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ABSTRACT

The ratio-cum-product estimator is utilized to estimate the population mean of sensitive study vari-
able to tackle the problem of non-response and measurement error under simple random sampling
by using ORRT models are explored in this study. The characteristics of the proposed class of esti-
mator are studied up to the first order of approximation. The relative performance of the suggested
estimator as compared with distinct classes of proposed estimator and Kumar et al. [12] estimator
are performed. Besides that, the theoretical findings are shown through a simulation study based on
an artificially generated population and a real population. From the simulation results and graphical
representations, it is revealed that the proposed class of ratio-cum-product estimators had the lowest
mean squared error than Kumar et al. [12] estimator in simple random sampling. The suggested
class of estimators can be used to estimate the population mean of a sensitive variable in surveys
from many sectors such as social, finance, business, health, and education. La clase sugerida de es-
timadores se puede utilizar para estimar la media poblacional de una variable sensible en encuestas
de muchos sectores, como el social, el financiero, el empresarial, el sanitario y el educativo.
KEYWORDS: Sensitive variable, Non-response, Measurement Error, Simple Random Sampling,
Optional Randomized Response Technique (ORRT).
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RESUMEN

En este estudio se utiliza el estimador de razén acumulada producto para estimar la media
poblacional de una variable sensible para abordar el problema de la falta de respuesta y el error
de medicién en un muestreo aleatorio simple. Para ello se utiizan modelos de ORRT. Se estudian
las caracteristicas de la clase de estimador propuesta hasta el primer orden de aproximacién.
Se compara el rendimiento relativo del estimador sugerido con las distintas clases de estimador
propuesto y el estimador Kumar et al. [12]. Ademds, los hallazgos tedricos se muestran a través de
un estudio de simulacién basado en una poblacién generada artificialmente y una poblacién real.
A partir de los resultados de la simulacién y las representaciones gréficas, se revela que la clase
propuesta de razén acumulada producto tuvo el error cuadratico medio més bajo que el estimador

de Kumar et al. [12] en muestreo aleatorio simple

PALABRAS CLAVE: Variable sensible, No respuesta, Error de medicién, Muestreo simple aleato-

rio, Técnica opcional de respuesta aleatoria (ORRT)
1. INTRODUCTION

One of the most essential tasks is to maintain privacy while dealing with a sensitive problem in the sample
survey. A sensitive variable is one that contains sensitive information about a person or company. It is
impossible in sensitive surveys to collect direct information of a study variable i.e., a respondent may
be embarrassed sharing the information that the interviewer asked for private or other reasons, such as
inquiries about corruption, criminal activity, abortion, drug addiction, and so on. Warner [17] presented
a randomised response technique (RRT) to eliminate the bias of evasive answer in such situations. In
survey sampling, direct true responses on the study variable may be hard to gather, particularly if the
variable is sensitive. Various survey statisticians, such as Eichhron and Hayre [5], Gupta et al. [6], Saha
[14], and Diana and Perri [4] have resembled the population mean of sensitive variables when the study

variable is sensitive in nature.

Both non-response and measurement error can be particularly problematic for sensitive variables, as
individuals may be more reluctant to respond to questions about sensitive topics or may provide inac-
curate information due to social desirability bias. Non-response occurs when survey participants do not
respond to certain questions or refuse to participate in the survey. Measurement error, on the other hand,
occurs when there are inaccuracies or inconsistencies in the measurement of the variables of interest. This
can be due to various factors, such as respondent misunderstanding, data entry errors, or interviewer
bias. Therefore, it is important to address these issues when estimating sensitive variables in survey
research. Azeem and Hanif [2] proposed a technique to estimate the population mean in the presence of
measurement error and non-response, Kumar et al. [9] developed the estimation of population mean in
the simultaneously presence of non-response and measurement error, Singh and Sharma [16] proposed a
method of estimation in the presence of non-response and measurement errors simultaneously. Further-
more, various authors including Kumar et al. [13], Singh and Vishwakarma [15], Khalil et al. [8], Zhang
et al. [18], Audu et al. [1] and Choudhary et al. [3] studied the problem of mean estimation in the

presence of non-response and measurement error simultaneously.
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This paper aims to develop a ratio-cum-product estimator in the presence of non-response and mea-
surement error at the same time under Simple random sampling by utilized two auxiliary variable(s)
using ORRT models. Section 2 describes a sampling strategy and in section 3, an existing Kumar et
al. [12] estimator is discussed. The Proposed estimator is described in section 4. In section 5, we have
studied the efficiency comparisons of all considered estimator(s). To validate the theoretical findings an

empirical study is performed in section 6. Finally, an ultimate conclusion is given in section 7.

2. SAMPLING STRATEGY

Imagine U = Uy, Us, ..., Uy be a finite population of size IV units and from U, a sample of size n is taken
by using simple random sampling without replacement (SRSWOR). Let Y be a sensitive study variable
which cannot be observed directly and X; and X5 be two non sensitive auxiliary variable(s) with mean
and variance i.e. (Y, X; and X,) and variances (S2, S7 and S2,), respectively. Suppose Sy and S
be two scrambling variables with means (51, S») and variances (S% , S%,), respectively. Let W be the
probability that respondent find the question sensitive. If the respondents consider the question sensitive

then he/she is asked to report a scrambled response and else a correct response is recorded.

To collect sensitive information from the respondents, the researchers find difficulty due to the hap-
pening of non-response. If the variable of interest is sensitive in nature then to tackle the problem of
non-response, Hansen and Hurwitz [7] technique has been modified by Zhang et al. [18], Kumar and
Kour [11] and Choudhary et al. [3]. In this technique, the respondent gives direct answer in first phase

then ORRT model is used to get answer from a sub-group of non-respondents in the second phase.

Therefore, ORRT model in the second phase is given as

Y with probability 1-W
S1Y + S5 with probability W,

7 =

with mean E(Z) = E(Y) and variance Var(Z) = Sz + S3,W + S% (S; + Y2)W. The RRT model
is Z = (S1Y 4+ S2)J + Y(1 — J), where J ~ Bernoulli(r) with E(J) = m,Var(J) = 7(1 — 7) and
E(J?) = Var(J)+ E*(J) = 7. And the expectation and variance of randomized mechanism is Eg(Z) =
(S1m+1—m)Y + Som and VR(Z) = (Y2S%, + S3)7.

Let us take a transformation of the randomized response be g whose expectation under the randomiza-

tion mechanism is the true response y; and is given as

Ak Zi — S’Q
VTS wWrl-w
. Ak T Vr(2:) — (y?Sg~1+S§2)ﬂ' —
with ER(yi ) =y, and VR(yi ) = Grtl—n? = Gintiom? i

From previous discussions, we assume that out of ‘n’ sample units, only n; units provide response on first
call and remaining ns = (n — ny) units do not respond. Then a sub-sample of ns(= na/k(k > 1)) units

are taken from non-responding units no, respectively. Then, a modified version of Hansen and Hurwitz
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estimator suggested by Zhang et al. [18] and Kumar and Kour [11] is given by

U = wi + wals

{(55(2)‘5:17(22))‘5%1 +S§2 b

with mean E(y*) =Y and variance Var(y*) = AS? + )‘*Sj(z) + Dok Gintiom)?

Similarly, one can write the estimator for X; and X5 as
fT = wﬁc’{ + ’wgi‘TQ

and

Ty = w1Ty + walsy
with E(z}) = X1, E(z3) = X2 and Var(z}) = AS2 + A*S§1(2>, Var(zs) = ASZ, + A*S§2(2)
In addition, let U; = y; — Y;, V; = x1; — X1; and W; = xz9; — X3; be the measurement error for the
study variable (Y') and auxiliary variables (X7, X2) in the population. Let P; = z; — Z; represent the
relative measurement error associated with the sensitive variables (Z) in the face-to-face interview phase.
These measurement errors are considered to be random and uncorrelated, with mean zero and variances

S2082,62.52,,, 52

w S52) Sw(2) and Sg, respectively.

In the context of non-response and measurement error simultaneously, the variances of ¥, Z; and Z»
are given by
s 2 2 2 2
Var(y™) = A8y + Su) + A" (Sy) +5,) +te=A+kK

Var(zi*) = MS7, +52) + A*(S2, , + 532) = B

T1(2)
and
Var(z3*) = X(S2, +54) + A" (82, ,, + Shz) =C

T2(2)

where A = [\(S; +57) + A*(Sp 5, +Sp)], B = [\(S3, +87) + A"(S3, ,, + So)]s

Z1(2)
. {(S2(2)+072))S%, +53,
C = [MSE, +50) + X (52,5, + Siye)] and w = M2k | —=gmmrm = |

3. KUMAR ET AL. [12] ESTIMATOR

Kumar et al. [12] suggest a ratio-cum-product type estimators when the auxiliary variable(s) X; and X5

are known under measurement error and non-response using ORRT model is given by

T = oty B -+ a)) (S S ) (24 )
Ty X1 To XQ
where
= S, /Se? is the estimate of the population regression coefficient 8y, = Sy /Si*?;
s = 8322/5;22 is the estimate of the population regression coeflicient 8., = S;;Q/S;;*Q and o* be a

finite quantity.
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The bias and mean squared error of T is given by

B * a* *
Bias(T:2) = YV(4a® — 1) + 4B, [(Az% n /\0?’(2)> T (AO‘H ad (2>)} — 4By,

02 “02(2) ah 12

* M*
[(AMS‘Q‘ + A*W) + (A’“‘“’ | iz )ﬂ +20"(RiB+RyC)  (32)

Ho2 :u()z(g) lu’ll ,ull(g)
and
MSE(T:,) =Y?(4a" —1)% + 1602 A + 1682, B + 168,,,C — 320 Bz, D+
328z, Byzs E — 320 Byu, F + 1602k (3.3)

which is optimum when

Ak _ % +62111D+/6y7”2
opt. = Y24+ A4k

Putting the value of &%, in (3), we get the minimum MSE of the proposed estimator as

min.MSE(T?) = Y2 (44

88z

—1)* + 164,72, A+168;, B +163;,,C — 324}, Bys, D

opt.

+328y, Byar, B — 3245, Bya, F + 16640pt K (3.4)

opt. opt.

where D = (Apyzlsyszl + )‘*py«h@) Sy(2)5$1(2))7 E = [/\pzlzzsmsrz + )‘*pm1$2(2)sm1(2)sm2(2)]
and I = ()‘pymsysm + )‘*pymzu)sy(?)szzu))'

In the next section, we develop a ratio-product type exponential estimator and studied its properties.
The proposed class of estimator will be useful for the situation of exponential type-data and for mean

estimation of sensitive variable.

4. PROPOSED CLASS OF ESTIMATORS

When the regression line of y on = passes through the neighbourhood of the origin, in that case the
ratio (product) estimator is more efficient and the efficiencies of these estimators are almost equal.
Under certain efficiency conditions, exponential-type estimators are known to outperform the related
existing estimators in terms of lesser mean square errors. Kumar et al. [12] proposed a ratio-product
type exponential estimator for estimating the finite population mean of sensitive variable using ORRT
models. Following Zhang et al. [18], Kumar and Kour [10] and Kumar et al. [12] we propose a class
of ratio-product type estimators for estimating population mean Y of the sensitive study variable ‘4’ in

presence of non-respounse and measurement error, as

. R X @ — %k n X Rk X _ ax
T = woy™* ( ;) ( 322**> exp{al(_ ! ff: ) } exp{aQ( 2 ,ff ) }+
o X3 X, + 73 Xo+ 7

w1 (77 —X1)+w2(i?2 - Xa) (4.1)

where («, 7,1, as) are suitably chosen scalars generating different form of the estimators for suitable

values of (o, 7, a1, as); and (wg, wy,ws) are suitably chosen constants to be determined such that MSE
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of T** is minimum.

To obtain the bias and MSE of T** we write

g =Y (1 +éy), 27 = X1(1 +e}"), 25* = Xo(1 + e5*) such that

E(é*) = E(ef) = E(e3*) =0 and

E(ég?) =Cf = 2(A+f-”~); E(ef™?) = Cf = 35 B; B(e5™?) = 03 = 35C4

B(egei”) = Con = yx; D; B(eges”) = COFYT-QF; B(efes’) = Cra = ¥ B

where A, K, B, C, D, E, F are same as defined in section 3.

Expressing T** in terms of €5*, e* and e3*, we have

. 1\ —a 1\
T =Y wo(l+ &5 )(1+e7")7 exp{21 > (1 + = 5¢ ) } exp{;ez* (1 + 26;) }—i—
1 sk 1 *%
wlR—lel +w2R—262 } (4.2)
where Ry = )—% and Ry = )—%

We assume that ley*| << 1, |e**| << 1, |3e1*| << 1 and |fe3*| << 1 so that (1+ e}*)™*, (14 e5*)",
(1+ ée"{*) and (1+ §e§*) are expandable. Now expanding the right hand side of (4.2), multiplying

out and neglecting terms of s having power greater than two we have
(T** Y)Y wo{l et — 01 +ebrel™) 4 Oa(es™ 4 e5res™) + 0102ei es + Ose*? + 9463*2}4-

1 1
wy—e} +wy—es" —1
lRl 1 2R2 2

(4.3)

where 01 = (a + 5a1), 02 = (7 + 3a2); 03 = [a(a;l) oo g o alat?) | gng

—1 « ag(ag—2
04 = n(n2 )_,_n72_|_ 2(82 )].

Taking expectation of both sides of (4.3) we get the bias of T** to the first degree of approximation
as
B(T**) =Y [wo{1 — 01Co1 + 02C02 — 0105C12 + 03CF + 0,C3 )} — 1] (4.4)
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Squaring both sides of (4.3) and neglecting terms s having power greater than two, we have
(T** —-Y)?2=Y? [1 + w%{l + 265" — 201 (e + 202(e5™ — 401€5"el™) + 402657 e5™) — 460102e7 5™ +

2 *%2 2 *%2 1 *%2 1 *%2 A%k
(07 + 203)e7™ + (03 + 204)e5™} + wy o e e 5 e - 2wo{l+ &5 —

1 2
Ry

1 *k 3k 1 K3k skok 1 ok Akk kk *k2

2ws A e5" + 2wiwe TR, e;res” + 2wown & {el* +e5 et — Oref™+

1 Askok ok sk sk skok
fre*es* } +2w0w2(R){€§* +e5es” + Oaes™ + b1ei el ] (4.5)
2

1
01(e}* + é5rer™) + Oa(es™ + €57 es™) — O162ei €™ + O3e7™ + O4e5™%} — 2wy ()e’{*—

Taking expectation of both sides of (4.5), we get the MSE of T** to the first degree of approximation as
MSE(T*) =Y? [1+wiHo + wiH + w3 Hy + 2wowi Hs + 2wowz Hy + 2wywe Hs — 3woHg|  (4.6)

2 2 2 2 2 ci c3

where Hy = [1 + CO —4601Cp1 + 405Co9 — 46105C12 + (91 + 293)01 + (92 =+ 294)02], H, = FTI%’ Hy = R7§’

H3 = %1 001 — 91612 + 92012:|, H4 = Rlz|:002 - 91012 + 92022 ) H5 = RC;%Q and H6 =|1- 91001 -

02Co2 + 60102C15 + 03CF + 04022} .

Setting MS%@*) =0,7=0,1,2; we have

HO H3 H4 Wo HG
H3 Hl H5 wy| — 0 (47)
H4 H5 H2 w2 0

Solving (4.7) for (wo,ws,ws) we get the optimum of (wg, wy,ws) as

Ao A A i
Wo(opt.) = Kawl(opt.) = K?wZ(opt.) NS (4.8)
Hy H3 Hy
H, H; Hs Hs Hj 1
where A = |H; H; Hs|= Hy — H3 + Hy
Hs Hj H, H; H, Hs
H, Hs H,

= Ho(H{Hy — H?) — H3(HyH3 — HyHs) + Hy(H3Hs — H1Hy);

Hg Hs Hy
Ag=|0 Hy Hs|=HsHHy—H3);
0 Hs H,
H, Hg H,
Ay =|Hy 0 Hs|=Hgs(HxH;— HyHs) and
H, 0 H;
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Hy Hs Hs
AQZ H3 H1 0 :H6(H3H5—H1H4).
Hy Hs O

Thus the resulting minimum MSE of T is given by

. _ HgA
min.MSE(T*) = Y? {1 - GA 0] (4.9)
Now we arrived at the following theorem
Theorem 4.1. The MSE(T**) is greater than or equal to the minimum MSE of T** i.e.
MSE(T**) < min.MSE(T**)
HgAy
=Y?|1-
-5
with equality holds if
Wi = Wi(opt.); 1 = 0,1,2; where wy(ope.); 4 = 0,1,2; is given in (12).
Some particular members of the class T** are given below
e For (ay,a2)=(0,0); T** reduces to:
. . X @ {E** n _ _
T =i (22) (5 ) +unlet - X+ ualag - X)
1 2
The Bias and MSE of 77} is given by
f _ ala+1 n(n—1
B(T(l))Y|:w0{].OLC()1 +77002*Oé77012+ ( 5 )Clz+ ](772 )022}1:|
=Y [woHg(1y — 1], (4.10)
MSE(Tf;) =Y? {1 + wh Hogr) + wi Hy + w3 Hy + 2wowy Hy(1y + 2wow Hy1y+
2w1w2H5 — 2’ZU0H6(1):| y (411)

where Ho(1y = [14C§ —4aCo1 +4nCoz — 4anCiz + a(2a+1)CF +n(2n —1)C3|, Hyq) = R% {C’Ol —aC?+

77012:| s H4(1) = Rig |:C02 - CVC12 + 77022:| and Hﬁ(l) = |:]. - OéC()l + 77002 - Oﬂ]Clz + a(a2+1) C12 + n(n;l) C22:| .

The optimum values of (wp, w1, ws) and the minimum MSE of T(*l*) are given by

w _ Do _ A EAYIE)
0(opt.)1 A(l) s Wi(opt.)1 A(l) y W2(opt.)1 A(l) .
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where A(1) = [Ho(l)(HlHQ - H§) - H3(1)(H2H3(1) - H4(1)H5) + H4(1)(H3(1)H5 - H1H4(1))], A0(1) =
Hegy(H Hy — HZ), A1) = He1)(HaHy 1) — HyyHs), Ao1y = Heny(HsyHs — HiHygr)).

Thus the resulting minimum MSE of T’ 1) is given by

_ HgA
min MSE(TY) = y[lw]

(4.12)
Aq)

e For different choices of (o, 1) a large number of estimators can be generated from the class of estima-

tors T(1)

e For (o, n)=(0,0); 7** reduces to:

Oél(Xl — .f?i‘*) } exp{ 042()22 — i‘g*)

= +w X)) 4w X
X,z X2+aj~;*} 1@ 1)+ wa (73 2)

Putting («,n) = (0,0) in (4.4) and (4.6) we get the bias and MSE of T(”‘Q’S to the first degree of approxi-
mation, respectively as

B(T(5;) =Y [woHe(2) — 1], (4.13)

MSE( (2)) y? l:l + ’LUSHO(Q) + w%Hl + w%HQ + 2w0w1H3(2) + 2’LU0U}1H4(2)—|-

2w1w2H5 — 211)0H6(2):| N (414)

where HO(Q) = |:1 + Cg —201Cp1 + 209Ch2 — aqaaCio + al(a21+1) 012 ozg(az 1) C2:| H3 @ = 7 |:001 _

Lot + 0‘22012} Hyy = 1%2[002 —a1C2 + azCQQ} and Hgo) = [ — SCo1 + FCo2 — “2C12 +

al(a81+2) 012 + 042(048272) 022 )

The optimum values of (wg, w;,ws) are given by

w _ Doy _ Ly _ Doy
0(opt.)2 A(g) s Wi(opt.)2 A(Q) » W2(opt.)2 A(g) )

where Ay = [Ho)(H1Hy — H2) — Hy(o)(H2Hz(2) — Hy2)Hs) + Hyo)(Hso)Hs — HiHya))], Do) =
Heo)(H1Hy — HZ), Ay(2) = Hg2)(HaHso) — HygoyHs), Ao2) = Heo)(Hso)Hs — HyiHy(o)).

Thus the resulting minimum MSE of T (2) is given by

o oal, Hemd
min. MSE(1}5) = 72 {1 _ 6<2>0<2>] .

(4.15)
A

e For (,a;)=(0,0); 7** boils down to:

ngfﬂ )} _ = _ =
ex +wi (7 — X)) +wa (T — X
) p{ X, oo 1(7] 1) + w2 (75 2)

B

T(?S = woy™* <

8l
)—‘*
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Putting (1, 1) in (4.4) and (4.6) we get the bias and MSE of T(E*S to the first degree of approximation,
respectively as

B(1(5) =Y [woHg(s) — 1], (4.16)
MSE(T() = Y? |1+ wiHos) + wi Hy + w3 Hy + 2wowy Hy(3) + 2wowy Hys)+
2w1w2H5(3) - 2w0H6(3)] 5 (417)

Here (n7a1) = (0’0)’ 01 = Q, 0y = %ab (9% + 204) — 042((122—1) 03 — a(a;_l)’ 0, = W’ (0% + 293) =
a2a+1).

Hyg) = {1 + C8 — 4aCy; + 202Cps — 2aaC1s + a1 (201 + 1)CF + (”(‘);2_1)022], Hjs) = R% [001 -

203+ 0’22012] s Hyzy = R%, [002 —aCha +042022} and Hg(z) = [1 = 5C01 + % Co2 — 52 C1a + %C% +
ag(a8272) 022:| .

The optimum values of (wg, w1, ws) are respectively given by

_ AO(Q) _ A1(2) AQ(Q)
Wo(opt.)3 = m’wl(om-w = H»W(om.):s Ay’

where A3y = [Ho)(HiHs — HZ) — Hy(s)(HaHs(s) — Has)Hs) + Hy)(Hss)yHs — HiHag))], Dos) =
Hes)(HHy — HZ), Ay3y = Hez)(HoHs(3) — Hags)Hs), Dogsy = Hez)(Hy3)Hs — HiHys)).

The minimum MSE of T(gg is given by

. _ Hg3yA
min. MSE(1}3) = Y {1 - ‘W] . (4.18)
Aw)
e For (a, a3)=(0,0); T** reduces to:
sk 2ok XQ “ al(Xl - 'f**) ok v ok v
T(3) = woy (ES*) exp{Xl_'_ﬂ*1 + w1 (T7" — X1) + we (5" — X3)
Inserting (o, a2) = (0,0) in (4.4) and (4.6) we get the bias and MSE of the class of estimators
B(T(5) =Y [woHe) — 1], (4.19)
MSE(T(:;) =y? {1 + wiHogay + wiHy + wj Ha + 2wow Hyay + 2wowi Hygay+
2U}1UJ2H5 - 2w0H6(4)] 5 (420)

where Hogy = |14+C§ —201Cn1 +477002—204177012+al(agﬁl)012+77(277—1)022} s Hawy = 77 [001 — GO+

727012} s Hyay = R%, {C02041012+?7022} and Hg(4) = {1C¥1001+77002aénCqual(ongz)Cer?](nl)C%}
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The optimum values of (wg, wy,ws) are given by

w _ Doy _ S 10
0(opt.)4 A(4) s Wi(opt.)4 A(4) » W2(opt.)4 A(4) )

where Ay = [How) (HiHs — HZ) — Hyay(HaHsay — HyayHs) + Hy)(HzayHs — HiHy))], Doy =
Hgay(HiHy — HE), Ay(ay = Hea) (HoHsa) — HaayHs), Ao(ay = Heay (Hza)Hs — HiHya)).

The minimum MSE of T (’ZS is given by

. _ HgpnA
min. MSE(T(5) = ¥ {1 - 6(4)0(4)] . (4.21)
Aw
e For (o, 1, a1, 2)=(0,0,0,0); T** turns out to be:
T = woy™ + w1 (27" — X1) + wa(T5° — Xs)
The bias and MSE of the class of estimators T(?S are given by
B(T5) =Y [wo — 1], (4.22)
MSE(T(’;;) =Y? {1 + wg Ho(s) + wiHy + w3 Hy 4 2wowy Hy(5) + 2wows Hygs)+
2w1w2H5 - 211}0H6(5) 5 (423)

where Hos) = {1 + Cg} Hy) = Cor — G- CF, Hygs) = %052 and Hggg) = 1.

The optimum values of (wp, w1, ws) that minimizes the MSE of T(’g*) are given by

_ AO(E’) _ A1(5) . A2(5)
Wo(opt.)s = mawl(opt.ﬁ) = m,wz(om.)g) Ay

where A5y = [Ho)(HiHa — HF) — Hys)(HyHy(s) — Hys)Hs) + Hys)(Hys)Hs — HiHy(s))], Do) =
Hesy(HyHy — HZ), Av(5) = Hes)(HoHy 5y — Hus)Hs), Aoz = Hes) (Hzs)yHs — HiHygs)).

The minimum MSE of T("g'; is given by

. _ Hg50A
min MSE(T}5) = Y? {1 - W] . (4.24)
Aw)
e For (wp,a,m, a1,a2)=(1,0,0,0,0); T** reduces to:
T =0 + w (T — X1) + w2 (23" — X)
The bias and MSE of the class of estimator T(’E*) is given by
B(T(g) =0, (4.25)
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MSE(T{) =Y? {1 + Ho) — 2He(6) + wi Hy + +wi Ha + 2wi Hag) + 2w Hy) + 2w1w2H5] ,

MSE(T() = {(A + K) +wiB + w3C + 2wiwo E + 2w, D + QwQF]

2
where Ho) = [1+ C2], Ha) = Co1 — 51, Hyg) = %%2 and Hgg) = 0.

The MSE(T)) is minimized for

(EF — CD) (DE — BF)
Wiort)s = (g — gy 2ert)s = J(por—pRy»

Thus, the minimum MSE of T(*G*) is given by

CD? — 2DEF + BF?)

manSE(T(?S) = |(A+K) - ( (BC — E?)

e For (wg,ws, a,n, a1,a2)=(1,0,0,0,0,0); T** reduces to:

TE =57 +wi (@} = %)

The bias and MSE of the class of T(*;; estimator for population mean Y as

B(T(*;;) = 07

MSE(Tf) = [(A + K) +wiB + 2w1D] :

which is minimum when for

Wi(opt.)7 = —

)

| o

Thus, the minimum MSE of T(’;’S is given by

min MSE(T5) = {(A +K) - 137] .

e For (wp, w1, a,n,ar,a2)=(1,0,0,0,0,0); T** reduces to:
Tl =97 +wales” — Xs)
The bias and MSE of T(*S”B are respectively given by

B(T) = 0,

MSE(T) = |(A+ K) + w3C + 2wa F |,

The MSE(T(*;;S) is minimum when for

F
W2 (opt.)8 = _63
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Thus, the minimum MSE of T(”g; is given by

2
min. MSE(T(g)) = [(A +K)— ];]

e For (wy,a,m, a1, a2)=(0,0,0,0,0,0); T** boils down to:

T35 = woi™ +wi(a}” - Xo)

The bias and MSE of T(*g*) are respectively given by

B(T(Z*)) = (wo — 1)Y,

MSE(T(;) =Y? {1 + wg Hy(g) + wiHy + 2wow H3(9) — 2wo He(g)

where Ho(g) = |:]. + Cg:|7 H3(9) = ﬁ and HG(G) =1.
The MSE(7(5}) is minimized for
Hi Hgg) Hs9) He(o)
Wo(opt.)9 = (Ho(g)Hl — Hg(g)) » Wi(opt.)9 = (HO(Q)Hl Hg(g))a
Thus, the minimum MSE of T(’Z)*) is given by
Hg(g)Hl YQ [(A—FK)B — DQ]

min. MSE(T(5) = Y?|1 -

e For (wy,a,n,a1,a2)=(0,0,0,0,0,0); T** reduces to:

Ty = woy™ + wa (3" — Xo)
The bias and MSE of T(*fb) are respectively given by

B(1{y) = (wo = 1)Y,

MSE(T(*l’g)) =Y? |1+ wiHyq0) + wiHi(1) + 2wow; H(10) — 2woHe(0) |,

The MSE(T(*l’B)) is minimized for
He(10)Ha(1) Hy10yHg(10)

Wo(opt. = » W1 (opt. B
0(opt.)10 (H0(10)H2(1) — Hz(lo)) 1(opt.)10 (Ho(lo)HQ(l) - Hz(w))

)

Thus, the minimum MSE of T(*l*o) is given by

H62(10)H2
<H0(10)H2 - HE(IO))

min. MSE(T() =Y? |1 -

Many more estimators can be identified from the class of estimators 7**.
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(4.34)
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4.1. Members of the Proposed Estimator e

Putting w; = 0,wy =0 1in T**, we get the following class of estimator for population mean Y as

. . X @ =k n X ke X _ ax
P — wog** ( _*i> ( 1'2**) exp{al(lil)} exp{w} (440)
] X3 Xy + 77 X + 75

Putting (wy,ws2) = (0,0) in (4.4) and (4.6) we get the bias and MSE of #** to the first degree of

approximation as

B(t*™) =Y [woHg — 1], (4.41)
MSE(t*) = Y [1 4+ wiHo — 2woHe], (4.42)

The MSE is minimum when
wo(opt.) = % (4.43)

Thus the minimum MSE of £** is given by

. _ H?
min.MSE(#*) = Y? <1 - 6). (4.44)
Hy
e For different values of (a, 7, a1, as) a large number of estimators for population mean can be gener-
ated from ‘¢**’.

1. Bias and MSE of the Class of Estimators ‘Ezl*):

Inserting (v, az) = (0,0) in #** at (4.40) we get the estimator for the population mean Y as

Dok 2ok Xl “ ‘fzé* !
t(1) = woy (aﬁ*) ()_(5*) (4.45)

The bias and MSE of fz‘f) to the first degree of approximation respectively as

B(i{f) = Y [woHeqy — 1], (4.46)
The MSE(#}*) is minimized for
He(1)

Wo(opt.) = HO(l)’

Thus, the minimum MSE of le*) is given by

2

. ek \ 2 _ H6(1)

min MSE(t)) =Y (1 - —— ). (4.48)
Hy(1)

2. Bias and MSE of the Class of Estimators EZ‘;):

Inserting (o, n) = (0,0) we get the estimator for the population mean Y as

Ak Ak Oél(Xli'T*)} {O&Q(XQS_CS*)}
tioy = W ex = ex = 4.49
(2) ~ w0 p{ X, + & NN X +ap (4.49)
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To the first degree of approximation, the bias and MSE of 52‘2*) are respectively given by
B(i{3)) = Y [woHg(2) — 1], (4.50)
MSE(t(3) = Y [1 + wiHo) — 2woHg(z)), (4.51)
The MSE(fE‘;)) is minimum when
w _ Hez)
0(opt.) HO(Q) ’

Thus, the minimum MSE of fzg) is given by
min.MSE(if) = ¥ (1 - ‘3“")) (4.52)
Ho(z)

3. Bias and MSE of the Class of Estimators EZ‘:;‘):

Inserting (1, 1) = (0,0), the class of estimators ‘t**’ reduces to the class of estimators for population

mean Y as for the population mean Y as
(6% (XQ — Ifé*)

NS AT
ti3 = woy™* exXpy —=————— 4.53
© = <w1> p{ X, + a5 } 459

The bias and MSE of fE‘g‘) to the first degree of approximation, are respectively given by

MSE(i(3) = Y [1 + wiHos) — 2woHg(s)), (4.55)
The MSE(fE‘;‘)) is minimum for
w _ He)
0(opt.) H0(3) ’

Thus, the minimum MSE of fzg) is given by

2
min. MSE(i) = ¥ (1 - H“?')) (4.56)
0(3)

4. Bias and MSE of the Class of Estimators EZ‘Z):
Inserting (o, ) = (0,0), the class of estimators ‘¢**’ boils down to the estimator for population mean

Y as
~ ~ XQ K Oll(Xl — ET*)
ti = o —_— 4.57
(1) = woy <x2) eXP{ X o (4.57)

The bias and MSE of f’(kz) to the first degree of approximation, are respectively given by
B(i{3) = Y [woHeay — 1], (4.58)

MSE(i;) =Y [1 + wiHowu) — 2woHg)), (4.59)
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The MSE(#;*) is minimum for

_ Hew
Wo(opt.) = H0(4)
Thus, the minimum MSE of t’("z) is given by
_ H?
min. MSE(t(4 ) =Y? <1 — H((ji;) (4.60)

Pokok

e TFor wy = 1, the estimator(s) &3*, () t’(*;), t’(*g) and fa‘) respectively reduce to the estimators for

population mean Y:

thy = y()?) <§22)n (4.62)

to) = y** exp{m} exp{OW}, (4.63)
s = y**<)§}k)aexp{w}, (4.64)

ty =" <2i)nexp{W}, (4.65)

The MSE’s of t§, t?l)’ t&), t“("3) and tZ‘ 4 to the first degree of approximation are respectively given by

MSE(t}) = [(A+ K) + 01RIB + 03R5C — 20, R, D + 20, Ry F — 20,6, R\ Ry E], (4.66)
MSE(t(,)) = [(A+ K) + o®R{B + n*R5C — 2aR, D + 2nRy F — 2anR, Ry E], (4.67)
MSE(t{y) = [(A+ K) + (a]/4)RiB + (03 /4) R5C — (a1a2/2) RiRoE — ay R1 D + aa Ry F], - (4.68)
MSE(t{3)) = [(A+ K) + o’RiB + (a3/4)R5C — 2aR, D + aa Ry F — 2aas Ri Ry B, (4.69)

MSE(t{;)) = [(A+ K) + (ai /4)Ri B + n°R5C — axnR1 RoE — an Ry D + 2Ry F |, (4.70)
The MSE’s of t§, t’(kl) (2), t(g) and t(4 are respectively minimized for

g _ (CD-EF) , _ (ED—FB)
YT i (BC—E?)"? T Ry(BC — E?)

_ (CD - EF) _ (ED-FB)
Qort- = RI(BC — E2) " T Ry(BC — E?)
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2(CD — EF) 2(ED — FB)
Qopt) = e _ g2y Mlept) = B rp 2y
R (BC — E?) Ry(BC — E?)

_ (CD-BF) . 2BD-FB)
Qopt. = Rl(BC — E2)7a2(017t') - RQ(BC _ E2)
2(CD — EF) (DE - BF)

A1 (opt.) =

R\ (BC — E2) 1"") = R,(BC — E?)

Substitution of respective optimum values of constants in MSE of (t(o)v tys tays Hisys t(4)) as

CD? —2DEF + BF?

min. MSE(t;") = |A+k — BC— Y

:§=0,1,2,3,4. (4.71)

5. EFFICIENCY COMPARISONS

To evaluate the mean squared error of the proposed estimator T** over the mean squared error of class

of estimator(s) and Kumar et al [12], we obtain the efficiency condition as follows

(i)  min.MSE(T*) < min-MSE(T(*l"S)
if  AwHsAo — Ay Ao <0,

(i) min.MSE(T**) < min.MSE(Ty)
if Ay HeAo — AHg Aoy < 0,

(i) min.MSE(T*) < min. MSE(T)

if A Hsho = Aoz Do) <0,

(iv)  min.MSE(T**) < min.MSE(T))
if AwHeAo = Ao Do) <0,

(v)  min.MSE(T**) < min.MSE(T3)
if Ay HeAo — AHgAgs) < 0,

(vi) min.MSE(T**) < min.MSE(T)

e HgA (CD? — 2DEF + BF?)
201 - 2820 _l(A+ K) -
if y{ oSo| k) e <0,
(vii) min.MSE(T**) < min. MSE(T3))
L[ HgAol D
roy2|q — 6o _Z
if 'Y _1 A _(A+K) B}<O,

(viii)  min. MSE(T**) < min.MSE(T)
if Y?|1

HeAol | F?
_ A+ L
A | |AFE) -] <0
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(ix) min.MSE(T**) < min.MSE(T(y)

. HgAy [(A+K)B—D2]
i [1_ A } B {A+K)B-D

(x) minMSE(T*) < min.MSE(T}};)
if ApoyHeAo — AHg(10)Ao(10) < 0,
(xi) min.MSE(T**) < min.MSE(#*)
if AogHo— AHg < 0,
(xii)  min.MSE(T**) < min.MSE(#*)
if AgHo— AHg <0,
(xiil)  min. MSE(T**) < min.MSE(if)
if AgayHo — AHgn) <0,
(xiv)  min.MSE(T*) < min.MSE(tAg))
if AgyHo — AHg2) <0,
(xv) min.MSE(T**) < min.MSE(f’(k;))
if Aos)Ho — AHgs) <0,
(xvi) min.MSE(T**) < min.MSE(tA?Z))
if AguyHo — AHg4) <0,

(xvii)  min. MSE(T*) < min.MSE({(});j = 0,1,2,3,4

_ H2 CD? — 2DEF + BF?
if Y2|1—-=Z8| - |A+k—
i { HO} [ + (BC — E?) <0,
(xviii)  min. MSE(T*) < min. MSE(T(,.,)
2 62 v 2 2 2 2
if 'Y [1 - HJ —Y2(4al,, —1)% + 16452, A+ 168

o B+ 16ﬁ5120 — 320, Byx, D+

32Bya, Byas B — 3245, Bye, F' + 16657, 1 < 0.

If the above conditions from (i) to (xviii) are met then it is clear that the proposed class of estimator is

more efficient than the Kumar et al. [12] estimator that are used for comparison purpose.

In the next section, we conducted a simulation study by using R software to verify the above results.
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6. SIMULATION STUDY

In this section, a simulation study is carried out to compare the mean squared error (MSE) of the proposed
class of estimator by using R software. We have generated a hypothetical population in section 6.1 and
considered a real population in section 6.2. The descriptions of the variables with parametric values are

given in section 6.1 and 6.2, respectively. The results are given in Tables 1 and 2, respectively.

6.1. Hypothetical Population generated from Normal distribution

In this subsection, we analyzed the efficiency of our estimator with the help of a hypothetical finite
population of size N = 10,000 generated from a normal distribution and from N we take a sample of
size n’ = 7000 and of n’ we picked a sample of size n = 4000 is taken using SRSWOR. In the first phase,
only 1600 (n1) provide a response to the survey question and ng = n — n; ie. 2400 of them do not
respond. In the second phase, we take another sample (ns = %) from the non-respondent group by
using different values of k = 2,3,4,5. A variable X; ~ N(0.2,1), X5 ~ N(0.2,1) and variable Y which
is defined as Y = a x X7 + a * X5 + N(0, 1) also generated from a normal distribution where a = 0.02.
The scrambling variable(s) S; is taken from a normal distribution with a mean of 1 and a variance of 0.5,
whereas the scrambling variable Ss is drawn from a normal distribution with a mean of 0 and a variance
of 1, respectively. The MSE’s of the considered estimators for different levels of 7 (i.e. 0.2 to 1) and k
(i.e. 2,3,4,5) are shown in Table 1. Further, to give more clarity to the readers, results of Table 1 are

represented graphically in Figure 1.
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Table 1: Mean Squared Error of estimator(s) at varying values of k and 7

m=0.2 m=0.6 m=1
Estimator(s) k
2 3 4 5 2 3 4 5 2 3 4 5
T 0.000187{0.000254|0.000295|0.000314|0.000013|{0.000020|0.000442|0.000101{0.000394|0.000574| 0.000764 | 0.000877
T(*l*) 0.001037 | 0.001406 | 0.002009 | 0.001874 | 0.001265 | 0.001712 | 0.001643 | 0.001137 | 0.001194 | 0.000987 {0.000231|0.000535
T(*;) 0.000505 | 0.000513 | 0.000858 | 0.000782 | 0.000705 | 0.000776 | 0.001167 | 0.001429 | 0.001141 | 0.001505 | 0.001917 | 0.002335
T(’;*) 0.007779 | 0.008916 | 0.010759 | 0.011465 | 0.008013 | 0.009204 | 0.011074 | 0.011827 | 0.008446 | 0.010104 | 0.011573 | 0.013052
T("Z; 0.002682 | 0.003297 | 0.004055 | 0.004567 | 0.002881 | 0.003558 | 0.004368 | 0.004945 | 0.003254 | 0.004143 | 0.005047 | 0.006009
T(*;) 0.000653 | 0.000824 | 0.000986 | 0.001142 | 0.000845 | 0.001084 | 0.001309 | 0.001537 | 0.001208 | 0.001583 | 0.001990 | 0.002385
T(g) 0.000655 | 0.000828 | 0.000992 | 0.001150 | 0.000849 | 0.001091 | 0.001319 | 0.001552 | 0.001217 | 0.001599 | 0.002014 | 0.002419
T(*7*) 0.000758 | 0.000961 | 0.001145 | 0.001319 | 0.000952 | 0.001222 | 0.001468 | 0.001716 | 0.001319 | 0.001729 | 0.002176 | 0.002625
T(*s*) 0.000757 | 0.000960 | 0.001143 | 0.001329 | 0.000951 | 0.001223 | 0.001471 | 0.001732 | 0.001313 | 0.001714 | 0.002148 | 0.002578
T(g*) 0.000755 | 0.000955 | 0.001137 | 0.001308 | 0.000945 | 0.001213 | 0.001455 | 0.001699 | 0.001308 | 0.001711 | 0.002149 | 0.002585
A(*f{)) 0.000754 | 0.000954 | 0.001135 | 0.001318 | 0.000946 | 0.001213 | 0.001458 | 0.001714 | 0.001303 | 0.001697 | 0.002120 | 0.002538
f** 0.000856 | 0.001086 | 0.001284 | 0.001483 | 0.001046 | 0.001343 | 0.001603 | 0.001874 | 0.001403 | 0.001824 | 0.002277 | 0.002737
EZ‘B 0.012851 | 0.015051 | 0.017701 | 0.019323 | 0.013092 | 0.015347 | 0.018035 | 0.019705 | 0.013422 | 0.016040 | 0.018322 | 0.020638
f(*2*> 0.003221 | 0.003879 | 0.004808 | 0.005331 | 0.003424 | 0.004141 | 0.005109 | 0.005691 | 0.003822 | 0.004835 | 0.005847 | 0.006872
£*§> 0.010052 | 0.011644 | 0.013824 | 0.014904 | 0.010289 | 0.011931 | 0.014135 | 0.015260 | 0.010693 | 0.012795 | 0.014649 | 0.016481
f’{Z) 0.005406 | 0.006672 | 0.008003 | 0.009109 | 0.005608 | 0.006932 | 0.008309 | 0.009475 | 0.005943 | 0.007481 | 0.008979 | 0.010549
t 0.000655 | 0.000828 | 0.000992 | 0.001150 | 0.000849 | 0.001091 | 0.001319 | 0.001552 | 0.001217 | 0.001599 | 0.002014 | 0.002419
f::z 0.010718 | 0.013196 | 0.016145 | 0.018698 | 0.010829 | 0.013360 | 0.016351 | 0.01895 | 0.010971 | 0.013855 | 0.016506 | 0.019128
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Figure 1: Mean Squared Error of estimator(s) at varying values of k and .

Tables 1 represents the comparison of mean squared error of the different class of proposed estimator
and Kumar et al. [12] estimator for different values of ‘&’ and 7 in simple random sampling. From Table
1] Whein theAvahie ofAk in(ireas?s fr(im 2 :co 5, the mean squared error of T(5), Ty, T{5), T@), T(Z)’ Te),
Tig)> Tioy 75 L1 tays By By G Loz
T(*;; first increases for k = 2 to k = 4 and then decreases when k = 5. Also, for the value of m when it

also increases but the mean squared error of T™*, T(*B and

tends to increase, the mean squared error of each estimator also rises but the mean squared error of the

proposed estimator T** first increases and then decreases.

It is also illustrated from Table 1 that the mean squared error of proposed class of estimators i.e. 7%,
T, 155 T T 1250 T 150 5 T Ty

et al. [12] estimator i.e. (T*%

t**, fg), fgg), f;g), 5;;), Eg‘;) is loYvest among Kumar
). In the end, we obtain that the proposed estimator 7** is more efficient

than the other classes of proposed estimators and Kumar et al. [12] estimator.

To show the results of Table 1 graphically, we have considered the MSE values of estimators T+, £,

f”(";.‘) and T** as other estimators are the special cases of these estimators.

6.2. Natural Population Based on Census 2011 Literacy rates in India

The dataset is based on Census 2011 literacy rates in India. The data is of NV = 35 Indian states and

union territories then a random sample is drawn from the population i.e., n = 10. The literacy rate is
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spread across the major parameters-Overall, Rural and Urban. Let y, 1 and x5 denotes the number of
literates (people) in 2001, 2011, and the total literacy rate (2001), respectively. The results are shown in
Table 2 and Figure 2 for different probability levels of sensitive variables, i.e. 7 = 0.2,0.4,0.6,0.8,1 and

different non-response rates i.e., k = 2,3,4,5 are used.
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Table 2: Mean Squared Error of estimator(s) at varying values of k and 7

m=0.2 m™=0.6 m=1
Estimator(s) k
2 3 4 5 2 3 4 5 2 3 4 5
T 0.1794 | 0.4487 | 0.2654 | 0.3303 | 4.4336 | 4.8277 | 4.7926 | 4.9698 | 12.8400 | 13.3691 | 15.0179 | 15.8489
T(*f; 1.0252 | 1.3336 | 1.2603 | 1.3832 | 5.1079 | 5.5157 | 5.5799 | 5.8036 | 13.3445 | 13.9060 | 15.4262 | 16.2332
T(*Q*) 0.1794 | 0.9776 | 1.0434 | 1.1743 | 4.8133 | 5.1612 | 5.3659 | 5.6025 | 12.9784 | 13.5788 | 15.1027 | 15.8903
T(E*) 0.6181 | 0.8551 | 0.8396 | 0.9521 | 4.6492 | 5.0124 | 5.1250 | 5.6025 | 12.8137 | 13.3439 | 14.7987 | 15.5692
T(T) 0.7675 | 0.9777 | 1.0435 | 1.1745 | 4.8134 | 5.1614 | 5.3660 | 5.3439 | 12.9785 | 13.5789 | 15.1028 | 15.8901
T(?S 0.7671 | 0.9772 | 1.0432 | 1.1742 | 4.8132 | 5.1611 | 5.3658 | 5.6026 | 12.9784 | 13.5787 | 15.1026 | 15.8908
T(’%”S 0.7673 | 0.9778 | 1.0436 | 1.1746 | 4.8180 | 5.1666 | 5.3717 | 5.6024 | 13.0121 | 13.6157 | 15.1484 | 15.9409
T(*?*) 0.7871 | 0.9937 | 1.1393 | 1.3128 | 4.8572 | 5.2123 | 5.5530 | 5.6089 | 13.0610 | 13.7971 | 15.5360 | 16.4647
TE‘S*) 0.9834 | 1.3160 | 1.2389 | 1.3678 | 5.0188 | 5.4608 | 5.5145 | 5.8563 | 13.2184 | 13.7438 | 15.2154 | 15.9993
T(*g*) 0.7869 | 0.9935 | 1.1390 | 1.3124 | 4.8524 | 5.2068 | 5.5468 | 5.7470 | 13.0270 | 13.7592 | 15.4879 | 16.4108
T(*lz) 0.9832 | 1.3157 | 1.2386 | 1.3674 | 5.0137 | 5.4548 | 5.5083 | 5.8493 | 13.1836 | 13.7062 | 15.1693 | 15.9483
A 0.2193 | 0.4884 | 0.3028 | 0.3669 | 4.4806 | 4.8744 | 4.8368 | 5.7403 | 12.8944 | 13.4252 | 15.0774 | 15.9102
1?’{1*) 1.0279 | 1.3360 | 1.2624 | 1.3852 | 5.1124 | 5.5199 | 5.5835 | 5.0133 | 13.3513 | 13.9135 | 15.4347 | 16.2423
fg) 3.3100 | 3.5879 | 3.4996 | 3.6169 | 7.6877 | 8.1015 | 8.1671 | 5.8070 | 16.2097 | 16.9030 | 18.6695 | 19.6090
fz‘é‘) 3.8352 | 4.1124 | 4.0195 | 4.1376 | 8.2723 | 8.6928 | 8.7572 | 8.4026 | 16.8523 | 17.5721 | 19.3903 | 20.3578
fa‘) 3.3100 | 3.5879 | 3.4996 | 3.6169 | 7.6877 | 8.1015 | 8.1671 | 8.9969 | 16.2097 | 16.9030 | 18.6695 | 19.6090
f;f* 0.7673 | 0.9778 | 1.0436 | 1.1746 | 4.8180 | 5.1666 | 5.3717 | 8.4026 | 13.0121 | 13.6170 | 15.1484 | 15.9409
T, 92.3390 | 94.7140 | 96.0640 | 97.6450 | 41.0250 | 42.2470 | 43.1120 | 43.9760 | 27.6433 | 28.4353 | 29.8919 | 30.7958
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Figure 2: Mean Squared Error of estimator(s) at varying values of k and .

Tables 2 represents the comparison of mean squared error of the proposed class of estimator over Kumar
et al. [12] estimator for different values of ‘k’ and 7 in simple random sampling by using dataset which
is based on Census 2011 literacy rates in India. It is envisaged from Table 2 that for increase in the
value of 7 from 0.2 to 1, the mean squared error of the proposed class of estimator increases whereas the

mean squared error of Kumar et al. [12] estimator decreases. So, it is evident that the mean squared

Pk ek Jkk ks ukk kk 1k %

error of proposed class of estimator i.e. T**, T(*B, T(Q) T(3), T(4), T(*5), T(G), T(*7)7 (*;5, T(g), T(*l"b), **,

f”("l*), fz‘;), fz‘g), tA’("Z), ff;) is lowest among the Kumar et al. [12] estimator i.e. (fjs*z). Overall, the proposed
estimator 7 performs well as compared to the other classes of proposed estimators and Kumar et al.

[12] estimator.

To show the results of Table 2 graphically, we have considered the MSE values of estimators T o

AZ‘;‘) and T;‘S*Z as other estimators are the special cases of these estimators.

7. CONCLUSION

In conclusion, paper has addressed the challenging task of estimating the population mean of a sensitive
variable under non-response and measurement error using ORRT models in SRSWOR. The efficiency
of the proposed class of estimator are evaluated up to the first order of approximation in comparison
to Kumar et al. [12] estimator and the conditions are also determined. Through the simulation study

for both hypothetical and real population, the effectiveness and performance of the proposed class of
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estimator is evaluated and found that the proposed estimator T+ and different classes of proposed

estimator ie. T3, 15y 765, T3, T35 T T T Ty Ty 7 603y £5)0 85y 13y £75) obtain the

lowest mean squared error among the Kumar et al. [12] (T7) estimator. As a result, we favour the use

of proposed class of estimator for future studies by the researchers in practice.
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