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ABSTRACT

Recent advances in modeling and data analysis have been greatly influenced by absolutely continuous

trigonometric distributions. In this study, we develop a new polynomial-sine transformation strategy

to improve the statistical capabilities of absolutely continuous baseline distributions. We thus create

a modified polynomial-sine-generated family of distributions, which can be viewed as a polynomial

extension of the famous sine-generated family. Analytical and practical properties of the family are

examined. Subsequently, with the data-fitting aim in mind, the maximum likelihood estimation

method is employed to estimate the parameters. A special three-parameter lifetime member of

the family, defined with the Weibull distribution as the baseline distribution, is highlighted. It

constitutes a three-parameter lifetime distribution whose main functions benefit from trigonometric

functionalities for reaching flexible shapes. It has a right-skewed probability density function with

peakness ranging from platykurtic to leptokurtic as a specificity. The associated hazard rate function

may also take versatile forms, such as linear, increasing, decreasing, and the inverted bathtub shape.

The distribution is studied in depth and tested on two real-world datasets from the medical field

(COVID-19 datasets) to show its efficacy. It provides a superior fit in comparison to the other three

competing Weibull distributions, including the sine-Weibull distribution as the main concurrent.

KEYWORDS: trigonometric distribution; sine function, polynomial function, Weibull distribution,

lifetime data analysis

MSC: 60G22, 91G20

RESUMEN

*christophe.chesneau@gmail.com

766



Los avances recientes en el modelado y el análisis de datos se han visto muy influenciados por las

distribuciones trigonométricas absolutamente continuas. En este estudio, desarrollamos una nueva

estrategia de transformación polinomio-sinusoidal para mejorar las capacidades estad́ısticas de dis-

tribuciones de base absolutamente continuas. Por lo tanto, se genera una familia de distribuciones

polinomio-sinusoidal, que puede verse como una extensión polinómica de la familia generada por

senos. Se examinan las propiedades anaĺıticas y prácticas de la familia. Posteriormente, teniendo

en cuenta el objetivo de ajuste de los datos, se emplea el método de estimación máximo verośımil

para estimar los parámetros. Se considera un miembro especial de la familia que está dado por tres

parámetros de tiempo de vida, definido con la distribución de Weibull como distribución de refer-

encia. Este elemento constituye una distribución de vida útil de tres parámetros cuyas propiedades

trigonométricas les permiten alcanzar formas flexibles. Tiene una función de densidad de probabil-

idad sesgada a la derecha con picos que van de platicúrtica a leptocúrtica como especificidad. La

función de tasa de riesgo asociada también puede adoptar formas versátiles, como lineal, creciente,

decreciente y la forma de bañera invertida. La distribución se estudia en profundidad y se prueba

en dos conjuntos de datos del mundo real del campo médico (conjuntos de datos de COVID-19)

para mostrar su eficacia. Proporciona un ajuste superior en comparación con las otras tres distribu-

ciones de Weibull que compiten entre śı, incluida la distribución sinusoidal-Weibull como la principal

concurrente.
PALABRAS CLAVE: distribución trigonométrica, función seno, distribución Weibull, análisis

de tiempo de vida

1. INTRODUCTION

1.1. Context

Real-world data may exhibit significant skewness and kurtosis that cannot be correctly captured with

the standard model. In order to analyze such types of data efficiently, new strategies for creating mod-

els with few parameters but great flexibility are required. The statistical literature has recently taken

a fresh turn, thanks to trigonometric distributions. These distributions enable us to describe data with

adaptable probability density functions (pdfs) and hazard rate functions (hrfs) that take advantage

of trigonometric functionalities. There are a number of recent trigonometric distributions that can

be found in the literature, such as the sine distribution developed in [6], the Gilbert sine distribution

created in [10], the trigonometric beta distribution created by [18], the Von Mises distribution studied

in [12], the sine square distribution published in [3], the sin-skewed logistic distribution developed

in [8], the sine-exponential distribution proposed by [15], the extended sine-Weibull examined in [20]

and the special cosine-sine distribution initiated in [9]. General families of trigonometric distributions

have also seen the light. On this topic, it is avoidable to mention the recent sine-generated (SinG for

short) family first introduced in [22], which will be at the center of the study. An overview of this

family is given below.

1.2. SinG family of distributions

The originality of the SinG family is to be centered around the simple sine transformation, without the

addition of new parameters. The idea is to use the trigonometric functionalities of the sine function
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to wrap up those of an absolutely continuous baseline distribution for new modeling purposes. On

the mathematical side, the cumulative density function (cdf) and pdf of the SinG family are given by

K(x) = sin
(π
2
G(x)

)
and

k(x) =
π

2
g(x) cos

(π
2
G(x)

)
,

respectively, where G(x) is the cdf of the baseline distribution, and g(x) its associated pdf. The

variable x is supposed to belong to R, but changes can be made depending on the support of the

baseline distribution. The merit of the SinG family is that it can produce simple and flexible pdfs

and hrfs, beyond the shape possibilities of the pdf and hrf of the baseline distribution. New modal,

skewness and kurtosis capabilities can be observed.

Many new works have been introduced as a result of the development of SinG-based distributions.

Among them, we may refer to the sine-power Lomax distribution, conjointly studied in [4] and [19].

The contribution in [19] shows that the distribution can generate models for both symmetric and

skewed datasets and validate them on nine datasets. In [2], the sine-Topp-Leone family was tested on

two datasets and compared to 20 existing models. In [11], the sine-inverse Lomax-generated family was

created, and the applicability of this family with the Lomax distribution as the baseline distribution

was also studied. The sine-Burr XII distribution was examined in [13]. This new distribution was

compared with the Burr XII and exponential Bur XII distributions on two datasets. One may also

mention the sine-modified Lindley distribution studied in [24] and [25], which proves to be a better

alternative than the former Lindley distribution for a wide panel of biomedical datasets.

1.3. Contributions

This study is devoted to the development and study of a new trigonometric family based on an original

polynomial-sine transformation. It is called the modified polynomial-sine-generated (MPSG) family.

According to our knowledge, it is the only family to cover both the baseline distribution and the SinG

family, and this with only one additional parameter. In this sense, the study of the MPSG family

is a pioneer in its field. Subsequently, the modified polynomial-sine Weibull (MPSW) distribution

is introduced, with the Weibull distribution as the baseline distribution of the MPSG family. The

MPSW distribution benefits from the functionalities of both the polynomial-sine transformation and

the Weibull distribution, reaching an unexplored modeling aim. Based on this, its statistical inference

is examined through the standard maximum likelihood (ML) estimation method for complete samples.

On real-world datasets related to COVID, the new distribution is shown to have a better statistical fit

than the conventional Weibull distribution and its trigonometric extensions. In this practical setting,

the advantage of the MPSW model over the Weibull model and well-known trigonometric model

versions of the Weibull distribution is obvious. We prove this claim using strict statistical criteria.

1.4. Paper organization

The rest of this paper is structured as follows: In Section 2., we present the definition and functions

of the considered polynomial-sine family. Section 3. emphasizes useful series expansions, moment
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analysis, and other useful properties. The ML estimates of the relevant parameters are examined in

Section 4.. Section 5. is devoted to the MPSW distribution and its qualities in terms of the statistical

model. Section 6. contains the significance of the MPSW model by taking into account two real-world

datasets. Section 7. concludes the paper.

2. THE MODIFIED POLYNOMIAL-SINE FAMILY

2.1. Mathematical foundation

We begin with a theoretical result presenting a valid cdf defined with an original polynomial-sine

transformation.

Proposition 2.1. Let us consider an absolutely continuous distribution defined with a cdf denoted by

G(x). Then, we set the following parametric function:

F (x; θ) = G(x) + θ sin(πG(x)), x ∈ R,

where θ ∈ [−1/π, 1/π]. Then F (x; θ) has the properties that characterize a cdf.

Proof. First and foremost, because G(x) is continuous, F (x; θ) is also continuous by composition. Let

us now denote the support of the distribution related to G(x) by [a, b] (the bounds a = −∞ and

b = +∞ are not excluded). Since limx↣a G(x) = 0 and limx↣a G(x) = 1, we have

lim
x↣a

F (x; θ) = 0 + θ sin(π × 0) = 0, lim
x↣b

F (x; θ) = 1 + θ sin(π × 1) = 1,

which are the expected limits for a valid cdf. Finally, let us examine the monotonicity of F (x; θ). Let

g(x) be the pdf corresponding to G(x). So, because g(x) ≥ 0, θ ∈ [−1/π, 1/π] and cos(x) ≤ 1, we

have

F ′(x; θ) = g(x) [1 + θπ cos(πG(x))] ≥ g(x) [1− cos(πG(x))] ≥ 0.

We conclude that F ′(x; θ) is non-decreasing, bringing the proof to a close.

To our knowledge, the cdf presented in Proposition 2.1 is new in the literature. Thus, we define the

MPSG family by the following cdf:

F (x; θ) = G(x) + θ sin(πG(x)), x ∈ R, (2.1)

by adopting the assumptions made in Proposition 2.1, i.e., θ ∈ [−1/π, 1/π]. Along with its unique

definition, the MPSG family also has the arguments below in its favor.

� The cdf of the MPSG family is analytically simple and extends the baseline distribution through

a simple trigonometric transformation scheme. Indeed, taking θ = 0 ∈ [−1/π, 1/π] yields

F (x; θ) = G(x).

� In some senses, the MPSG family realizes a generalized mixture between the baseline distribu-

tion, and the SinG family proposed by [22]. It can also be interpreted as an unification.

769



� The MPSG family follows the same spirit as the Burr XI generated (BXIG) family proposed by

[5], which is defined with the following cdf:

F ∗(x; r) =

[
G(x)− 1

2π
sin(2πG(x))

]r
, x ∈ R.

The MPSG and BXIG families both combine G(x) with its trigonometric counterpart. However,

the BXIG family is not permitted to refind the baseline distribution or modulate the sine term.

Moreover, the exponentiated operation adds some complexity from a mathematical viewpoint.

In this sense, the MPSG family is preferable for the consideration of sophisticated baseline

distributions.

� The distributions of the MPSG family can be used quite efficiently as models for various data

analyses. This practical aspect will be motivated later with concrete graphics and numerical

examples.

Remark 2.2. An extended MPSG family can be defined by the following cdf:

F (x; θ,m) = G(x) +
θ

m
sin(mπG(x)), x ∈ R,

where θ ∈ [−1/π, 1/π] and m denotes any positive integer. However, the choice of m is somewhat

subjective, so we focus on the simple case where m = 1, which corresponds to the (simple) MPSG

family.

2.2. Probabilistic functions

The probabilistic functions of the MPSG family are now described. First, the pdf is given by

f(x; θ) = g(x) [1 + θπ cos(πG(x))] , x ∈ R. (2.2)

We recall that g(x) is the pdf corresponding to G(x). The survival function (sf) and hrf listed below

are two additional significant MPSG family functions. The sf is

S(x; θ) = 1−G(x)− θ sin(πG(x))

and the hrf is

h(x; θ) =
g(x) [1 + θπ cos(πG(x))]

1−G(x)− θ sin(πG(x))
, x ∈ R.

Understanding the modeling capabilities of the relevant distribution requires knowledge of the ana-

lytical behavior of these functions. The main theory of the MPSG family is based on these functions,

as described in the next section.

3. THEORY

Here, we discuss the asymptotic properties, expansion of the pdf and cdf in series form, moment

analysis, and reliability parameter of the MPSG family.
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3.1. Asymptotic properties and critical points of the pdf

The asymptotic properties of the pdf given in Equation (2.2) are as follows: When x ↣ −∞, we have

f(x; θ) ∼ g(x)(1 + θπ), and when, x ↣ +∞, we have f(x; θ) ∼ g(x)(1 − θπ). Therefore, for these

equivalences, the choice of the baseline distribution is determinant; θ just plays the role of a scale

parameter.

On the other hand, the critical point(s) for f(x; θ) is (are) given by the solution(s) of the following

nonlinear equation: d log[f(x; θ)]/dx = 0, with

log[f(x; θ)]

dx
=

g′(x)

g(x)
− θπ2 sin (πG(x)) g(x)

1 + θπ cos (πG(x))
.

We can remark that θ has an important impact on the definition of the critical point(s). Regardless

of the complexity of G(x) and g(x), such point(s) can be identified numerically.

3.2. Series expansion

In this part, we develop alternative expressions for the pdf and cdf of the MPSG family by using a

series functional representation.

Proposition 3.3. The cdf of the MPSG family can be represented as

F (x; θ) =

+∞∑
k=0

akG(x)2k+1,

where a0 = 1 + θπ and ak = θ(−1)kπ2k+1/(2k + 1)! for k ≥ 1.

Furthermore, we have

f(x; θ) =

+∞∑
k=0

ak(2k + 1)g(x)G(x)2k. (3.1)

Proof. For any x ∈ R, the following series expansion is established:

sin(x) =

+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

Based on the definition of F (x; θ), we immediately obtain

F (x; θ) = G(x) + θ

+∞∑
k=0

(−1)kπ2k+1

(2k + 1)!
G(x)2k+1 =

+∞∑
k=0

akG(x)2k+1.

The expansion of the pdf follows by differentiating this expression with respect to x, provided the

mathematical validity of this operation, which depends on the definition of G(x) mainly. This ends

the proof. □

The appeal of Proposition 3.3 is that F (x; θ) and f(x; θ) can be expressed simply in terms of simple

functions, defined primarily as the exponentiated version of G(x). Such exponentiated baseline distri-

butions have been the subject of numerous studies and can thus be used directly to derive properties of
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the MPSG family. Moreover, the following analytical approximation can be useful for computational

purposes:

f(x; θ) ≈
τ∑

k=0

ak(2k + 1)g(x)G(x)2k,

where τ denotes a chosen large integer.

An alternative series expansion is proposed below, with the use of the sf of the baseline distribution,

i.e., S(x) = 1−G(x).

Proposition 3.4. The cdf of the MPSG family can be represented as

F (x; θ) = 1 +
+∞∑
k=0

a∗kS(x)
2k+1,

where a∗0 = −1 + θπ and a∗k = ak = θ(−1)kπ2k+1/(2k + 1)! for k ≥ 1.

Furthermore, we have

f(x; θ) =

+∞∑
k=0

a∗∗k (2k + 1)g(x)S(x)2k, (3.2)

where a∗∗k = −a∗k.

Proof. For any x ∈ R, by noticing that G(x) = 1−S(x) and, by the following standard trigonometric

formula: sin(πG(x)) = sin(πS(x)), we obtain

F (x; θ) = 1− S(x) + θ

+∞∑
k=0

(−1)kπ2k+1

(2k + 1)!
S(x)2k+1 =

+∞∑
k=0

a∗kS(x)
2k+1.

The expansion of the pdf follows by differentiating this expression with respect to x, ending the proof.

□

The interest of Proposition 3.4 is that, for some baseline distributions, the sf is more manageable than

the cdf from a mathematical viewpoint.

Hence, the discussed series expansions of the pdf, cdf, and sf can be used to make mathematical

computation easier, and will be employed as it in the next.

3.3. Moment analysis

The moment analysis of the MPSG family is now examined, such as the mean, variance, measure of

skewness, and kurtosis.

Proposition 3.5. Let X be a random variable following a fixed distribution from the MPSG family.

Then, if existence, the expectation of Φ(X) can be expressed as

ΘΦ = E [Φ(X)] =

∫ 1

0

Φ(G−1(u))du+ θπ

∫ 1

0

Φ(G−1(u)) cos(πu)du.
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Proof. The proof is based on the definition of f(x; θ) and an appropriate change of variables, that is

ΘΦ =

∫ +∞

−∞
Φ(x)f(x; θ)dx =

∫ +∞

−∞
Φ(x)g(x) [1 + θπ cos(πG(x))] dx

=

∫ +∞

−∞
Φ(x)g(x)dx+ θπ

∫ +∞

−∞
Φ(x)g(x) cos(πG(x))dx

=

∫ 1

0

Φ(G−1(u))du+ θπ

∫ 1

0

Φ(G−1(u)) cos(πu)du.

This ends the proof.

Depending on the complexity of the function G−1(u), the two integral terms in Proposition 3.5 can

be computed analytically.

In all circumstances, for a given baseline distribution, ΘΦ(x) can be determined using numerical

methods provided in any mathematical software.

Additionally, Equations (3.1) and (3.2) implement the following different analytical approaches

ΘΦ =

+∞∑
k=0

ak(2k + 1)

∫ +∞

−∞
Φ(x)g(x)G(x)2kdx

and

ΘΦ =

+∞∑
k=0

a∗∗k (2k + 1)

∫ +∞

−∞
Φ(x)g(x)S(x)2kdx,

respectively. In order to provide an acceptable approximation of ΘΦ(x), the sum can be truncated to

a large enough integer.

Moments can be used to compute basic statistical measures. For any positive integer m, the mth

ordinary moment is indicated as µι
m = E(Xm). The basic measures are Mean = E(X) and

V ariance = σ2 = µ2. In addition, the definition of the mth central moment and the cumulant

are given by

µm =

m∑
k=0

(
m

k

)
(−1)

k
Meankµι

m−k

and

Km = µι
m −

m−1∑
k=1

(
m− 1

k − 1

)
Kkµ

ι
m−k,

where K1 = Mean, respectively. The coefficient of skewness and coefficient of kurtosis are expressed

as Csk = µ3/V ariance3/2 and Cku = µ4/V ariance2, respectively.

For any positive integerm, themth incomplete moment ofX is defined as µm(y) = E (XmI (X ≤ y)) =∫ y

−∞ xmf(x; θ)dx. For empirical purposes, the shape of many distributions can be usefully described

by the incomplete moments. The importance of the incomplete moments can be seen in calculating in-

equality measures and mean deviations. As a last remark, we can express µm(y) as a series expansion

via Equations (3.1) and (3.2).
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3.4. Reliability parameter

The lifespan of a component is determined by a certain stress-strength model, which is employed in

the field of reliability. It makes use of a random strength (represented by a random variable, say

X1) and a random stress (represented by a random variable, say X2). The component fails when the

amount of stress placed on it exceeds its capacity, and it will function effectively whenever X1 > X2.

The probability R = P (X2 < X1) is thus a component reliability metric. The readers are directed to

[16] for a more in-depth understanding.

The next finding relates to how R for the MPSG family is calculated in a particular environment.

Proposition 3.6. Let θ1 ∈ [−1/π, 1/π] and θ2 ∈ [−1/π, 1/π] (the case θ1 = θ2 is allowed). We

assume that X1 has the pdf given as f(x; θ1), and X2 has the cdf given as F (x; θ2), and X1 and X2

are independent. Then, we have

R =
1

2
+

2

π
(θ1 − θ2).

Proof. With the independence ofX1 andX2, the definitions of f(x; θ1) and F (x; θ2) and an appropriate

change of variables, we get

R = P (X2 < X1) =

∫ +∞

−∞
F (x; θ2)f(x; θ1)dx

=

∫ +∞

−∞
[G(x) + θ1 sin (πG(x))] g(x) [1 + πθ2 cos (πG(x))] dx

=

∫ 1

0

[u+ θ1 sin (πu) + πθ2u cos(πu) + πθ2 cos (πu) θ1 sin (πu)] du

=
1

2
+

2

π
(θ1 − θ2).

This ends the proof.

It is worth noting that the expression for R is quite simple; it is dependent only on the parameters

θ1 and θ2 and not on the baseline distribution. When X1 and X2 in Proposition 3.6 have identical

distributions, i.e., θ1 = θ2, we obtain the expected value of 1/2.

In a statistical setting, estimating R from data based on the estimates of θ1 and θ2 is also useful when

using Proposition 3.6 and the substitution technique. Indeed, if θ̂1 and θ̂2 are estimates of θ1 and θ2,

respectively, then the substitution method offers the following accurate estimate:

R̂ =
1

2
+

2

π
(θ̂1 − θ̂2).

However, further study is required to see how this algorithm applies to real-world data.

4. ESTIMATION THEORY

Because of its general simplicity and theoretical guarantees of good convergence properties on the

resulting estimates, the ML method is frequently used in parametric estimation.
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4.1. ML estimation

Let us now discuss the ML estimation method for the parameter(s) for the MPSG family, with the

pdf f(x; θ) given in Equation (2.2). A specific vector v represents the parameters of the baseline

distribution. Given n observations of a random variable X following a fixed distribution from the

MPSG family, say x1, x2, . . . , xn, the likelihood function for the parameter vector δ = (θ, v) is

L(x; δ) =

n∏
i=1

f(xi; θ) =

n∏
i=1

g (xi) [1 + θπ cos (πG (xi))] .

where x = {x1, x2, . . . , xn}. The vector δ that maximizes L(x; δ) yields the ML vector estimate of δ.

If it is well-defined, it can be obtained by maximizing the log-likelihood function given by

log (L(x; δ)) =

n∑
i=1

log (g (xi)) +

n∑
i=1

log [1 + θπ cos (πG (xi))] .

To this aim, statistical programs can be employed, such as R, Mathcad, SAS, Mathematica and Ox

programs. On the mathematical aspect, the ML vector estimate can be obtained by solving the

following nonlinear equations: (Uθ, Uv) = (0, 0∗), where 0∗ is a vector with the same dimension to v,

and

Uθ =
d log (L(x; δ))

dθ
=

n∑
i=1

π cos (πG(xi))

1 + θπ cos (πG (xi))
.

and, by denoting gv(x) = dg(x)/dv and Gv(x) = dG(x)/dv (provided that they exist),

Uv =
d log (L(x; δ))

dv
=

n∑
i=1

gv(xi)

g (xi)
−

n∑
i=1

θπ2Gv(xi) sin (πG(xi))

1 + θπ cos (πG (xi))
.

In general, these equations cannot be solved analytically, but they can be solved numerically by

software. The ML vector estimate of δ is denoted as δ̂ = (θ̂, v̂), and θ̂ and v̂ are called the ML

estimates of θ and v, respectively.

5. AN EXAMPLE: THE MPSW DISTRIBUTION

We now focus on an original member of the MPSG family defined with the Weibull distribution as

the baseline distribution.

5.1. Motivation

Swedish physicist Waloddi Weibull, in [26], is credited with devising the Weibull distribution. He used

it to model material yield strength. Since this first study, the Weibull distribution has been widely

used in many domains, including engineering, reliability, failure analysis, lifetime analysis, material

science, quality control, physics, medicine, meteorology, hydrology, and others. The conventional

Weibull distribution has, however, some limitations, such as a relative rigidity in the left-tail and

overall kurtosis, and a hrf that has only monotonic shapes (increasing, constant, and decreasing
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shapes). For this reason, some generalized Weibull distributions have seen the light in recent years,

and were applied in a variety of situations.

On the mathematical plan, the cdf of the Weibull distribution is given by

GW (x;α, β) = 1− e−αxβ

, x > 0, (5.1)

where α > 0 and β > 0, and the associated pdf is

gW (x;α, β) = αβxβ−1e−αxβ

, x > 0. (5.2)

As all the lifetime distributions, we have GW (x;α, β) = gW (x;α, β) = 0 for x ≤ 0.

In the setting of the trigonometric families, the Weibull distribution has often been considered as a

natural baseline distribution, yielding successful statistical models. In particular, for the SinG and

cosine-generated (CosG) families, the sine-Weibull (SW) and cosine-Weibull (CW) distributions have

seen the light in [22] and [23], respectively. One may also mention the the sine-exponential distribution

in [15], which constitutes a special case of the SW distribution. The SW and CW distributions are

recalled below.

� The SW distribution is defined with the cdf and pdf given as

FSW (x;α, β) = cos
(π
2
e−αxβ

)
, x > 0

and

fSW (x;α, β) =
π

2
αβxβ−1e−αxβ

sin
(π
2
e−αxβ

)
, x > 0,

respectively. It is understood that FSW (x;α, β) = fSW (x;α, β) = 0 for x ≤ 0.

� The CW distribution is defined with the cdf and pdf given as

FCW (x;α, β) = 1− sin
(π
2
e−αxβ

)
, x > 0

and

fCW (x;α, β) =
π

2
αβxβ−1e−αxβ

cos
(π
2
e−αxβ

)
, x > 0,

respectively. It is understood that FCW (x;α, β) = fCW (x;α, β) = 0 for x ≤ 0.

It is demonstrated that these extended trigonometric Weibull distributions have improved some of the

skewness and kurtosis capabilities of the former Weibull distribution, showing better fits for important

datasets. In light of this, we naturally decide to introduce the MPSW distribution by selecting the

Weibull distribution as the baseline distribution for the MPSG family.

5.2. Definition of the MPSW distribution

Based on Equations (2.1) and (5.1), and the following classical trigonometric formula: sin(πx) =

sin(π(1− x)), the MPSW distribution is defined by the following cdf:

FMPSW (x;α, β, θ) = 1− e−αxβ

+ θ sin(πe−αxβ

), x > 0,
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and FMPSW (x;α, β, θ) = 0 when x ≤ 0. We recall that β > 0 is a shape parameter, α > 0 is a scale

parameter, and θ ∈ [−1/π, 1/π]. Obviously, when θ = 0, we get FMPSW (x;α, β, θ) = FW (x;α, β).

Based on Equations (2.2), (5.1) and (5.2), the pdf of the MPSW distribution is given by

fMPSW (x;α, β, θ) = αβxβ−1e−αxβ
[
1− πθ cos

(
πe−αxβ

)]
, x > 0 (5.3)

and fMPSW (x;α, β, θ) = 0 when x ≤ 0.

The corresponding sf is given by

SMPSW (x;α, β, θ) = e−αxβ

− θ sin(πe−αxβ

), x > 0,

and SMPSW (x;α, β, θ) = 1 when x ≤ 0, and the corresponding hrf is obtained as

hMPSW (x;α, β, θ) =
αβxβ−1e−αxβ

[
1− πθ cos

(
πe−αxβ

)]
e−αxβ − θ sin

(
πe−αxβ

) , x > 0,

and hMPSW (x;α, β, θ) = 0 when x ≤ 0.

In the next section, we examine the asymptotic and shape properties of the pdf, and other functions.

5.3. Shape behavior of the MPSW distribution

The MPSW distribution has the following asymptotic property: when x ↣ 0, fMPSW (x;α, β, θ) ∼
αβ(1 + πθ)xβ−1. We look into the three following cases:

� when β < 1, fMPSW (x;α, β, θ) ↣ +∞,

� when β = 1, fMPSW (x;α, β, θ) ∼ α(1 + πθ),

� when β > 1, fMPSW (x;α, β, θ) ↣ 0.

Hence, the parameter β is discriminative in this regard.

On the other hand, when x ↣ +∞, fMPSW (x;α, β, θ) ↣ 0 for all the values of the parameters.

The solutions to the following equation give the critical points of fMPSW (x;α, β, θ):

d log (fMPSW (x;α, β, θ)) /dx = 0, which is equivalent to

β − 1

x
− αβxβ−1 − π2αβθxβ−1e−αxβ

sin(πe−αxβ

)

1− πθ cos(πe−αxβ )
= 0. (5.4)

Numerical investigations show that the MPSW distribution can have one mode at maximum, and its

value can be determined using any statistical software.

We complete this section with a graphical analysis to provide a thorough examination of the shape

properties of the pdf and hrf of the MPSW distribution in Figure 1.
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Figure 1: Shapes of the (a) pdf and (b) hrf of the MPSW distribution for different values of α, β and

θ

The pdf shape can be spiked, nearly symmetrical bell-shaped, or skew to the left or right with varying

degrees of kurtosis. In comparison to the pdf of the Weibull distribution, the pdf of the MPSW

distribution seems to benefit from more kurtosis nuances, especially for the mesokurtic and leptokurtic

cases, and is able to capture a small left-tail.

In contrast, the hrf can take on increasing, decreasing, (almost) linear, or J shapes.

5.4. Moments for MPSW distribution

In the next result, we develop a manageable series formula for the moments of a random variable X

following the MPSW distribution.

Proposition 5.7. Let X be a random variable following the MPSW distribution, and m be a positive
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integer. Then, the mth moment of X can be expressed as

µι
m = E (Xm) = α−m/β

+∞∑
k=0

a∗∗k
Γ (m/β + 1)

(2k + 1)m/β
,

where Γ(x) =
∫ +∞
0

tx−1e−tdt, x > 0, refers to the standard gamma function, and a∗∗k is defined as in

Equation (3.2).

Proof. By the definition of moments and Equation (3.2), using the inversion of the sum and integral

symbols which is possible by the Lebesgue theorem, we have

µm = E (Xm) =

∫ +∞

−∞
xmfMPSW (x;α, β, θ)dx

=

+∞∑
k=0

a∗∗k (2k + 1)

∫ +∞

0

xmgW (x;α, β)[1−GW (x;α, β)]2kdx

=

+∞∑
k=0

a∗∗k (2k + 1)

∫ +∞

0

xmαβxβ−1e−αxβ

e−2αkxβ

dx

= αβ

+∞∑
k=0

a∗∗k (2k + 1)

∫ +∞

0

xm+β−1e−α(2k+1)xβ

dx

= α−m/β
+∞∑
k=0

a∗∗k
Γ (m/β + 1)

(2k + 1)m/β
.

This ends the proof.

Owing to Proposition 5.7, the following finite sum approximation is valid:

µι
m ≈ α−m/β

τ∑
k=0

a∗∗k
Γ (m/β + 1)

(2k + 1)m/β
,

where τ denotes a chosen large integer. All in this sum are simply calculable; the gamma function

being implemented in most of the mathematical softwares.

From the moments, as for the general MPSG family, the mean, variance and measures of skewness

and kurtosis of X can be calculated.

Table 1 indicates these measures for different values of α, β and θ.
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Table 1: Moment measures, with skewness and kurtosis of the MPSW distribution for different values

of α, β and θ.

β = 1, θ = 0.1

α = 0.25 α = 2.5 α = 5 α = 10

µ 3.259225 0.3259225 0.16296126 0.081480630

σ2 12.871419 0.1287142 0.03217855 0.008044637

Csk 2.371628 2.3716282 2.37162817 2.371628199

Cku 11.405947 11.4059473 11.40594736 11.405947379

α = 1, θ = −0.2

β = 2 β = 3.5 β = 10 β = 25

µ 1.0807118 1.02082761 0.998877091 0.998353233

σ2 0.2024495 0.06661115 0.009316317 0.001609406

Csk 0.3776614 -0.23512304 -0.950718762 -1.046773542

Cku 3.2150591 3.19186361 4.857201893 6.562156397

α = 0.3, β = 0.5

θ = −1/π θ = −0.1 θ = 0 θ = 0.2

µ 41.024680 28.129189 22.222223 10.40829

σ2 4186.354572 3084.789150 2469.135753 1028.47276

Csk 5.127459 5.922299 6.618781 10.16347

Cku 54.543873 71.261059 87.719809 202.19471

Table 1 illustrates numerically the observations made on Figure 1: We see that Csk can be negative or

positive (but is mainly positive). This indicates that the different levels of skewness that can be reached

by the MPSW distribution. In addition, Cku can be close to 3 or superior, for the considered values,

corresponding to the mesokurtic and leptokurtic case. We conclude that the MPSW distribution is

ideal to use as model for the analysis of data having analogeous empirical features.
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5.5. ML estimation

We now investigate the estimation of the parameters of the MPSW distribution by the ML method,

as described in a general setting in [7]. We thus aim to calculate the ML estimates for the parameters

α, β, and θ, via the method described in Subsection 4.1.. Given n observations of a random variable

X following the MPSW distribution, say x1, x2, . . . , xn, the log-likelihood function for the parameter

vector δ = (α, β, θ) is

log (L(x; δ)) = n logα+ n log β + (β − 1)

n∑
i=1

log xi − α

n∑
i=1

xβ
i +

n∑
i=1

log
[
1− θπ cos

(
πe−αxβ

i

)]
,

(5.5)

where x = {x1, x2, . . . , xn}. The ML vector estimate of δ is obtained by maximizing this equation with

respect to the vector parameter δ. It is denoted by δ̂ = (α̂, β̂, θ̂), and α̂, β̂ and θ̂ are the ML estimates

of α, β and θ, respectively. In practice, the log-likelihood function can be maximized simply by

statistical programs, namely, R, Mathcad, SAS, Mathematica, and Ox programs. The ML estimates

can also be obtained by solving the following nonlinear equations: (Uα, Uβ , Uθ) = (0, 0, 0), where

Uα =
d log (L(x; δ))

dα
=

n

α
−

n∑
i=1

xβ
i − π2θ

n∑
i=1

xβ
i e

−αxβ
i sin

(
πe−αxβ

i

)
1− θπ cos

(
πe−αxβ

i

) ,

Uβ =
d log (L(x; δ))

dβ
=

n

β
+

n∑
i=1

log(xi)− α

n∑
i=1

xβ
i log(xi)−

n∑
i=1

π2αθxβ
i log(xi)e

−αxβ
i sin

(
πe−αxβ

i

)
1− θπ cos

(
πe−αxβ

i

)
and

Uθ =
d log (L(x; δ))

dθ
= −

n∑
i=1

π cos
(
πe−αxβ

i

)
1− θπ cos

(
πe−αxβ

i

) .
These equations cannot be solved analytically, but they can be solved numerically by software such

as R, Mathematica, and Python. It is understood that δ̂ satisfies the properties of consistance and

asymptotically normality under certain well-identified regularity conditions (see [7]).

6. PRACTICE

The MPSW distribution is now employed to fit several datasets of importance.

6.1. Methodology

In this section, we use two real-world datasets to decipher the applicability of the MPSW distribution

over other the Weibull and trigonometric extended Weibull distributions.

Table 2 displays the distributions along with their cdfs competing against the MPSW distribution.
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Table 2: Competitive distributions considered against the MPSW distribution

Distributions References cdfs

Weibull (W) [14] 1− e−αxβ

Sin-Weibull (SW) [22] cos
(

π
2 e

−αxβ
)

Cos-Weibull (CW) [23] 1− sin
(

π
2 e

−αxβ
)

Initially, we start by looking at the fundamental statistical metrics of the data, such as skewness,

kurtosis, and central tendency. In this study, with the use of a boxplot, a visual analysis of the

datasets is carried out. We also consider a graphical method based on the total test on time (TTT)

plot in order to detect the form of the hrf of the datasets. In light of this, we consider the empirical

TTT plot using the following equation:

T

(
r

n

)
=

∑r
i=1 x(i) + (n− r)x(r)∑n

i=1 x(i)
, r = 1, 2 . . . , n,

where x(i) and x(r) are the ith and rth (increasing) order statistics of the data. The shapes of the

associated hrf are decreasing, growing, upside-down bathtub-shaped, and convex if the empirical TTT

transform is convex, concave, convex then concave, and concave then convex, respectively. See [1].

In order to analyze the statistical fitting of the considered models, (i) the parameters of the models are

estimated by the ML method with the help of the optim function in R software, and (ii) we use standard

goodness-of-fit measures. These measures include the −2 logL (−2 logL), the Akaike information

criterion (AIC), the Cramér-von Mises (CVM) statistic, the Anderson-Darling (AD) statistic, and the

Kolmogorov-Smirnov (KS)statistic and its p-value.

Finally, we plot the fitted empirical pdfs (epdfs) and the empirical cdfs (ecdfs) of the considered

models based on the datasets.

6.2. COVID-19 mortality rates

We use two real-world datasets, from the medical field. The data are related to the recent spread of

the COVID-19 pandemic in 2020.

The first dataset is a 102-day COVID-19 dataset for the USA, spanning the period from March 28,

2019, to July 7, 2020. These data were gathered by dividing the daily death toll by the daily new

case toll. For the instant access to the data, they are: 0.0149, 0.0235, 0.0230, 0.0159, 0.0200, 0.0413,

0.0360, 0.0378, 0.0363, 0.0399, 0.0453, 0.0436, 0.0598, 0.0624, 0.0546, 0.0607, 0.0609, 0.0521, 0.0615,

0.0928, 0.2232, 0.0620, 0.0812, 0.0629, 0.0651, 0.0840, 0.1072, 0.0821, 0.0567, 0.0559, 0.0606, 0.0380,

0.0586, 0.0980, 0.0925, 0.0631, 0.1869, 0.0049, 0.0176, 0.0495, 0.1112, 0.0890, 0.0940, 0.0600, 0.0652,
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0.0413, 0.0588, 0.0665, 0.0816, 0.0753, 0.0579, 0.0436, 0.0527, 0.0382, 0.0568, 0.0613, 0.0531, 0.0767,

0.0400, 0.0406, 0.0237, 0.0471, 0.0722, 0.0595, 0.0597, 0.0389, 0.0265, 0.0518, 0.0419, 0.0566, 0.0516,

0.0390, 0.0245, 0.0266, 0.0314, 0.0701, 0.0410, 0.0436, 0.0320, 0.0255, 0.0171, 0.0268, 0.0259, 0.0333,

0.0318, 0.0188, 0.0172, 0.0112, 0.0155, 0.0229, 0.0184, 0.0621, 0.0146, 0.0114, 0.0216, 0.0103, 0.0129,

0.0134, 0.0117, 0.0143, 0.0032 and 0.0054.

The second dataset is a 127-day COVID-19 dataset for Italy, spanning the period from 1 March to 6

July 2020. The data are calculated by dividing the daily new deaths by the daily new cases. For the

instant access to data, they are: 0.0107, 0.0490, 0.0601, 0.0460, 0.0533, 0.0630, 0.0297, 0.0885, 0.0540,

0.1720, 0.0847, 0.0713, 0.0989, 0.0495, 0.1025, 0.1079, 0.0984, 0.1124, 0.0806, 0.1044, 0.1212, 0.1167,

0.1255, 0.1416, 0.1315, 0.1073, 0.1629, 0.1485, 0.1453, 0.2000, 0.2070, 0.1520, 0.1628, 0.1666, 0.1417,

0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646,

0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522,

0.1369, 0.2495, 0.1253, 0.1597, 0.2195, 0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196,

0.2641, 0.3067, 0.1749, 0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965,

0.2003, 0.1180, 0.1686, 0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321,

0.2792, 0.3515, 0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071,

0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894

and 0.0365.

The descriptive measures of both the datasets are mentioned in Table 3.

Table 3: Descriptive statistics of the COVID-19 dataset by countries

Country Mean Standard deviation Skewness Kurtosis

USA 0.04881 0.03325986 2.152116 11.28798

Italy 0.1609 0.07547866 0.9565583 5.360532

From Table 3, we can observe that the COVID-19 dataset in the USA is right-skewed and leptokurtic

in nature, whereas the dataset of Italy, is slightly right-skewed, but also leptokurtic in nature.

Figures 2 and 3 illustrate the boxplots and TTT plots of the COVID-19 dataset in the USA and Italy.
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Figure 2: Illustration of the (a) boxplot and (b) TTT plot of the COVID-19 dataset in the USA

From Figure 2, it is clear that the boxplot contains outliers, having a long right tail compared to the left

tail. As the colored TTT line is concave, the associated empirical hrf for the USA dataset is increasing.
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Figure 3: Illustration of the (a) boxplot and (b) TTT plot of the COVID-19 dataset in the Italy

The boxplot in Figure 3 also contains outliers and has equal tail lengths, implying that the dataset is

slightly right-skewed. As the colored TTT line is concave, the associated empirical hrf for the Italy

dataset is increasing.

Table 4 provides the ML estimates for the datasets in the USA and Italy on the considered models,

as well as their standard errors (SEs).
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Table 4: Parameter estimates and SEs (under positioned) of the parameters of the MPSW model with

other competitive models

Country ML estimates MPSW CW W SW

SE

USA

α̂
60.94589 43.89717 98.47946 45.10554

23.04937 11.10586 30.90252 13.69119

β̂
1.663611 1.161887 1.578016 1.501706

0.1297254 0.08460758 0.113909 0.1104469

θ̂
0.2843082 - - -

0.02596361 - - -

Italy

α̂
26.77666 23.95018 45.40631 21.43757

12.14315 4.615214 10.85249 4.9295

β̂
2.32632 1.625295 2.235264 2.123184

0.2061552 0.1078028 0.14735064 0.142248

θ̂
0.266669 - - -

0.05219571 - - -

Table 5 provides the goodness-of-fit measures of the MPSW distribution and other models for the

COVID-19 dataset by countries.
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Table 5: Goodness-of-fit measures of the MPSW model and other models on COVID-19 dataset by

countries

Country MPSW CW W SW

USA

KS 0.07229826 0.08368365 0.08933719 0.08769048

p-value 0.6605885 0.4726967 0.3896192 0.4128757

−2 logL -450.0121 -445.4612 -442.4261 -442.6405

AIC -444.0121 -441.4612 -438.4261 -438.6405

CVM 0.09561021 0.1556808 0.1309334 0.123618

AD 0.5519462 0.8942431 0.8916152 0.8549048

Italy

KS 0.04632975 0.05512264 0.06246413 0.0621645

p-value 0.9480196 0.8350289 0.704675 0.7103054

−2 logL -311.7072 -307.2932 -306.5651 -306.8347

AIC -305.7072 -303.2932 -302.5651 -302.8347

CVM 0.04060696 0.09139985 0.1064359 0.5788786

AD 0.2834435 0.6291132 0.6595867 0.634789

The MPSW model has the highest p-value for the datasets of both countries, the USA and Italy,

according to Table 5. Furthermore, it has the lowest values for the −2 logL, AIC, CVM, and AD

when compared to the other competitive models. In order to support the numerical analysis of

goodness-of-fit, we present a visual representation of the datasets by countries through the MPSW

model. Figures 4 and 5 illustrate the epdf, ecdf, and the Kaplan-Meier survival plot of the datasets

of the MPSW model on the COVID-19 datasets in the USA and Italy.
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Figure 4: Illustration of the (a) fitted epdf, (b) ecdf and (c) Kaplan-Meier survival plots of the MPSW

model on the COVID-19 dataset in the USA

It can be observed from Figure 4 that the corresponding estimated functions of the MPSW model

clearly outline the histogram, cdf and the Kaplan-Meier survival plots of the COVID-19 dataset in

the USA.
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Figure 5: Illustration of the (a) fitted epdf, (b) ecdf and (c) Kaplan-Meier survival plots of MPSW

model for the COVID-19 data in Italy

Figure 5 shows that the histogram, cdf, and Kaplan-Meier survival plots of the COVID-19 dataset in

Italy are clearly outlined by the corresponding estimated functions of the MPSW model.

7. CONCLUSION

The trigonometric families of distributions have proven themselves as generators of powerful statistical

models, being able to handle data with a high level of complexity on the skewness and kurtosis aspects.

For the very first time, this work offered a new modified polynomial-sine-generated (MPSG) family that
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aims to unify the baseline distribution and the famous SinG family. The baseline-SinG switch is made

possible thanks to an additional scale parameter that is quite simple to modulate. The fundamental

mathematical characteristics of this family were derived. The Weibull distribution was chosen as

the baseline distribution for a motivated example, resulting in the MPSW distribution. The MPSW

model was empirically tested for applicability and adaptability using two real datasets (COVID-19

datasets), which is of utmost importance in the current scenario, proving that it can yield a better fit

than rival models like the Sine-Weibull, Cosine-Weibull, and Weibull models. This was highlighted by

using goodness-of-fit measures, such as the Akaike information criterion, Kolmogorov-Smirnov statistic

with its p-value, Anderson-Darling statistic, and Cramér-von Mises statistic. Graphical examples of

how the new distribution fit the two datasets were provided to clarify the meaning of the numerical

measures.

Beyond the findings of this study the perspectives opened by our new modeling strategy include: (i)

the investigation of the extended MPSG family as presented in Remark 2.2, (ii) the adaptation of our

statistical methodology to the incomplete data, which often appear in practice; (iii) the development

of bivariate trigonometric models, such as trigonometric copula models, regression models, survival

models, etc.; (iv) the application of our trigonometric models in challenging problems arising in climate

changes as global warming (see [21] and [17]); and (v) the development of new discrete trigonometric

models.
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