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ABSTRACT 

Using convenient stratification criteria such as geographical regions or other natural conditions like age, gender, etc., is not 

beneficial in order to maximize the precision of the estimates of variables of interest. Thus, one has to look for an efficient 
stratification design to divide the whole population into homogeneous strata that achieves higher precision in the estimation. In this 

paper the problem of optimum stratification on an auxiliary variable '' X  for Neyman allocation under ranked set sampling has 

been considered, when the form of the regression of the estimation variable ''Y  on the auxiliary variable '' X  given the variance 

function ( )xyV |  are known. A 3
2 )(cum xK

 
rule of finding approximately optimum strata boundaries has been 

proposed. Further, empirical study has been made and presented along with relative efficiency. 
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RESUMEN 

No es beneficioso usar criterios de estratificación convenientes, como regiones geográficas u otras condiciones naturales como edad, 

género, etc., para maximizar la precisión de las estimaciones de interés. Por lo tanto, se debe buscar un diseño de estratificación 

eficiente para dividir a toda la población en estratos homogéneos, que logre una mayor precisión en la estimación. En este trabajo se 
ha abordado el problema de la estratificación óptima usando  una variable auxiliar para la asignación de Neyman bajo un muestreo 

estratificado, considerando, que se conoce la forma de la regresión entre la variable de estimación y la variable auxiliar, dada la 

función de varianza. Se ha propuesto una regla para encontrar límites de estratos aproximadamente óptimos. Además, se ha realizado 
y presentado un estudio empírico junto con una eficiencia relativa. Se hace una comparación para bajo varias distribuciones. 

También se considera el uso de Programación dinámica. 

 
PALABRAS CLAVE: Muestreo  conjuntos clasificados, aproximación de límites de estratos óptimos, variable auxiliar, amplitud de 

estratos óptimos. 

 

1. INTRODUCTION 

 

When planning a survey sampling samplers focus primarily on the methods of sample selection  and in teh 

reduction of sampling errors. The precision of an estimator of a population parameter depends on the 

heterogeneity of the units as well as in fixing  the sample size and sampling fraction. Stratified sampling method 

plays a significant role for  enhancing the precision of the estimator.  For achieving a greater precision of the 

estimate to decrease the heterogeneity of the population units stratifying  is  a popular approach. Commonly, 

stratification is made considering administrative grouping, geographic regions etc., as well as on the basis of 

auxiliary characters.  The main objective of stratification is to dealt with enhancing precision of an estimator and 

the construction of strata, the number of strata, the  allocation of sample size to strata and stratification 

variable(s) should be considered when possible for increasing efficiencies. 

Recent contributions on  the detection of Optimal Boundaries of Strata (OBS) are Gupta and Ahamed (2021) 

who used  a model-based allocation under a super population model. 

McIntyre (1952) introduced the concept of RSS. Rather et al. (2021, 2022, 2023) considered situation of 

optimum stratification for different allocation under RSS. Samawi (1996) introduced concept of Stratified 

Ranked Set Sample (SRSS) We  can think of a SRSS scheme as a collection of L separate Ranked Set Samples.  
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Let the population under consideration be divided into L strata and a sample )(0 hhh nRn =  units is selected 

from 
thh  stratum is drawn using RSS, where hR  is the number of cycles and hn

 
is sample size of each cycle. 

Each sample element is measured with respect to some variable Y, and estimator of the population mean is given 

by   
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where hW  is the weight of the 
thh  stratum and )(rijy

 
is the sample mean based on hn0  units drawn from the 

thh  stratum.  

If the finite correction is ignored, the variance of the estimate will be 
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denotes the variance of 
thr  order statistics in 

thh  stratum of the random sample of size hn . 

For a given method of allocation, the variance is clearly a function of the strata boundaries. In most of these 

investigations related to optimum stratification, both the estimation and stratification variables are taken to be the 

same. Since the distribution of the estimation variable ''Y  is rarely known in practice, it is desirable to stratify 

on the basis of some suitably chosen concomitant variable '' X . An investigation in this direction has been made 

by Taga (1967) who has considered the general problem of optimum stratification based on auxiliary variables 

for the case of proportional allocation. We consider the problem of optimum stratification on the auxiliary 

variable '' X , assuming knowledge about the form of the regression of ''Y  on '' X  and the variance function 

( )xyV | , minimal equations giving optimum strata boundaries have been obtained for proportional allocations 

under ranked set sampling. Since these equations cannot be solved easily, various methods of finding 

approximations to the exact solutions have been given.  

In this paper, the problem of construction of strata boundaries will be dealt using classical approach when the 

sample is selected from the strata using RSS. 

We consider the fact that different stratification problems have been  modeled using Mathematical 

Programming (MP) tools, as Allende-Alonso and  Bouza-Herrera (1987) who derived optimization 

criteria for multivariate strata construction, .Bouza, et al.  (2013, 2018). Brito et al. (2022) prepondering 

heuristic methods, . The OBS has been formulated as a Nonlinear Programming Problem (NLPP) in different 

papers. Lone et al.(2017) used a  Branch and Bound Method foe solving it. The problem of determining the OSB 

can be also considered as the problem of determining Optimum Strata Width (OSW).  Popularly MPP is  solved 

by using a convenient tool of the  Dynamic Programming (DP) or GD toolbox. We develop a MPP model for 

determining OBSS under the use of stratified RSS.  

We will illustrate its  behavior when dealing with RSS considering that the distribution of the auxiliary variable. 

the empirical studies developed  sustain that increasing the   number of strata increase the precision. 

2. MINIMAL EQUATIONS UNDER NEYMAN ALLOCATION 

 

Optimum stratification looks for constructing strata in such a way that is obtained  the  minimum variance of the 

estimator. The main objective of this set of techniques stratification determining a  better cross-section of the 

population gaining in relative precision with respect to Simple Random Sampling (SRS) . The problem of 

determining optimum strata boundaries (OSB) is the result presented in h seminal paper of  Dalenius (1950). Using 

MPP fo OSB is gaining in attention. See for example  the series of papers of Khan et al. (2009)  
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If the regression of the estimation variable ''Y  on the stratification variable '' X , in the infinite super population 

is given by 

  excy += )(                                                                                                       (2.1) 

Where )'(' xc
 
is a function of auxiliary variable, ''e  is the error term such that 0)|( =xeE  and 

0)()|( = xxeV  ),( bax  with − )( ab . Let ),( yxf  and )(xf  be the joint density function 

and marginal density function of ),( yx  and x respectively. Then, we have      
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where ( )hh xx ,1−  are lower and upper boundaries of the 
thh  stratum with ( )ax =0  and ( )bxL = , h  is the 

expected value of )(x  and 
2

hc  is the variance of )(xc  in the 
thh  stratum.  

Using these relations, the variance expression are reduced to  
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Let  hx denote the set of optimum points of stratification on the range ),( ba , for which the ( )
SRSS

yV  is 

minimum. These points  hx  are the solutions of the minimal equations which are obtained by equating to zero 

the partial derivatives of ( )
SRSS

yV
 
with respect to  hx . We shall now obtain these minimal equations for 

proportional allocations. The minimization of this variance is equivalent to the minimization of the expression 
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On equating to zero the partial derivative of this expression with respect to  hx , we get 
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These equations are implicit functions of the strata boundaries  hx  and their exact solutions are somewhat 

difficult to find. Therefore, we proceed to find the method of solving these minimal equations by conducting 

approximations. However, we shall first obtain certain approximate expressions for the conditional mean and 

variance which will be necessary to obtain approximate solutions.  

 

3. APPROXIMATE EXPRESSIONS FOR CONDITIONAL MEAN AND VARIANCE  

Let the functions ( )xf i , ( )xc  and ( )x  are bounded away from zero and possess first two derivatives 

continuous ),( bax . Then, we have the following identities due to Ekman (1959). 
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)( ikO  is the higher order terms with power i
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Let ),( xy  denote the conditional expectation of function )(t in the interval ),( xy , so that   
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we have from the definition of ),( xy  
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Using the Taylor Series expansions for ),( xyI i  and ),( yxI i  from (3.2) and simplifying the result at point 

yt = , we have 
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Proceeding in the same fashion using Taylor series expansions about the point '' x , the expression for ),( xy  

is obtained as  
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Let ),(2 xy  denotes the conditional variance of the function )(t
 
in the interval ),( xy , we have 
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Using the above results, several other approximations can be obtained. Multiplying the series expansions for 

),( xy  
about the points yt =  , xt =  and taking the square root, we obtain 
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Similarly expanding  )(tf i about the point t=y, we have 
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4. APPROXIMATE SOLUTIONS OF THE MINIMAL EQUATIONS 

To find approximate solutions to the minimal equation (2.4), we shall obtain the series expansions of system of 

equations about the point  hx , the common boundary of 
thh  and ( )thh 1+ strata. The expansions for the two 

sides of the equation (2.4) are obtained by using various results proved in the preceding section. For the 

expansion of the right hand side about the point hx , ( )xy,  is replaced by ( )hh xx ,1−  while for the left hand 

side we replace ( )xy,  by ( )hh xx ,1− .  

We consider the left-hand side of (2.4), we have 
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From the above results and using (3.6), we obtain 
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Using the above relations, we obtain on simplification  
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Where 
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Similarly from right hand side of (2.4), we obtain 
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Therefore the right hand side of the minimal equation (2.4) can be put as  
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Similarly the expansion of the left hand side of the equation (2.4) can be obtained. The expansion is given by 

 

( ) 















+















+

+












 +
+=

+

+++−
)(

'4

9632

'4
12

)()( 4

2

3

22'3

2

2

22'

)(
2

2

)(

2

h

h

h

h

rh

hhrhhhc
kO

fcf

dx

d

f

k
k

c

h

xxc

















 

Whereas before the functions f , , c and derivatives are again evaluated at hx . 

The equations (2.7), after cancelling 2  on both sides and multiplying the two sides by )( hxf , can be put as 

















+















+

+















+

= )(
'4

3

'4

16

4

2

3

22'

2

3

22'2

h

h

hh kO
fcf

dx

dkfcfk









 

















+















+

+















+

= )(
'4

3

'4

16

4

2

3

22'

2

3

22'2

i

h

ii kO
fcf

dx

dkfcfk









                                                            (4.5) 

As can be easily seen, this equation can be written as  
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Where Lhhi ,...,2,1,1 =+=  
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In case it is possible to find a function ( )hh xxQ ,11 −  such that
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( ) )(1, 2

11 ihh kOxxQ += −                                                                                                                               (4.9) 

the above results can be put in the form of theorem as follows. 

Theorem : If the regression of the estimation variable ''Y  on the stratification variable '' X , in the infinite 

super population is given by excy += )( , where )'(' xc
 
is a function of auxiliary variable, ''e  is the error 

term such that 0)|( =xeE  and 0)()|( = xxeV  ),( bax  with − )( ab , and further if the 

function )(1 xg )(xf i   : then the system of equations (2.4) given strata boundaries ( )hx  which correspond 

to the minimum of 𝑉(�̅�𝑠𝑡)N can be written as  
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Neglecting the terms of order ( ) ( )( )3, hba kSupO  can be neglected; these equations can be replaced by the 

approximate system of equations  


−

h

h

x

x

ih dttftgk

1

)()(1

2
= constant 

Or equivalently by  

( )hh xxQ ,11 − = constant   ,   ( )1−−= hhh xxk  
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, Lhhi ,...,2,1,1 =+=  

The similar results can also be obtained by minimizing the function  
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Thus we find that if the function ( )xftg i)(1  belongs to  , the minimum value of 
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
+
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L
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hrhhW
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)(   

and therefore  
NSTRSSYnV )( , exists and the solutions of the system of equations (2.4) or equivalently of (4.7). 

These equations as such are very difficult to solve and therefore it is essential to find some way out of this 

difficulty. It is done by replacing these systems of equations by other systems of equations which are 

comparatively easier to solve but are only asymptotically equivalent to the exact minimal equations. The error 

factor is introduced because we neglect the terms of higher powers of strata widths which is of course justifiable 

if the number of strata is large. We have obtained these systems of equations after neglecting the terms of order 

( ) ( )( ) ( )44

, mOkSupO hba =  where ( )( )hba kSupm ,= , on both sides of the equation (4.7). If the number of 

strata is large and therefore terms of order ( )4mO  are quite small, the error involved in the approximate systems 

of equations is expected to be quite small and the set of points ( )hx  obtained from them shall be quite near the 

optimum values. 

Now we proceed to develop the approximate systems of equations given in (4.8) and (4.9). Here, in finding 

various forms of the function ( )hh xxQ ,11 − , we shall keep in mind that the function ( )hh xxQ ,11 −  is such that  

( ) )(1,)()( 2

111
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ih kOxxQdttftgk
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+= −
−  

If in (2.4) we retain only the first term on both sides of the equation and neglect the others, the two sides are 

equalized if 

hk = constant,  h
L

ab







 −
   ,   for   Lh ,...,2,1=                                                                        (4.10) 

and therefore h
L

ab
axh 







 −
+=  , with ( )ax =0  

and ( )bxL =  

This set of solutions cannot be expected to yield very good results as we have neglected terms of order ( )3mO  

on both sides of the exact minimal equations. This solution holds for all ( ) ( )xftg i1  provided they belong to Ω 

and all density functions with finite range. Due to its universality of application it can be recommended in case of 

less information about ( )tg1   and ( )xfi . Apart from this, it gives the strata boundaries at once without any 

difficulty that may arise even in solving the approximate systems of equations. This approximate method fails if 
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the range of '' x  is infinite, but one can resort to truncation of the density function to any suitable probability 

level before using this approximation. 

We obtain next approximate systems of equations; the optimum points of stratification are such that   

11
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1

)()( cdttftgk
h

h

x

x

ih =
−

 ,     Lh ,...,2,1=                                                                 (4.11) 

The solutions obtained from this approximation are expected to be quite close to the optimum points as only 

terms of ( )4mO  have been neglected. All the approximate systems that will now follow also give the points of 

stratification to the same degree of accuracy. 

From (3.9) and equation (4.11) is obtained the following class of approximate equations. The approximations to 

optimum ( )hx  are obtained from 
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For  = 1/2 and 1/3 we have  
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For  =1/3, we have the system of equation as  
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In all these systems of equations, sc'  are constants to be determined and in some cases, the few equations may 

be meaningless such as for 1=h ,  i,e
 

01 =−hx . 

If the dttftgxK i )()()( 12 =  is bounded and its first two derivative exists ],[ bax , then for given value 

of L taking equal intervals on the 3
2 )(xKcum  rule will give AOSB. 

5.  A MATHEMATICAL PROGRAMMING APPROACH 

 
The problem of determining the optimum strata boundaries, has been  formulated in the framework of  

mathematical programming problem (MPP). It is well-known that with some mild modifications the 

corresponding  MPP may be converted into a multistage decision problem and  dynamic programming 

techniques provide solution to it.  This approach is being used in applications, see  Mostafa et al. ( 2008). 

Computing  the solutions , using DP models for the optimization problems, are solved using R or Python tools. 

See Reddy and Khan [12] who implemented the solutions of the MPP via a R package. We used as a basis 
Package ‘dynprog’  and  Scientific Python,  Using SciPy for Optimization and Hands-On Linear Programming: 

Optimization With Python. 

Optimum stratification is the method of choosing the best boundaries that make strata internally homogeneous, 

given some sample allocation. In order to make the strata internally homogenous, the strata should be constructed 

in such a way that the strata variances for the characteristic under study be as small as possible. This could be 

achieved effectively by having the distribution of the main study variable known and create strata by cutting the 

range of the distribution at suitable points. If the frequency distribution of the study variable is unknown, it may 

be approximated from the past experience or some prior knowledge obtained at a recent study.  

Solving the  OSB problem is equivalent to determining Optimum Strata Widths (OSW). The  MPP under 

Neyman allocation uses as constraint that that sum of the widths of the strata equals the  total range of the 

distribution. Within this framework we consider  

𝑑ℎ = 𝑦ℎ − 𝑦ℎ−1 

https://realpython.com/python-scipy-cluster-optimize/
https://realpython.com/linear-programming-python/
https://realpython.com/linear-programming-python/
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as strata widths and determining the strata boundaries is looking for dividing the range 𝑦𝐿 − 𝑦0 = 𝑑 determining 

adequate intermediate points 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝐿−1.  Let us assume that the probability density function, fdp,  f(y) 

is integrable by parts, being a piece-wise continuous linear or non-linear functions  

𝑓(𝑦) = {

𝛾1(𝑦) 𝑖𝑓 𝑦 ∈ [𝑎0, 𝑎1]

 𝛾2(𝑦) 𝑖𝑓 𝑦 ∈ ]𝑎1, 𝑎2]
⋮

𝛾𝑛(𝑦) 𝑖𝑓 𝑦 ∈ ]𝑎𝑛−1, 𝑎𝑛]

 

Note that min(𝑦) = 𝑦0 = 𝑎0 ;  max(𝑦) = 𝑦𝐿 = 𝑎𝑛.  Considering that the i-th fdp  determines Li strata and 

 𝑑ℎ = 𝑦ℎ − 𝑦ℎ−1  𝑡ℎ𝑒𝑛 𝐿 = ∑ 𝐿𝑖
𝑛
𝑖=1  𝑎𝑛𝑑  𝑑 = ∑ 𝑑ℎ

𝐿
ℎ=1  

Each stratification point may be represented by 

𝑦𝑘 = 𝑦𝑘−1 + 𝑑ℎ 

Take  

𝜙ℎ(𝑦ℎ , 𝑦ℎ−1) = 𝑤ℎ𝑉𝑎𝑟(�̅�ℎ(𝑟)) 

The optimization problem to be solved by using DP is 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {∑ 𝜙ℎ(𝑑ℎ, 𝑦ℎ−1)|

𝐿

ℎ=1

∑ 𝑑ℎ

𝐿

ℎ=1

= 𝑑; ∀ℎ = 1, . . , 𝐿;  𝑑ℎ ≥ 0} 

As y0 is known 𝜙1(𝑑1, 𝑦0) is only function of d1.  

Hence, the MPP to be solved is  a multistage decision one and,  at each stage the value of the OSW , and so of 

the  OSB, for a stratum is calculated using a Dynamic Programming technique with a forward recursive equation. 

In the numerical studies will be considered continuous fdp`s. 

 

6. EMPIRICAL STUDY: 

Comparisons of methods of obtaining approximate optimum strata boundaries (AOSB) have been developed for 

various allocation procedure viz. optimum with unstratified RSS has been done empirically. For this purpose the 

definite integrals involved in calculations have been solved using Mathematica software in order to obtain 

approximate optimum boundaries. Thereafter calculation of variance and ultimately percent relative efficiencies 

have been obtained for various values of number of strata i.e, L=2,3,4,5,6 through softwares. 

With the purpose of illustrating the usefulness of the approximate solutions to the minimal equations giving 

optimum points of stratification an empirical study was developed.  The effectiveness of the methods of finding 

approximation to the optimum points of stratification was evaluated. We have considered the system of minimal 

equations, obtained for the case of optimum, and the MPP approach based on DP. In this illustration we shall 

consider approximation intervals and the system of approximations given in approximate system of equations. 

We used the following distributions viz, uniform, right triangular, exponential and standard normal.  For the 

proposed methods the Relative Efficiency in percent (%RE) of them were computed. 

For clarity, the linear regression line of ''Y on '' X of the form exy ++=  , assuming the value of

5.0= . For the conditional variance function, it is assumed to have two different forms like the first form 

could be a constant and the second could be function of auxiliary variable. i,e.  =)(x  and xx  =)( , 

where   and   are constants. 

For the empirical studies under Neyman allocation let us assume small values of 0214.0=  , 00437.0= , 

such that there may be very small  effect of these constants over the estimation. 

If the stratification variable follows the uniform distribution with pdf 
ab

xf
−

=
1

)(  , ]2,1[x , utilizing the 

3
2 )(xKcum

 
rule, we get the stratification points as given in Table 1. 

Table 1: AOSB and Variance when the auxiliary variable is uniformly distributed 

 =)(x  
    

L AOSB 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑜𝑝𝑡) %R.E 
𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E  𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E  

2 1.5000 0.74968 102.821 0.67838 
113.668 

0.67848 
113.521 
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3 1.3299, 1.6599 0.74607 103.319 0.64129 
119.619 

0.64329 
119.263 

4 1.2499, 1.4999, 1.7500 0.74470 103.509 0.63893 
120.606 

0.638903 
124.380 

5 1.1972, 1.3945, 1.5933, 1.8027 0.74406 103.599 0. 63337 
121.631 

0. 63335 
121.638 

6 
1.1650, 1.3300, 1.4950, 
1.6600,1.8250 

0.74371 103.647 0.62945 
122.438 

0.62925 
122.476 

Table 1 depicts the AOSB for different values of the number of strata L, when the stratification variable X 

follows uniform distribution. Also, Table 1 shows the percent relative efficiency of optimum stratification for 

single stratification variable as compared to unstratified RSS having variance 0.77083. It reveals that the percent 

relative efficiency ranges from 102.821-103.647 for L=2,3,4,5,6. The use of MPP moved within the interval 

113.668-122-438, when an R-code is used and in 113.521-122.476 if Phyton algorithm was used. As expected, 

the gain in efficiency is much more satisfactory as compared to unstratified. MPP provides better AOSB´s and 

they do not differ significatively between them. From the above table, it is obvious that the relative efficiency has 

an increasing trend with respect to increase in number of strata. 

If the stratification variable follows the Right triangular distribution with pdf 
( )2

)2(2
)(

ab

x
xf

−

−
=  using 1=a

and 2=b  , utilizing the 3
2 )(xKcum

 
rule, we get the stratification points as given in Table 2. 

Table 2: AOSB and Variance when the auxiliary variable is Right-triangular distributed 

 =)(x  
  

L AOSB (𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑜𝑝𝑡) %R.E 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 1.4179 0.66702 115.563 0.66806 
115.439 

0.68006 
113.393 

3 1.2648, 1.5674 0.66408 116.075 0.65870 
117.021 

0.69 870 
111.537 

4 1.1973, 1.4142, 1.6574 0.66304 116.258 0.60182 
128.465 

0.60912 
100.268 

5 1.1573, 1.3224, 1.5103, 1.7188 0.66254 116.345 0.60006 
128.472 

0.60 006 
128.472 

6 
1.1220, 1.2516, 1.3911, 1.5443, 

1.7253 
0.66224 116.397 0.60070 

128.424 
0.600681. 

128.222 

Table 2 reveals that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Right- triangular distribution. Also Table 2 displays the percent relative efficiency of optimum 

stratification for single stratification variable as compared to unstratified RSS having variance 0.68056. It depicts 

that the percent relative efficiency varies from 115.563-116.397 for L=2,3,4,5,6. The use of MPP provided 

%RE´s in 1135.439-128.424, when an R-code is used and in 113.39-128.22 if Phyton algorithm was used. Note 

that the gain in efficiency is satisfactory larger, when the methods are compared with unstratified. From the 

above table, it is obvious that the relative efficiency has an increasing trend with respect to increase in number of 

strata. 

If the stratification variable follows the exponential distribution with pdf 
1)( +−= xexf  ]5,1[x , utilizing the 

3
2 )(xKcum

 
rule, we get the stratification points as given in Table 3. 

Table 3: AOSB and Variance when the auxiliary variable is exponentially distributed 

 =)(x  
    

L AOSB 
 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑜𝑝𝑡) 
%R.E 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 2.2562 0.98779 114.65 0.42614 
252.65 

0.42925 
250.93 

3 1.6329, 3.5718 0.95144 119.03 0.42746 
254.91 

0.42941 
253.71 
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4 2.3676, 3.0136, 3.8711 0.93050 121.71 0.42747 
265.05 

0.42970 
263.28 

5 
1.4904, 2.0771, 2.7868, 
3.7301w 

0.90027 125.79 0.42850 
264.51 

0.43054 
263.58 

6 
1.4071, 1.8624, 2.5062, 

3.1199, 3.8408 
0.89740 126.19 0.42851 

264.98 
0.43129 

263.21 

Table 3 presents that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Exponential distribution. Also Table 3 displays the percent relative efficiency of optimum stratification 

for single stratification variable as compared to unstratified RSS having variance 1.13251. It depicts that the 

percent relative efficiency ranges from 114.65-126.19 for L=2,3,4,5,6. MPP stratification produced %RE`s which  

moved within the interval 252.657.264.98, when an R-code is used and in 250.93-263.21 if Phyton algorithm was 

used. The gain in efficiency due to the use of MPP very large when compared with the other models. From the 

above table, it is obvious that the relative efficiency has an increasing trend with respect to increase in number of 

strata. 

Let us suppose that the auxiliary variable X follows Standard normal distribution with pdf as  

2

2

2

1
)(

x

exf
−

=
                       

− x  

In order to obtain the OSB when the variable is Standard normal distributed, using the proposed 3
2 )(xKcum  

rule the distribution is truncated at ]1,0[x . By solving it in Mathematica software we get the stratification 

points as below: 

Table 4: AOSB and Variance when the auxiliary variable is Standard normally distributed 

 =)(x  
    

L AOSB 
 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑜𝑝𝑡) 
%R.E 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 0.5528 0.02553 380.571 0.02236 
434.588 

0.02409 
423.000 

3 0.4685, 0.7255 0.02459 395.156 0.02213 
433.010 

0.02429 
395.337 

4 0.3398, 0.5705, 0.7720 0.02425 400.780 0.02209 
439.198 

0.02343 
414.079 

5 0.2981, 0.4929, 0.6676, 0.8350 0.02403 404.383 0.02116 
4599.104 

0.02116 
4599.104 

6 
0.2636, 0.4316, 0.5836, 

0.7251, 0.8584 
0.02391 406.317 0.021080 

460.861 
0.021082 

460.861 

Table 4 reveals that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Standard normal distribution. Also Table 4 displays the percent relative efficiency of optimum 

stratification for single stratification variable as compared to unstratified RSS having variance 0.09717. It depicts 

that the percent relative efficiency ranges from 380.571-406.317 for L=2,3,4,5,6. In this case the MPP overcome 

significatively the gain in efficiency due to the proposed OBS procedure. From the above table, it is obvious that 

the relative efficiency has an increasing trend with respect to increase in number of strata. 

If the stratification variable follows the uniform distribution with pdf 
ab

xf
−

=
1

)(  , ]2,1[x , utilizing the 

3
2 )(xKcum

 
rule, we get the stratification points as given in Table 5. 

Table 5: AOSB and Variance when the auxiliary variable is uniformly distributed 

xx  =)(  
    

L AOSB ( ) 
optSRSS

yVn  %R.E 
(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 1.4798 0.74996 102.783 0.6881 
111.938 

0.6599 
120.261 

3 1.3241, 1.6504 0.74606 103.321 0.6760 
114.011 

0.6353 
121.371 
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4 1.2391, 1.4891, 1.7411 0.74469 103.511 0.65732 
117.205 

0.6316 
121.300 

5 1.1914, 1.3707, 1.5902, 1.7970 0.74405 103.599 0.61904 
124.520 

0.61728 
124.866 

6 
1.1589, 1.3167, 2.2109, 1.6470, 
1.8196 

0.74399 103.609 0.60542 
127.312 

0.60549 
127.312 

Table 5 depicts the AOSB for different values of the number of strata L, when the stratification variable X 

follows uniform distribution. Also Table 5 shows the percent relative efficiency of optimum stratification for 

single stratification variable as compared to unstratified RSS having variance 0.77083. It reveals that the percent 

relative efficiency ranges from 102.783-103.609 for L=2,3,4,5,6. The MPP produces OBS that are more efficient 

than the use of the use of the usual  approximation . The computation of the DP solutions provided by R-code 

(111.938-127.312 )behaves worse than the Phyton´s results (120.261-127.312). Note that   

𝑛(V(y̅SRSS)MPP−Ph) is less variable than nV(y̅SRSS)MPP−R.  

If the stratification variable follows the Right triangular distribution with pdf 
( )2

)2(2
)(

ab

x
xf

−

−
=  using 1=a

and 2=b  , utilizing the 3
2 )(xKcum

 
rule, we get the stratification points as given in Table 6. 

Table 6: AOSB and Variance when the auxiliary variable is Right-triangular distributed 

xx  =)(  
    

L AOSB ( ) 
optSRSS

yVn  %R.E 
(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 1.4089 0.66703 115.562 0.66045 
116.826 

0.66886 
115.460 

3 1.2590, 1.5604 0.66387 116.113 0.66248 
116.356 

0.66208 
116.356 

4 1.1904, 1.4031, 1.6480 0.66308 116.251 0.65770 
117.201 

0.66256 
116,342 

5 1.1494, 1.3115, 1.4957, 1.7086 0.66276 116.306 0.65718 
117.308 

0.65219 
118.208 

6 
1.1236, 1.2538, 1.3938, 1.5504, 

1.7302 
0.66225 116.397 0.64882 

118,851 
0.64246 

120.087 

Table 6 reveals that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Right- triangular distribution. Also Table 6 displays the percent relative efficiency of optimum 

stratification for single stratification variable as compared to unstratified RSS having variance 0.68056. It depicts 

that the percent relative efficiency ranges from 115.562-116.397 for L=2,3,4,5,6. The gain in efficiency 

associated with the three  methods are very similar. 

If the stratification variable follows the exponential distribution with pdf 
1)( +−= xexf  ]5,1[x , utilizing the 

3
2 )(xKcum

 
rule, we get the stratification points as given in Table 7. 

Table 7: AOSB and Variance when the auxiliary variable is exponentially distributed 

xx  =)(  
    

L AOSB ( ) 
optSRSS

yVn  %R.E 
(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 2.3229 0.94775 119.494 0.86595 
130.914 

0.86437 
131.253 

3 1.8078, 2.9558 0.91677 123.533 0.86185 
131.322 

0.86442 
130.929 

4 1.5695, 2.3089, 3.3625 0.90532 125.095 0.81389 
139.083 

0.84455 
135.777 

5 1.4307, 1.9592, 2.6458, 3.5701 0.89994 125.843 0.80375 
140.884 

0.83439 
135.700 

6 
1.6345, 2.3289, 2.8298, 3.5498, 

4.2189 
0.90126 125.659 0.79463 

142.486 
0.80452 

140.824 

Table 7 presents that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Exponential distribution. Also Table 7 displays the percent relative efficiency of optimum stratification 

for single stratification variable as compared to unstratified RSS having variance 1.13251. It depicts that the 
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percent relative efficiency ranges from 119.494-125.843 for L=2,3,4,5, and for L=6 efficiency decreases. The 

gain in efficiency of MPP methods are more 10%-17%  larger than the obtained by the standard approach.  

Let us suppose that the auxiliary variable X follows Standard normal distribution with pdf as  

2

2

2

1
)(

x

exf
−

=
                       

− x  

In order to obtain the OSB when the variable is Standard normal distributed, using the proposed 3
2 )(xKcum  

rule the distribution is truncated at ]1,0[x . By solving it in Mathematica software we get the stratification 

points as below: 

Table 8: AOSB and Variance when the auxiliary variable is Standard normally distribute 

xx  =)(  

    

L AOSB ( ) 
optSRSS

yVn  %R.E 

(𝑛𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑅) %R.E 𝑛(𝑉(�̅�𝑆𝑅𝑆𝑆)𝑀𝑃𝑃−𝑃ℎ) %R.E 

2 0.5386 0.02570 378.108 0.02375 
427.309 

0.02516 
424.488 

3 0.3863, 0.6898 0.02480 391.755 0.02159 
449.277 

0.02456 
394.966 

4 0.3150, 0.5461, 0.7732 0.02444 397.619 0.02076 
468.692 

0.02335 
416.702 

5 0.2651, 0.4563, 0.6372, 0.8167 0.02422 401.206 0.01977 
494.861 

0.02258 
433.376 

6 
0.2328, 0.3956, 0.5476, 0.6975, 
0.8391 

0.02409 403.388 0.01851 
525.494 

0.02051 
474.228 

Table 8 reveals that the AOSB for different values of the number of strata L, when the stratification variable X 

follows Standard normal distribution. Also Table 8 displays the percent relative efficiency of optimum 

stratification for single stratification variable as compared to unstratified RSS having variance 0.09717. It depicts 

that the percent relative efficiency ranges from 378.108-403.388 for L=2,3,4,5,6. The R-solutions have gains in 

the interval 427.309-525.494 %and for Phyton soliton they are  in the interval 424.488-477.228% By perusal of 

tables 1, 2, 3 and 4 the distributions perform well for  =)(x . It is observed that the gain in efficiency is high 

in case of standard normal distribution and little more in case of uniform distribution. 

From tables 5, 6, 7 and 8, for xx  =)(  the distributions perform well. It is observed that the gain in efficiency 

is high in case of standard normal distribution and little more in case of Uniform distribution. 

 

7. CONCLUSION 

 

For obtaining the stratification points under RSS, we have assumed different distributions for the auxiliary 

variable used as stratification variable. The AOSB obtained for uniform, right triangular, exponential and 

standard normal distributions are presented in table 1-4 and table 5-8 for  =)(x  and xx  =)(
 

respectively. The right-triangular distribution shows highest % R.E for  =)(x
 
 and xx  =)( . The 

increase in the number of strata is directly proportional to the decrease in total variance. These figures show a 

considerable gain in efficiency of estimators when the proposed method of determining AOSB is used for all 𝐿 =

1,2, … ,6. Thus, the proposed method of 3
2 )(xKcum  shows an increase in gain % in precision while selecting 

samples using RSS. This method works on a single auxiliary variable but in reality, surveys involve multiple 

auxiliary variables.  

Note that: 

1. MPP approaches overcome the use of the standard procedure for determining AOSB. 

2. Always the gain in efficiency was much more satisfactory as compared to unstratified.  

3. The  relative efficiencies has an increasing trend with respect to increase in the number of strata. 
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Developing methods for multiple auxiliary variables as well as for other skewed distributions are possibilities for 

future work. 
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