random sampling with replacement, an extension to stratification is made, the optimal allocation and the gain in
precision are specified. Finally, simulation is performed to evaluate the accuracy and efficiency of the proposed estimators
using real data on the perception of violence in Mexico.
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RESUMEN

En la literatura podemos encontrar una clasificacion de las técnicas de respuestas aleatorizadas como obligatorias y
opcionales. En este trabajo presentamos una técnica de respuesta aleatorizada obligatoria con la finalidad de tener un doble
enmascaramiento aleatorio de la variable sensible Y a través de un experimento Bernoulli y un reporte R;, y que esto, se
traduzca en una mayor proteccion de la informacion que proporciona el entrevistado. En el documento se especifican las
propiedades de la media poblacional de la variable sensible Y con muestreo aleatorio simple con remplazo, se hace extension
a estratificado, se especifica la asignacion optima y la ganancia en precisién. Por Gltimo, se realiza una simulacién para
evaluar la precision y eficiencia de los estimadores propuesto usando datos reales sobre la percepcion de la violencia en
México.

PALABRAS CLAVE: Respuestas Aleatorizadas, Enmascaramiento, Muestreo Aleatorio, Violencia, México

1. INTRODUCTION

It is usual, when carrying out an investigation using survey sampling to obtain information on
characteristics of a population. Therefore, it becomes a priority to access information on that characteristic
of the population. This entails a couple of frequent drawbacks in survey sampling, which due to non-
response or bias in the information. In addition, they will be greater bigger if the characteristic to be known
is of a sensitive type. To solve this, Warner (1965) proposed the methods of randomized responses (RR),
which aims to encourage the respondent to provide their true response on issues or information considered
sensitive. This action is achieved because the RR procedures are intended not to reveal to the interviewer
the personal information that the respondent is providing and thus keeping it private.

To carry out the randomized response (RR) methods, a finite population U of N elements is considered, is
assumed that with some design d a random sample s of size n is drawn, with probability p(s), in which, the
i-th respondent is of interest to the researcher needing to know his/her sensitive characteristic Y, that for
some reason the respondent refuses to answer directly. The true value of Y will not known, but the
estimation of the mean, for example, may unbiased. The procedure of the RR methods consists of
scrambling the sensitive value of the respondent Y through a random mechanism (variable, experiment or
both) M, which will have a distribution 6 known to the researcher. This scrambling will generate a report
Z for the i-th respondent so it is possible to estimate, through the report, the mean of the sensitive variable
Y, which is Ey, (Z;) = fiy, the estimator variance Vy, ({iy) = o and noting thatC,, = (y;,y;) = 0 for i = j.

The study of RR techniques has been diversified since Warner’s work (1965) to the present day. Based on
this, we can find in the literature different uses of RR techniques in different types of works, to mention a
few: works of RR with qualitative data, see Abdel-Latif et al. (1967), Horvitz et al. (1967), Huang (2004),
Singh et al. (2020), Narjis and Shabbir (2021); works of RR with quantitative data, see Greenberg et al.
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(1971), Eriksson et al. (1973), Gupta et al.(2002), Arnab (2018), Bouza et al. (2022); works dealing with
sensitive issues such as abortion, see Perri et al. (2016), drug use, see Stubbe et al. (2013), racism, see
Krumpal (2012), AIDS, see Bouza (2009), Arnab and Singh (2010); works applied in the Health area, see
Bouza (2002) and Murtaza et al. (2020), Social Science, see Pal et al. (2020), Computing, see Rueda et al.
(2016); we can also find works where classifications of the RR techniques are made, see Arnab and Rueda
(2016), Juarez-Moreno et al. (2023). See Chaudhuri and Mukherjee (1988) y Chaudhuri et al. (2016) for a
wide range of RR topics.

In this document, a new compulsory RR technique is proposed specifying the properties of u, when the
sampling design is simple random sampling with replacement and its stratified extension. The proportional
and optimal allocation is specified, in addition to the gain in precision. Finally, a simulation is performed
to evaluate the accuracy and efficiency of the proposed estimators using real data on the perception of
violence in Mexico.

2. PROPOSE RR SCRAMBLING PROCEDURE USING SRSWR

The respondent participation to answer or not to a question depends, to a large extent, on how sensitive the
question is and how confident he or she is in answering it. Therefore, a good RR technique increases the
proportion of respondents who feel confident in answering despite the fact that it is a highly sensitive
question. In other words, the RR technique that scramble the true value Y of the respondent will be in
practice better, since the respondents will trust more, due to the degree the more confident in the scrambling
in providing their true answer. Following the Arnab's work (2018), in which he converts two Partial
Optional RR techniques to Full Optional RR, in the same way, the Full Optional RR techniques of Arnab
(2018) we convert it into a Compulsory RR technique. Therefore, in this section we present a new
compulsory RR technique in which the respondent’s response is randomly scrambled by first using a
Bernoulli experiment with probability Q if its sensitive value is scrambled by R; is reported or (1-Q) if you
scramble your sensitive value with the Rz report, which are:
R, = if—; or R2=n’f—;+n
Where X and T are independent random variables with mean u, and u, respectively and variance o and
a2 in the same way. Both random variables are known to the researcher. Hence, the report of i-th respondent
will be given by:
_ (1; the i — threspondent reports with R,

Q= {0; the i — th respondent reports with R,

and is modeled by

X; X;
2= Q¥+ (1= 0) [+
X X
which, due to the complex scrambling of the sensitive value Y, it would be “difficult” for the interviewer

to deduce the sensitive value Y of the respondent, in addition, that he is also not aware of with which report
R; (i = 1,2) scrambled his value.

With the report Z; and using SRSWR to select a sample s of size n from a population U, it is of interest to
know the population characteristics of the sensitive value Y. Below in the following lemmas we present the
properties of reports R;, R, and of the model Z.
Lemma 2.1. The estimator of the mean of Y under R, is Yy = R, and with variance V[R,]=
2
%[a}? (14 CV2) + CV2u2], where CVE = %
X
Proof.
The conditional expectation of R; on the model is Eg (Ry;|i) = Ep, (Yi:f—"|i) = Y; and the conditional
X
variance of R; under the model is Vi (Ry;|0) = Vg, (Yl-ﬁ|i) = YLZ cgZ. Then R, is E[Ry;li]l =
ux [25'¢

E,; [ER1 (Yllf—)‘{ |i)] = E,4[Y;] = ny, hence, R isan adequate estimator of ¥ .
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Unbiasedness of the estimator in R,

= 1 . 1 Xi . 1 1 .
E[R,]=E, [; Dies ER1 (R1i|l)] =E4 [; Dies ER1 (Yl; |l)] =E,; [;Zies Yl] = ;ZiES E4[Y;] = py, with
this the unbiasedness of the estimator is demonstrated.

Variance of the estimator

Y2

VIR = Vy [ S En(Rad)| + B [£ S Ve Rad)] = Va [2ies V] + B [ 28w o] =

2 2 2 2,2

X 2 2 _1[ 2 | 9x%y Uxﬂy]_l 2 2
oy + ==|loy + S+ =-[loy(1+CV¢) +

n‘u%( v+ uy) 197 py2 % n[ v ( %)

1 2 1

7 Zies Va() + 25 Bie, Ea(07) = Jof +

CVZ Uil

Then the lemma is proved.

Lemma 2.2. The estimator of the mean of Y in R, is Y,) = R,-uy and with variance V[R, — ur] =
2

~[02(1 + CV2) + CVZu} + o], where CVZ = %

X

Proof.

The expectation of R, under the model is Eg, (R(3y|i) = Eg, ((Yl ;—l + Ti) |i) = Y, + u; , the variance
X
) 2
of R,under the model is Vg, (R(Z)i|i) = Vg, ((Yi;(—l+ Ti) |i) = ‘% o2 + o# and conditional expectation
X X

of Ry is E[Reyli] = Eq [ERZ ((Yl S—X + Ti) Ii)] = Eq4lY;] + Eqlpr] = py + pr, hence, Ry-uir is a good

estimator of .

Unbiasedness of the estimator in R,

E[Rz —ur] =E, [%Zies ERZ (R(z)i|i)] —E4 [ERZ (:U'Tli)] =Ey [%Zies ERZ ; :f_;( + Ti)] —Hr =

1
Eq [;ZiESYi +.“T] — Ur = Uy + Up — U = Uy
Variance of the estimator

— 1 1 1 1 Yiz
VIR, =Vq [;Zies ER(RZi)] +Eq [ﬁZiES VR(RZi)] =Va [;ZiESYi + HT] +Eq [ﬁziesg o + JTZ] =
1 1 Z 1 1 Z 1 204
LV + & s [ BB 02 + B(0D) | = 207 42| (D 07 + 1) ) + 07| = 2|07 + 2L +
n n 754 n n|\ uyx n uyx

2,2
4+ 07| = LIop (1 + CVP) + CVEi} + oF]
X

Then the lemma is proved.

Lastly, we present the report Z, where the properties of the parameter Y are given by the following lemma.
Lemma 2.3. The Z report has the following characteristics:

i) Ay = Z—ur(1—Q), which is the estimator of the population mean of Y.
i) Vgl = % [0 + Q2 CVE (o + 1) + (1 — Q)%((af + u)CVE + )], which is the variance of the

2
estimator, where CVZ = 'L—Xz
X

i)y V[ay] = % [62 + Q2 CVE(6% + 42) + (1 — Q)%((8% + a)CVE + o2)] , which is the estimator of the

; ~ 52-[Q% cvE pE+(1-Q)%(pEcvE+ o2 g2
variance, where 52 =% [Q% cvg ng+(1-Q)?(aycvy UT)]’ and S2 = Yies(zi—2)
Y [1+cvg (@2 +(1-@)?)] z n—1
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Proof.

Th tation of Z, under the model is E, [Z;|i] = E [( Yﬁ)]+E ( )(Yﬁ+
e expectation of Z; under the model is Ej[Z;|i] = Eg, |(Q i i Ry -Q i
Ti)> |i] =QY; + (1-Q) (Y; +up)=Y; + up(1 — Q). The variance of Z; under the model is V, [Z;|i] =

RANF _ Xi 1_p2 ¥ 2 ez |¥ 2 2] _
Ve, [0 (62) 1] + Vi, [0 - @ (W2 + 1) 1] = 02 L o7 + (1 - 02| o2 + 07| =
2
Q* (V2CVR) + (1= QP*[Y?CV{ + of], where CV¢ = =%
X
The conditional expectation of Z; is E[Z;]i] = E, {Ezi [[Q Kt (1-0Q) (Yl;‘— +7,)| |i]} = E,[Y, +
X X
ur(1— Q)] = py + pur(1 — Q), hence, Z — ur(1 — Q) is the estimator of puy.

Unbiasedness of the estimator in Z;

Elfy] = Eq[Ez(Z — (1 = Q)] = Eq [} Bies 2 (ZilD)| = 7 (1 = @) = 2 Ties EalV; + 1r(1 — Q)] —
pr(l—Q) =py +pr(1—-Q) —pur(1—-Q) = py

Variance of the estimator

Vi) = VIZ) = Vy [ Bies (B2, @ilD)] +Ea |5 Bies (V2 @1D)] = Vi [> S ¥i + r(1 - @] +
Eq |5 ZieslQ? (F2CVE) + (1 — Q2 (F2CVE + 0P| = 5 Bies Va () + =5 Zies[Q% (Bq[VZICVR) + (1 -
QP (EqY21CVE + o)) = = [0F + Q2 CVE (o} + i) + (1 — Q)2 ((0F + u)CVE + 0F)]

Estimator of the variance

The natural estimator for the variance is: V[iy] = %[6—% +Q2 CVE(6% +a3) + (1 — Q)*((62 +

$Eo0* v B+ Qe o)) g oo BiestaD)?

APCVE + ot )], where, 67 = [1+cv (@2 +(1-Q)2)] n-1

Then the lemma is proved.
3. STRATIFIED MODEL EXTENSION

In the previous section, under simple random sampling with replacement, we present the characteristics of
the estimators of the mean of Y for the reports R, Rz and the model Z, which together make up the new
proposed RR technique. Here, in the same way, we present the characteristics of the estimators, under
stratified random sampling with replacement (SSRSWR). In a stratified design, the population U of size N
is divided into H strata, where 2}, N; = N . Using a random draw, in each of the strata L a sample is
chosen in such a way that the sizes n; of the samples s; satisfy Y./, n; = n.

The reason for doing this extension from simple random to stratified is to compare the efficiency and
precision of both strategies, since theoretically the estimators under stratification are more precise and have
minimum variance compared to those with simple random sampling.

3.1. Ry with SSRSWR

For Ry and the following reports, using stratified random sampling, the population U is divided into L strata.
Therefore, in the R report, each individual i in stratum h, must general a random value X,,; with probability
P[X,;] = 6,,;, mean u,y and variance o7, both parameters defined by the researcher. The respondent's
response i in stratum h is scrambled by:
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R(l)hi =Yy ll_h)l(

As the previous section, in the following lemma we define the estimator and its properties of Ry under the
SSRSWR design.

Lemma 3.1. For R; and using SSRSWR, an estimator of the mean of Y per stratum is ¥}, R = E(l)h and
its stratified global estimator Yy, Ry = 2 Z,ﬁ:l N,Y, (ry- The variance of the estimator per stratum is

v(¥, (Rl)) = ohy(l + CV&) + CVthhy] and the variance of the global estimator is given by

% _ 1< Ni@hy(1+CVx)+CVixuhy)
V(YSTRl) N2z &h=1 np

Proof

The expectation and variance of R under the model are ERl(R(l)hi|i) = Eg, (Yhi%li) = Y, and
hX
Ve, (Raynili) = Vi, (Yhiﬂli) = Jhi 52 respectively. The conditional expectation of R, is
Unhx HUnx

. Xni s _ _ = . . =
E[Rwynli] = Eq [ER1 (Y,”- Ehx |1)] = E4[Yu] = pny, and Ry, is the proposed estimator of ¥, (g,).
Unbiasedness of the estimator per stratum in R,

X L
E[R(l)h] Ed [ Zl 1ER1 (R(l)hlll)] Ed [_Zl 1ER1 (th — |l)] Ed [_Z th ] = Ed [Yhi] =
Uny- With this, the unbiasedness of the estimator for each stratum is proved.
Stratified global estimator

Using theorem 5.1 in Cochran (1971) and the stratum mean Y, (r,)» the global estimator for the SSRSWR
.S 1 o
IS Ysrp, =74 Zh=1 Nn¥a gy

Variance of the estimator per stratum

_ 1 . 1 P
V[R(l)h] =V [—Z:th Eg, (R(l)m'|l)] +Eq [_22?21 Vi, (R(l)hill)] Va [ Z 1Y ]
v/
[ zznh = ] - 71_1;21211 Vy (V) + JhX Z Ed(ym) = —0jy +- hX (JhY + thy) =

A [,z +_”hx”w+—”ﬁ>f“'2ﬂ = L2 (1+cv )+CV 2]
o | ChY u2 2 | T, Ohy hX hxHhy

hx Hhx

Variance of the global estimator. Using the variance of the estimator by stratum V[Yh (Rl)] and Cochran’s
theorem 5.2. which is V(y,,) = % L_ NZV(3,), where y, must be an unbiased estimator of Y, , which
has already been proven and the independent sample, applying the previous theorem we have:

_ 1 L 1 xO N2 (02, (1 + CVZ) + CV2idy)
V(YST,R1 ) = mz Ny V(Y (Rl)) = mz n,
h=1 h=1

Then the lemma is proved.

3.2. Rz with SSRSWR

In this Rz report, the i-th respondent in the h-th stratum must generate two values of two random variables.
The first is X,; with probability P[X,;] = 8,;, mean pu,y and variance o/, and the second is T},; with
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probability P[T};] = &,;, mean u,r and variance a2, parameters known by the researcher for both
variables. The response of the i-th respondent in the h-th stratum is generated by:

o, X
Ry = VYi—+ Ty
Unx

Lemma 3.2. For R, and using SSRSWR, an estimator of the mean of Y per stratum is ¥, (Ry) = E(Z)h'.uhT
and its stratified global estimator is Y, R, = 2 Z,Ll LNLY, (r,)- The variance of the estimator per stratum

is vV (¥, (RZ)) =— ahy(l + CVi%) + CV uk, + ofr] and the variance of the global estimator is given by

V(? ) _ i L Ni Ry (1+CV2)+CVix phy+ofr)
ST,Ry h=1 .

Proof

The expectation of R, under the model is Eg, (R(2ynili) = Exg, ((th Xni | Tm) |l> = Yy + uyr and its
Z.

variance is Vi, (Reynili) = Vi, ((Ym 2hi Tm) |l) % aiy + oy The conditional expectation of R,
hX

is E[R(z)i|i] =Ey [ERZ ((Ym -+ Tm) | >] = Eq[Ypi] + Eqlttnr] = tiny + tar, hence, Rizyp-ttnr is the
estimator of .

Unbiasedness of the estimator per stratum in R,

With the next procedure we proof the unbiasedness of the estimator per stratum. E[E(Z)h — #hr] =
1 on . , 1 on Xhni . _

Eq [EZL.:’II Ex, (R(Z)hill)] — Eq[Ep, (unrD] = Eq [Ezifl E, (Yhi ﬁ + Ti|l)] ~ Hnr =
1

Eq [EZ?L Yhi + tnr ] — Ur = Py + U — Ut = Upy

Stratified global estimator

As the above report, we have in this R, report the mean per stratum Y, (ry)» SO that, the global estimator for
SSRSWR design is Ysr g, =% Yhe1 NpYh zy)

Variance of the estimator per stratum

V[Ray) = Va [i i Eg, (R(z)m'|i)] +Eq [izzlhl Vi, (R(Z)hili)] =V [nl_hz?:l Vi + #hr] +

YA 7 1
Eq [ Znh 2 Unx + Uhr] hz Vg (Yni) += Z [Jizl; Eq(Y2) + Ed(o-i%T)] = n_ho-f%Y +

1
i [(— s i) + o | = T 1+ €0 + Vi + o]
h HUnx Nh
Variance of the global estimator. In the same way as the previous report, we know the variance per
stratum V[Yh (Rz)], therefore, the variance of the global estimator is:

L
N? (o, (1 + CVi&) + CVAu2y + 0r)

L
_ 1 _ 1
V(YST,RZ) = N2 Z Nf% V(Yh (Rz)) = N2 : ;

h=1 h=1

np

Then the lemma is proved.
3.3. Z procedure with SSRSWR
As a last extension to stratified, we present the Z report. The objective of this report is scrambling the

sensitive value of the respondent, in a random way, through either the report Ry with probability @, or R,
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report with probability (1 — @,). That is, the i-th respondent in stratum h performs a Bernoulli try and will
report his sensitive value Y by:

7 = {R(l)hi if ap=1
MU ARy if ap =0

the Z report is modeled by

Zni = Qni Rayni + (1 = Q) Reoyni
Xni Xni
- th th + (1 - th) [th + Thl]
Hnx Hnx

The following lemma presents the properties of the population mean of the sensible value Y.
Lemma 3.3. The Z report has the following characteristics:

i) Any = Zp — tpr (1 — Qp;), Which is the estimator of the mean of Y per stratum.
i) Yorz = % Yk _ Ny, finy, is the global stratified estimator of the population mean.

i) Vgl = n_lh [Ulfy +Qfii CVix oty + uiy) + (1 — th)z((a,fy + Uiy )CViy + O-i%T)]! which is the

2
variance of the estimator per stratum, where CV}, = ‘;"ZX .
hX
iv) = (6% + QFi CVA Gy + i) + (1= Qu)* (G + ARy )CViy + a7y)]. is the proposed

st~ (R CVity Bpy+(1-Qn)?(RRy CVi2x + ofr))
[1+cviy (Qf; +(1-Qnp)? )]

estimator for the variance per stratum, where 67, = , SZ, =

Zi=1(zhi_z_h)2
np—1

2 2 2 2 2 2 2 2 2 2 2
_ 1 Nj, |ohy+Qh; CViix (ohy+uhy)+(1=Qr)%((ohy +uiy)CVix+orr )| . .
V) V(Vy) =2k ok 0k ity 0* (o o) Vix T)] is the global variance of
stz ) = yz &h=1

np
the estimator ... (3.3.1)

. Nj; Ry +Qf; CVix (BRy+RAy)+ (1-Qn)?((Ry +Rfy ) CVix +oRr . . .
Vi) V(Yz) ==Xk, [ : — ( )] which is a naive
h

estimator of V(YST,Z )

. - 1 .
vii) - Voro (Yorz) = ;Zﬁﬂ W [0y + Qhi CVi&(aRy + tihy) + (1 = Q) ((0iy + iy )CViZ + 0ir)]. is

the proportional variance of the global estimator ... (3.3.2)
2

Vii) Yoy () = 5z (Shes o [0 + Q0 OV + bt) + (1= Q)7 (o + i )CVEx+ o7y )]+ optimal
variance of the global estimator given a fixed n ... (3.3.3)

Proof

The expectation of  Z,; under the model is Ejz, [Z|i] = Eg, [(th Vi )ll]+ER2 [((1—

Xni . - . .
Qni) (Yhi_h + Thi)) |l] = Qni Yni + (1 = Qnd) (i + tar) = Yi + pipr(1 — Qp) and its variance is

Xhi

Vzhi [Zhlll VR1 [th (Yhz ) |l] + VRZ [(1 th) (th + Thl) |l] - th (thCVhX) + (1 -

Qn)?YACV2 + ofr], where CV2 =i"—}22. Also, we have the conditional expectation of Z,; which is

E[Zyi] = Eq {Ezh [[Qm Yoi o 2 T (- 0n) (th i+ Thl)] |l]} = Eq[Yni + pnr (1 = Q)] = piy +

unr (1 = Qpy), therefore, Z,, — ,uhT(l — Qp;) is the estimator of uy,y.

Unbiasedness of the estimator in stratum h for Z,,;.

561



E[fny] = Eq [Ezm-(z_h — Upr(1— th))”] =E4 [iz:l:hl EZhi(Zhili) ] — tar(1 = Qpy) = Eq[Yy; +

trr (1 = Q)] = tnr (1 = Qpi) = pny + tiar (1 — Qpe) — tpr (1 — Qpi) = fpy- With this, the
unbiasedness of the estimator by stratum is demonstrated.

Stratified global estimator. Knowing the mean per stratum, we have as a global estimator for the SSRWR

. .S 1 A
designis Ygr, = N Yh=1 Ny fny
Variance of the estimator per stratum

Vidn] = VIZ)) = Va [ Z0 B @0ilD)| -+ Ea [ Vi ZilD)] = V[ 25 Yo + (1
th)] +E, [n_l,zl Z?:hl[Qﬁi YZCV2E) + (1 — Qu)*(YACVA + O—i%T)]:I = %Z?:hl Vy (V) +

27 ZUA 07 (BalVEICVi) + (1 = Qu)* (BalYRICV, + o)) = =[oity + Qi CVil (i + i) + (1 =
Q) ((0fy + uiy)CVi + 0ir)]

Variance of the global estimator. The deduction of the variance of the global estimator is the same as
the previous ones.

1 @p Nj [UﬁYJrQiZLi CV}%X(UiZLYJrH?LY)JF(l—th)Z((UrZLYJrHrZLY)CVifXJFGrZLT)]

—_ 1 A
V(YST,Z) =Nz h=1 Ni V(iy) = N2 &h=1

Nh

Then the lemma is proved.

4. OPTIMAL ALLOCATION AND GAINS IN ACCURACY OF MODEL FOR SSRSWR
The researcher, when performing survey sampling with a p design, will depend on how robust it can be and

the budget allocated to carry it out. To help solving these possible problems and using SSRSWR, it is
necessary to determine the best sample size in stratum h to minimize the variance (V) given a fixed cost
(C= ¢y + X cpny) (4.1) or minimize a cost (C) given a fixed variance (V). This is known as the optimal
allocation of the n;, and n.

4.1. ny, and n optimal for V(¥ sr g, )

Lemma 4.1. Using SSRSWR and a simple cost function = ¢, + X ¢, n;, , the variance of the estimator of

the population mean of procedure R, is a minimized when n, o« N, /(c2,(1+ CVZ) + CV3uzy) Jic_
h

Proof

2 2 2 2 2
Ni (0fy (1+CVx)+CVix Hiy)
np

We must minimize V(Yerp, ) = %Zﬁﬂ , subjectto € = ¢y + X ¢, np,.

Using the Lagrange multipliers method, we choose n;, and the multiplier A to minimize:

_ 2,2 2 2 2
f,) = V(YST,R1 ) + 2Ccn, —CHcy) =2k, Nj: (oy (1+CVix) +CVix ihiy) A (eyny + e+ eny —

N2 np

C+c).

Partially differentiating f(y, A) with respectto n,’'s,h=1,2, ..., L, are

A _ _ Nf(aty(1+cviy)+cvixuty)
ang N2n2?

A _ _ NE (ofy(1+CVix)+CVixuEy)
anyg N2n?

+ Acy, ..., + Acy;

2 2 2 2 2
_ Nf 0y (1+CVEx ) +CVix Hy)
N2n}

we have: + Ac, = 0, for h=1,2, ..., L. Working the previous expression:
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N;; (o (14 CViy) + CVhZXnu'ley) \/c— VN \/(Uhy(l + CVi&) + CVidyliny)
N2nj VN2 n;

lCh =

\/— _ Ny, \/(Uhy(l + Cth) + Cth.“hy)
N

=>n

(41.1)

Np J(UﬁY(HCVifXHCVhZX#iZlY)

summing in the L strata in (4.1.1), L nVA=3%k, i =

N Jen
lflleh \/(Uley(“Cthx)JfCfoxﬂley) L (41.2)
N Jen
From (4.1.1) and (4.1.2) we have:
1
Ny \/(Uify(l + CVix) + CVix iy \/T
n, =n r.(413)

1

Ve

L Ny (a3 (1 + CVA) + CVAE2,)

hence

1
iy o Ny J (02, (1 + CV2) + CVRily) ——
Jen
Then the previous lemma is proved.

To complete the optimal allocation, since in (4.1.3) n,, depends on n, we have to find the optimal n when
there is a fixed cost (C), so substituting n;, from (4.1.3) in the cost function (4.1) and working for n, it
results:

(C - Co) Z%l:l (Nh \/(Gﬁy(l + Cthx) + Cthx.u}zly) \/%)

h
L=1(Nh V(oy (L + CV&) + CViyuny) \/C_h)

On the other hand, if V is fixed we substitute n,, in V(}75T‘R1 ) and solving for n we have:

=Nz V(YSTR )Z [Nh \/(Uhy(1+Cth)+Cthﬂhy)\/_]

L
Z [Nh J (o2 (1 + CVZ) + CVAui,)
h=1

=)
o
And with this, the optimal allocation of n,, for R; using SSRSWR is completed.
4.2 ny, and n optimal for V(Y g, )

Lemma 4.2. Using SSRSWR and the cost function (4.1), the variance of the estimator of the population
mean of the procedure R, is a minimum when n,, « N, \/(6, (1 + CV;4) + CVA u2, + o) =

Proof.

The proof is similar to the previous method. The resulting proportion for R, is:
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1
Ny, \/(Ur%y(l + CVii) + CVi iy + o) ——

o

n, =n — .(421)
Yhe1 Ny \/(Ur%y(l + CVi&y) + CVixuhy + o7

Opr \/_C—h

so that, i, o Ny, /(62 (1 + CVZ) + CVA U2y + 07r) Ji_
h

n optimal when there is a fixed cost (C),

1
(€ —co) Zilel (Nh \/(Uify(l + CVhZX) + Cthxlifzzy + O—P%T) _>

T

IL1:1(Nh \/(Uify(l + CVhZX) + CVhZX.“izzY + O—P%T) \/C_h)

The n optimal when you have a fixed variance, is

L
1
n= ———— Z [Nh \/ (0% (1 + CVA) + CVAuZ, + o) Jcn ]
N2V (Yorp, ) &

L

1
> [Nh J (02, (1 + CVZ) + CVR 2, + o) —]

= Jen

And with this, the optimal allocation of n,, for R, using SSRSWR is completed.

43 ny, and n optimal for V(Y ;)

Lemma 4.3. Using SSRSWR and the cost function (4.1), the variance of the estimator of the population
mean of the procedure Z is a minima when ny, «

1
Nn \/[Uf%y + Q7 CVix (ay + uiy) + (1= Qpa)? ((Uffy + U )CVy + Uifr)] Jen

Proof.

It is proved, by following the reasoning of Lemma 4.1. The resulting proportion for Z is:

1
Nn \/[Uf%y +Qfi CVix (aity + piy) + (1 = Qni)? ((U}fy + uE )V + G}fT)] Jon
np=n ..(4.3.1)
1
fi=1 N \/[Uf%y + Qi CViix (03y + Hiy) + (1 — Qni)? ((0}%}' + Uiy )CVix + aifT)] Jon
n

hence,

1
ny, « N \/[J,fy + Q% CVA (0 + u2,) + (1 — Qpy)? ((a}f}, + Ui V2, + aifT)] \/?
h

n optimal when there is a fixed cost (C),

1
(€ = o) The (Nh J |oy + Qi €V (o + i) + (1= Qui? (o + Wi ICVE + 0 )| = )

vV h
n =

ﬁzl (Nh \/[Oﬁy + Q}Zu CVhZX (O'}%y + ,u}zly) + (1 - th)z ((a-i%}' + MiZLY)CVhZX + a.lfT)] \/’a)

n optimal when you have a fixed variance,
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L

1
n= v E [Nh \/[JI%Y + Qi CViy (o3y + Hiy) + (1 — Qni)? ((Ufy + Uiy )CVix + GP%T)] VCn ]
N2 V(Y z) =

L
Z [Nh \/[ny + Qi CVix (oy + miy) + (1 — Qp)? ((Uﬁy + U )CViy + O-I%T)]
h=1

o

The above is the optimal allocation of n;, for Z using SSRSWR.

As and the last results, we substitute n;, = "TN” in (3.3.1) to obtain the global proportional variance of the

estimator V,,,., (175T_Z ) see (3.3.2). Also, if we substitute n;, of (4.3.1) with unitary cost in (3.3.1) for to get
the variance minima with a n fix, we have:

_ 1 < N [Uf%y +Qh CVi (U}%Y + #}Zly) + (1= Qp)? ((0}%}’ + #}ZzY)CVhZX + O-ET)]
V(Ysr,z ) = FZ

h=1 Nn \/[Uﬁy +Qp; CVix oy + uiy) + (1 — Qp)? ((ny + i) CViy + O-ffT)]
n

] Zh=1 Ny \/[Jify + Qi CVity (oiy + miy) + (1= Qn)? ((0}3}’ + Uiy CViy + O-ffT)] |

2

L
1

TNz Z Np \/[Jify + Qi CVity (oiy + uiy) + (1 — Qn)? ((Gify + Ui Vi + O-}fT)]

h=1

4.4. Gains in accuracy

Next, we will prove the efficiency of using one variance over another as: V() with V(Ysy; ), V(Ysrz )
Wlth Vpro (YST,Z) and Vpro (}75‘T,Z) Wlth Vopt (YST,Z )

V[y] with V(Ysrz)

First, the variance under SRSWR is will developed to stratified.

2 M2
Simplifying V(ay), we have%[a,z, + 0%03A+ 0% p2A+ (1 —Q)%0F] where A = [2—)2( + (1#5) ] owing to

these variables are fixed by the researcher, then, we express the variance in its stratified form as next,

V(fy) = [0} + 0}0}A+ 0% u2A+ (1—Q)%0F] = nN V(iy) =

2 2
=Yiev(i —uy)? + A0k Tiey(Yi—py)" + 12 A Tico(Xi —py)" + (1 — Q2 ie(Ti —
2 1 2 1
Hr)" The1 ;Wi (Hr(h) - .UT) = -ThoaWalopy + Aok ofy + 15 Aok, + (1 — Q%0f,] +

2Tk W [(“Y(h) - “Y)z +A 0% (ygy — “Y)Z + 1} A (g “X)Z + (1= Q% (kg ~ “T)Z]

Gain in accuracy of V(f@iy) with V(Y77 )

Gl @), V(Ysrz )] = Vay) =V (¥srz)
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=- [O'Y +Q* CV¢(oy +up) + (1 - Q)Z((Uy + uf)CV¢ + o )]

L Wi [f’hy+Qm‘ Cth("hny#hy)Jr(l—Qm)z((Uhy+#hy)Cth+UhT)]
h=1

Nh

Zh Wy lof, + Aog ofy + 1§ Aog, + (1 = Q)20f,] +- Zh 1 Wy [(Hy(h) My) + Aoy (My(h)
My) + uy A(MX(h) - Iix) +(1-0Q)* (.UT(n) - .UT) ] -

L W [f’lenyszli CVilzX(aizlY+#i2lY)+(1_th)2((UizlY+#i2lY)CV}12X+U}21T)]
h=1

Nh

This expression will be positive if the means in the strata are heterogeneous. If this happens, it is
recommended to use SSRSWR, otherwise the means are almost homogeneous between the strata, the
squared difference of the above expressions will be close to zero and therefore, it is recommended to use
SRSWR.

4.4.1 Gain in accuracy of V(Y77 ) with V,,,(Ysrz)

From expressions (3.3.1) and (3.3.2) we have the stratified variance and the proportional stratified variance,
respectively. The gain in accuracy is given by:

G [(V(?ST,Z )' Vpro (VST,Z )]

L
_ Z 5 [OﬁY + Qhi CVix (g + ppy) + (1 — th)z((a}fy + Uy ) CViy + O-P%T)]

h=1 "th
L
_ Z Wi [aiy + Qhi CVidx (aity + i) + (1 = @) *((aiy + 1y )CVitx + air)]
n
h=1
oL WEs L Wrét oL w2 (Wh 1 N . . Wy 1
= D=1 Zh" — Lh=1", b=y [Wh op, (E _Z)]' The following inequality will hold T >

whenever % > z—’; hence V(Yerz ) > Voo (Yorz )-

4.4.2 Gain in accuracy of V,,,,(Ysrz ) With V(Y72 )

Using the V., (Ysr,z ) in (3.3.2) and the V,,;(Ysr 2 ) in (3.3.3), Following the usual procedure, the gain in
precision is:

G [(Vpro (YST.Z )' Vopt (}_,ST,Z )]

2
~ Th=1Nn [O-’ZIY +Qp CVix(ofy + 3y) + (1 - Q) ((Uﬁy + 12, )CV iy + O'ler)]
B nN
(zlfl:lNh \/[Uiy + Qi CVix (03y + Hiy) + (1 — Qp)? ((‘7}%}' + Ui )CV + O-IfT)])
B nN?2

2

Yk N . _ 1 . _ =
[Z 1 NuG7 — (i 1Nhah) ] [Z%L=1Wh0-i% -5%] = ;Ziﬂ W, (67 — )%, hence, Vpro(YST,Z) >

Vopt (Ysr,z ). Where & = Xi_; Ny, /N

As a partial conclusion to using stratified sampling to minimize variance, it is better to use SSRSWR when
the standard deviations are more different between strata.
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5. ASIMULATION STUDY.

To evaluate and visualize the performance of the proposed estimators, both in SRSWR and SSRSWR, a
simulation was carried out in terms of precision and efficiency. For the simulation, real data obtained from
the National Survey of Victimization and Perception of Public Security (2021) developed by INEGI were
considered, in which Y was chosen as a sensitive variable (question): “In terms of crime, tell me, How safe
do you feel walking alone at night around your home?” with an ordinal scale of : Very Secure = 1, Secure
= 2, Insecure = 3 y Very Insecure = 4, with N = 80508, u = 2.678and % = 0.642. The selection of
this sensitive variable was due to the national context of Mexico, where crime has a negative impact in both
the social and economic aspects and, therefore, it is of interest to characterize this type of information. In
SSRS, the total population was stratified using the age range of the respondents as a criterion, resulting in
7 strata. To evaluate the precision of the estimator of the mean of the sensitive variable Y we have (4.1),
which is the ratio of the relative errors under SRSWR and SSRSWR. To evaluate the efficiency we present
(4.2), which is the ratio of two estimators of the variance of the estimated mean.Error[RE(d D/

RE(dk)]S = [(lyj;.m)d‘/(lyky_:kl)

l ...(4.1), where disadesign, j # k and RE is the error relative

J dg

S

with respect to uy. E[V;/Vy]s = (M) ... (4.2), where [ # m.

V(m)/ ¢
For the simulation process, a sample size of n= 9081 was calculated, given a population sampling error for
SRSWR. Fixing this sample size, the sample size n, was calculated for each stratum proportionally
following Cochran (1971) for the global variance (3.3.1) and the proportional global variance (3.3.2). From
(4.3.1) the optimal sample for the optimal global variance (3.3.3) was calculated. A simulation of 1000
iterations was carried out. Following other works, Greenberg et al. (1971) and Bouza et al. (2022), similar
values to the population values Y; were set for the auxiliary variables X; and T;.Two simulations were
performed to compare the accuracy and efficiency of the estimators doing greater use of the scrambling
model R, or R,. The first simulation was assigned probability Q=0.7 to select the scrambling model R,
and the second simulation was assigned Q=0.3 to select the same model.
The simulated results of the statistics to evaluate the precision and efficiency of the proposed estimators
are presented in Table 1 and Table 2.

=0.7 =0.3
Q=07 Q=0.3 Q Q
V(SRS)
SRS E (V(SSRS)) = 060034  0.62126
Error (—) =
1.0611 1.0071
SSRS ‘ E< V(SSRS) ) _
Voro (SSRS) 1.00896 1.00001
Table 1. Accuracy of the estimators of v (SSRS)
SRSWR and SSRSWR bro _ 100019 100018
Vopt (SSRS)

Table 2. Efficiency of the estimators of
the mean

The precision of the estimators under each design is shown in Table 1, in which it is observed that when
the probability of using the scrambling model R, is 0.7, it is more precise to use SSRS to estimate the
population mean of Y. Similarly, when there is a greater probability of using R,, it is more accurate to use
SSRS than SRS. Between the models R;and R,, it is better to assign a higher probability to use R, since the
estimator is of higher precision than R,. The results in Table 2 indicate that the variance of the estimator
under SRS is smaller than the variance using SSRS regardless of which scrambling model is used. This
could be explained with the sensitive variable Y used for the simulation, in which the population means of
the strata are very similar, with the consequence that the use of SSRS loses efficiency. Finally, v(ssrs) >
Vo (SSRS) and V,,,,,(SSRS) > V,,,.(SSRS), although with a very minimal difference.

To visualize the behavior of the estimators ,ays, Error[RE(d,-)/RE(dk)]s and E[V,/V,,,]s were simulated

under SRS sample sizes which were increased with n = 250,500, ... ,10000. Using SSRS, the sample
sizes for each stratum were proportional, resulting in a total sample with n = 250, 506, ... , 10073.
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Figure 1. Estimators under SRS and SSRS, when Q=0.7 and Q=0.3

In the previous figure, the graphs presented in the first row show the values taken by the estimator of the
mean of Y, when the sample increases when using SRS and SSRS for Q=0.7 or Q=0.3. In the second row,
the graphs show is the relative error with respect to u, under the same previous conditions. The last line
shows the precision when comparing SRS with SSRS with the Error statistic (4.1) for Q=0.7 or Q=0.3. In
these last graphs, a regression line is drawn with which we can visualize that the more the sample size
grows, the more precise it is to use SSRS than SRS since the straight line exceeds one.
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Figure 2. Comparation efficiency

To observe under which design and which report presents minimum variance, the ratios between V(SRS),
V(SSRS), Vyro (SSRS) and V,,,.(SSRS) were calculate, when the sample size n increased until it reached
10000. In the first column of Figure 2, whether assigning Q=0.7 or Q=0.3, V(SRS) is smaller than V (SSRS)
as seen in the numerical results; in the graphs in column two, the smaller the sample, the smaller the variance
when using V., (SSRS) than V(SSRS), but as the sample increases, the efficiency of v,,,.(ssrs) is reduced
over 1,,,(SSRS). The same happens in the last graphic column, where v,,,.(ssrs) is smaller than v, (SSRS).

As a conclusion of the simulation, it is better to use SRS when you have a small sample size or when in the

stratification design the strata have homogeneous means. It is more accurate to use R,, but if greater
scrambling of the respondent's sensitive value Y is desired, it is better to use R,.
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