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ABSTRACT 

The interaction of prey and predator species is a biological process with profound ecological implications that occurs all over the world. 

The dynamics of Prey-Predator is used for modelling competition in industry, finance and business etc. In this article, we employ a 

logistic Prey-Predator model to explain competition between the two retailers. While modelling such problem, collecting parameters 
and/or initial conditions may imprecise so, fuzzy theory gives more realistic depiction. We solve this nonlinear model taking initial 

condition fuzzy using Fuzzy Laplace transform technique and give closed form fuzzy solution. We also give the existence of fuzzy 

solution and condition for stability of the system. Lastly, a numerical illustration is solved and compared at core. 
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RESUMEN 

La interacción de las especies presa y depredadora es un proceso biológico con profundas implicaciones ecológicas que ocurre en 

todo el mundo. La dinámica Prey-Predator se utiliza para modelar la competencia en la industria, las finanzas y los negocios, etc. 
En este artículo, empleamos un modelo logístico Prey-Predator para explicar la competencia entre  dos distribuidores minoristas. Al 

modelar dicho problema, la recopilación de parámetros y/o condiciones iniciales puede ser imprecisa, por lo que la teoría difusa 

brinda una descripción más realista. Resolvemos este modelo no lineal tomando la condición inicial difusa usando la técnica de 
transformada difusa de Laplace y damos una solución difusa de forma cerrada. También damos la existencia de solución difusa y 

condición de estabilidad del sistema. Por último, se resuelve una ilustración numérica y se compara en el núcleo. 

 
PALABRAS CLAVE: modelo logístico presa-depredador, ecuaciones diferenciales no lineales, número borroso triangular, 

derivada de Hukuhara modificada, análisis de estabilidad, teorema de Taylor 
 

1. INTRODUCTION 

Prey-Predator model is used in modelling the real-life problems like ecological, finance, engineering etc. In this 

article, using the Prey-Predator model, we for the first time quantitatively simulate competition between two 

retailers in accordance with our study. The goal of this article is to use a logistic model to explain the 

competition between two retailers.  The following important interesting and significant questions are examined 

in this article: 

• How do the competitive system between two retailers eves over time under fuzzy initial condition? 

• What are the parameter conditions under which, this real-life model is stable? 

• Why this model is more appropriate in fuzzy environment than the crisp one?  

This section contains two subsections.  

• The development of Prey-Predator model. 

• Use of Prey-Predator model to formulate competition between two retailers. 

 

1.1. Development in the Prey-Predator Model 

The Prey-Predator model is useful for simulating physical problems in a variety of fields, including finance, 

biology, environmental studies, and engineering. The following is a basic overview of the Prey-Predator model. 
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When prey (𝑥) and predator (y) populations are not from the same domain, prey increases with growth rate 𝑎 in 

the absence of predator population, and predator population drops with decay rate 𝑐 in the absence of prey 

population. This phenomenon is mathematically expressed as follows, 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 ,

𝑑𝑦

𝑑𝑡
= −𝑐𝑦, 

 

(1) 

with the initial conditions, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0.  
The system in equation (1) is the simplest model that describes exponentially growth and decay of two species 

that contradicts the natural behaviour of any population.   

Now, when these two populations interact then the Lotka–Volterra model (1910) [5] is used. It is often known 

as the predator–prey equations, are a pair of first-order nonlinear differential equations that are frequently used 

to explain the dynamics of biological systems in which two species interact as predator and prey. The 

populations vary throughout time as a result of the following equations: 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 + 𝑑𝑥𝑦, 

 

(2) 

with the initial conditions, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0.  
Where, 𝑏 is the decay rate at which prey population decreases and 𝑑 is the growth rate at which predator has 

enough food.  

This is the classical model, where prey and predator behave periodically. This behaviour is also absurd. 

Because, population of any species must come to a saturation point after that population is neither increasing nor 

decreasing. So, taking care of this, the more appropriate behaviour of Prey Predator model is given in logistic 

form as follows, 

�̇�(𝑡) = 𝑎𝑥 (1 −
𝑥

𝑁1
) − 𝑏𝑥𝑦 

𝑦(𝑡) = −𝑐𝑦 (1 +
𝑦

𝑁2
) + 𝑑𝑥𝑦 

 

 

(3) 

with initial condition, 𝑥(0) = 𝑥0 &  𝑦(0) = 𝑦0.  

where, 𝑎 is the growth rate of prey population, 𝑏 is the decay rate of prey when it interacts with predator and 𝑁1 

is the carrying capacity of prey. Similarly, 𝑐, 𝑑 and 𝑁2 are decay rate, growth rate and carrying capacity of a 

predator respectively. 

Letetia et. al. (2017) [4], Nikolaiva, et. al. (2019) [6], W. Jirong et. al. (2020) [13], P. Mishra et.al (2020) [10], 

N. K Raid et.al (2018) [3], V. Laxmi (2020) [12] and Pandit et. al (2021) [7] have solved the Prey-Predator 

model using different approaches in crisp environment. Akin et. al. (2012) [1], Pandit et. al (2014) [8], Ahmed 

et. al (2009) [2], Pandit et. al. (2020) [9] and S. Tudu et. al. (2021) [11] have solved the Prey-Predator model in 

a fuzzy environment.  

The following section defines retail competition and provides a mathematical model based on it. 

 

1.2. Mathematical Model of Retail Competition under Fuzzy Environment 

The competition between two retailers is the purchase of comparable items from the same supplier at the lowest 

possible cost, with each retailer attracting an increasing number of customers for their products. 

In this article, we extend the model of retail competition using logistic prey-predator model in Yali Yang et.al. 

(2019) [14] under fuzzy environment. The description of model is given as follows. 

Let 𝑥 and 𝑦  be the similar kind of products of retailers 1 and 2 respectively. The parameters 𝑎 and 𝑐 denotes 

probability of scaling demand of retailer 1 and declined of retailer 2 respectively, 𝑏 and 𝑑 denotes the 

probability of loss in demand of retailer 1 and increasing demand of retailer 2 respectively when both retailers 

interact. 𝑁1 and 𝑁2 are carrying capacity (maximum number of products in certain time period). When we 

model such a problem, we can differ the number of products based on demand and other seasonal variations. So, 

the fuzzy set theory provides a more appropriate explanation for such problems. 

Thus, we model this problem in fuzzy environment, taking initial conditions i.e., number of products as fuzzy 

triangular number. Due to fuzzy initial conditions, the model is given as follows, 

�̇̃�(𝑡) = 𝑎�̃� (1 −
�̃�

𝑁1
) − 𝑏�̃��̃� 

 

 

(4) 
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�̇̃�(𝑡) = −𝑐�̃� (1 +
�̃�

𝑁2
) + 𝑑�̃��̃� 

with fuzzy initial conditions, �̃�(0) = �̃�0 &  �̃�(0) = �̃�0.  

where, �̃� and �̃�  are number the products for retailers 1 and 2 respectively. 

In this article, first we linearise the equation (4) around its equilibrium point using Taylor’s expansion. After that, 

we use Fuzzy Laplace Transform technique on equation (4) to obtain fuzzy solution in closed form. We also give the 

stability condition for equation (4). 

The next section explains the objective of research. 

This article contains 6 sections, introduction, basic concepts, main result, numerical illustration, result and 

discussion followed by conclusion.  

The next section contains some basic concepts, which is used in establishing the related results. 

 

2. FUZZY THEORY BASIC CONCEPTS 

Let 𝐸 = {�̃�: 𝑅 → [0 1] such that �̃�  satisfies  following  properties} 

• �̃� is normal.  

• �̃� is a fuzzy convex. 

• �̃� is upper semicontinuous. 

• supp (�̃�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = {𝑥 ∈ 𝑅/�̃�(𝑥) ≥ 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is compact. 

𝛼 − 𝑐𝑢𝑡 is an important tool to convert fuzzy number into the crisp one and it is defined for  0 < 𝛼 ≤ 1,
as �̃�𝛼 = { 𝑥 ∈ 𝑅/𝑢(𝑥)  ≥  𝛼}.  𝐸 be the collection of fuzzy numbers. 

A fuzzy number in parametric form, obtained by performing 𝛼 − 𝑐𝑢𝑡, is an ordered pair of the form 

�̃�𝛼 = [𝐴 , 𝐴], satisfying the following conditions: 

• A  is bounded left continuous increasing function in [0 1]. 

• A  is bounded right continuous decreasing function in  [0 1]. 

• A  ≤  A .     

The triangular fuzzy number is denoted as (𝑙, 𝑚, 𝑛), and its membership function �̃�(𝑥), is given as  

�̃�(𝑥) =

{
 
 

 
 
𝑥 − 𝑙

𝑚 − 𝑙
 , 𝑙 < 𝑥 ≤ 𝑚

𝑛 − 𝑥

𝑛 − 𝑚
 ,𝑚 < 𝑥 ≤ 𝑛

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and it’s 𝛼 − 𝑐𝑢𝑡, is given as, �̃�𝛼 = [𝐴 , 𝐴] = [𝑙 + (𝑚 − 𝑙)𝛼, 𝑛 − (𝑛 − 𝑚)𝛼].  

The operations on fuzzy numbers are defined as follows, 

Let �̃� and �̃� be two fuzzy numbers and 𝜆 be any scalar. The scalar multiplication of fuzzy number is given as,  

• 𝜆 �̃�𝛼 = 𝜆[𝐴 , 𝐴] = [𝜆𝐴 , 𝜆𝐴]. 

 Also, the arithmetic operations between �̃� and �̃� is defined using their parametric form, as follows. 

• �̃�𝛼 + �̃�𝛼 = [𝐴, 𝐴] + [𝐵, 𝐵 ] = [𝐴 + 𝐵, 𝐴 + 𝐵] 

• �̃�𝛼  �̃�𝛼 = [𝐴, 𝐴][𝐵, 𝐵 ]  = [min(𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵) ,max(𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵, 𝐴 𝐵)] 

The derivative is used in establishing the result is given as follows, 

A function 𝑓: (𝑎, 𝑏) → 𝐸 is said to be modified Hukuhara differentiable (Pandit et. al. 2019) at 𝑡0 ∈  (𝑎,  𝑏) ∃ an 

element 𝑓̇(𝑡0) ∈ 𝐸 such that for all ℎ > 0 sufficiently small ∃  𝑓(𝑡0 + ℎ) − 𝑓(𝑡0),   𝑓(𝑡0) − 𝑓(𝑡0 − ℎ) should exist 
and the limits, 

lim
ℎ→0+

 𝑓(𝑡0 + ℎ) − 𝑓(𝑡0)

ℎ
= lim

ℎ→0−

 𝑓(𝑡0) −  𝑓(𝑡0 − ℎ)

ℎ
= 𝑓̇(𝑡0) 

Its equivalent parametric form is given as follows, 

lim
ℎ→0+

 𝑓(𝑡0 + ℎ)
𝛼 ⊖ 𝑓(𝑡0)

𝛼

ℎ
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[min{lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
 } , 

max{lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
, lim
ℎ→0

(𝑓(𝑡0 + ℎ) − 𝑓(𝑡0))

ℎ
 } ] 

lim
ℎ→0−

 𝑓(𝑡0)
𝛼 ⊖ 𝑓(𝑡0 − ℎ)

𝛼

ℎ
= 

[min{lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
 } , 

max{lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
, lim
ℎ→0

(𝑓(𝑡0) − 𝑓(𝑡0 − ℎ))

ℎ
}] 

 We apply fuzzy Laplace transform [9] (Pandit et. al. 2020) theory on the system as in equation (4) after 

linearization.  

The Taylor’s theorem is used for linearization and it’s statement is given below, 

 Let 𝑘 ≥  1 be an integer and let the function 𝑓 :  𝑅 →  𝑅 be 𝑘 times differentiable at the point 𝑐 ∈  𝑅. Then 

there exists a function ℎ𝑘 :  𝑅 →  𝑅 such that 

𝑓(𝑥) = 𝑓(𝑐) + (𝑥 − 𝑐)𝑓̇(𝑐) +
(𝑥 − 𝑐)2

2!
𝑓̈(𝑐) +

(𝑥 − 𝑐)3

3!
𝑓(𝑐) +⋯+ ℎ𝑘(𝑥)(𝑥 − 𝑎)

𝑛 

where, lim
𝑥→𝑎

ℎ𝑘(𝑥) = 0. 

The fuzzy Laplace Transform is defined as follows, 

Fuzzy valued function 𝑓(𝑡) = [𝑓(𝑡), 𝑓(𝑡)]in parametric form, is bounded and piecewise continuous on the 

interval [0,∞) and suppose that 𝑓(𝑡)𝑒−𝑠𝑡 is improper fuzzy Riemann integrable, then ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
 is called 

fuzzy Laplace Transform and it is defined as, 

�̃�(𝑠) = ℒ (𝑓(𝑡)) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

Taking 𝛼 − 𝑐𝑢𝑡 on both sides, 

�̃�(𝑠) =𝛼 ∫ 𝑒−𝑠𝑡 𝑓(𝑡)𝛼 𝑑𝑡
∞

0

 

ℒ ([𝑓(𝑡), 𝑓(𝑡)]) = lim
𝑡→∞

[∫ 𝑒−𝑠𝑡𝑓(𝑡) 𝑑𝑡,∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
𝑡

0

𝑡

0

] 

 Fuzzy inverse Laplace Transform is defined as,  

ℒ−1[𝐹(𝑠), 𝐹(𝑠)] = [𝑓(𝑡), 𝑓(𝑡)]. 

The derivative of fuzzy Laplace Transform is given as below, 

If 𝑓(𝑡) = [𝑓(𝑡), 𝑓(𝑡)] be continuous fuzzy valued function, lim
𝑡→∞

𝑒−𝑠𝑡𝑓(𝑡) → 0 and lim
𝑡→∞

𝑒−𝑠𝑡𝑓(𝑡) → 0 for large 

value of 𝑠 and 𝑓̇(𝑡) is piecewise continuous then ℒ (𝑓̇(𝑡)) exist, and is given by, 

ℒ (𝑓̇(𝑡)) = 𝑠ℒ (𝑓(𝑡)) − 𝑓0̃. 

In next section, we have given the Main result that describes solving technique for system (2). 

In next section, we propose and establish the technique for solving the equation (4). 

 

3. MAIN RESULT 

 

For solving system as in equation (4), we linearise the nonlinear term in equation (4) using Taylor’s theorem, 

about the equilibrium point. After that we apply Fuzzy Laplace Transform on linearised system. 

We first obtain the equilibrium point by solving, �̇̃�(𝑡) = 0 , �̇̃�(𝑡) = 0 in equation (4) and we obtain two 

equilibrium points as follows, one is (
𝑥𝑒
𝑦𝑒
) = (

0
0
) and the other is(

𝑥𝑒
𝑦𝑒
) =  (

𝑐𝑁1(𝑎−𝑏𝑐𝑁2)

𝑑𝑏𝑁1𝑁2+𝑎𝑐

𝑎𝑁2(𝑁1𝑑−𝑐)

𝑑𝑏𝑁1𝑁2+𝑎𝑐

). 

Now, first we linearise the equation (4) about (0,0) and give the solution using fuzzy Laplace Transform in 

following sub section. 

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Differentiable_function
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3.1. Solution of equation (4) about (𝟎, 𝟎) 

When we consider first equilibrium point (0,0) then system (1) gets converted into following system, 

�̇̃�(𝑡) = 𝑎𝑥 

�̇̃�(𝑡) = −𝑐𝑦 

(5) 

with fuzzy initial condition, �̃�(0) = �̃�0, �̃�(0) = �̃�0. 

Equation (5) is the basic mathematical representation when prey and predator do not interact.  

The compact form of equation (5) is given as follows, 

[
�̇̃�(𝑡)

�̇̃�(𝑡)
] = [

𝑎 0
0 −𝑐

] [
�̃�
�̃�
] 

 

(6) 

with fuzzy initial condition, �̃�(0) = �̃�0, �̃�(0) = �̃�0. 

The fuzzy solution of the equation (6) using Fuzzy Laplace derivative as in, Section 2.7. 

�̃�(𝑡) =  �̃�0𝑒
𝑎𝑡 , 

�̃�(𝑡) =  �̃�0𝑒
−𝑐𝑡. 

Taking 𝛼 − 𝑐𝑢𝑡 on both sides, 

�̃�(𝑡) = �̃�0
𝛼𝛼 𝑒𝑎𝑡, 

�̃�(𝑡) = �̃�0
𝛼𝛼 𝑒−𝑐𝑡 . 

 

Which gives,   

[𝑥(𝑡), 𝑥(𝑡)] = [𝑥0, 𝑥0]𝑒
𝑎𝑡, 

[𝑦(𝑡), 𝑦(𝑡)] = [𝑦0, 𝑦0] 𝑒
−𝑐𝑡 

 

3.2. The solution of equation (4) about (𝒙𝒆 =
𝒄𝑵𝟏(𝒂−𝒃𝒄𝑵𝟐)

𝒅𝒃𝑵𝟏𝑵𝟐+𝒂𝒄
, 𝒚𝒆 =

𝒂𝑵𝟐(𝑵𝟏𝒅−𝒄)

𝒅𝒃𝑵𝟏𝑵𝟐+𝒂𝒄
) 

Using Taylor’s theorem, we linearise system (2) about equilibrium points.  The linearized form of system (2) 

inving fuzzy initial conditions is given below, 

[
�̇̃�(𝑡)

�̇̃�(𝑡)
] =

[
 
 
 (𝑎 −

2𝑎

𝑁1
𝑥𝑒 − 𝑏𝑦𝑒) −𝑏𝑥𝑒

𝑑𝑦𝑒 (−𝑐 −
2𝑦𝑒𝑐

𝑁2
+ 𝑑𝑥𝑒)]

 
 
 

[
�̃�
�̃�
] +

(

 
 
𝑏𝑥𝑒𝑦𝑒 −

𝑎𝑥𝑒
2

𝑁1
𝑐𝑦𝑒

2

𝑁2
− 𝑑𝑥𝑒𝑦𝑒

)

 
 

 

with fuzzy initial condition, �̃�(0) = �̃�0, �̃�(0) = �̃�0. 

 

 

 

(7) 

The existence of fuzzy solution in parametric form of system in equation (7) is given as follows. 

 

3.3. Theorem 1 

If  �̃�(𝑡) and �̃�(𝑡) are continuous in equation (7) then the solution of equation (7) is given below, 

[𝑥(𝑡), 𝑥(𝑡)] = [
𝛽′𝑏𝑥𝑒

 𝛾1
 +  𝑏𝑥𝑒 [𝑦0, 𝑦0 ] +  

𝛽(𝛾1−𝛼
′)

𝛾1
 +  [𝑥0, 𝑥0 ](𝛾1 − 𝛼

′)]
𝑒𝛾1𝑡

𝛾1−𝛾2
 + [

𝛽′𝑏𝑥𝑒

 𝛾2
 +  𝑏𝑥𝑒 [𝑦0, 𝑦0 ] +

 
𝛽(𝛾2−𝛼′)

𝛾2
 +  [𝑥0, 𝑥0 ](𝛾2 − 𝛼

′)]
𝑒𝛾2𝑡

𝛾2− 𝛾1
+  

1

𝛾1𝛾2
 [𝛽′𝑏𝑥𝑒 − 𝛽 𝛼

′]  

[𝑦(𝑡), 𝑦(𝑡)]  = [
𝛽𝑑𝑦𝑒

 𝛾1
 +  𝑑𝑦𝑒[𝑥0, 𝑥0 ] + 

𝛽′(𝛾1−𝛼)

𝛾1
 +  [𝑦0, 𝑦0 ] (𝛾1 − 𝛼)]

𝑒𝛾1𝑡

𝛾1−𝛾2
  +   [

𝛽𝑑𝑦𝑒

 𝛾2
+  𝑑𝑦𝑒[𝑥0, 𝑥0 ] +

 
𝛽′(𝛾2−𝛼)

𝛾2
 +  [𝑦0, 𝑦0 ] (𝛾2 − 𝛼)]

𝑒𝛾2𝑡

𝛾2− 𝛾1
      +   

1

𝛾1𝛾2
 [𝛽𝑑𝑦𝑒 − 𝛽

′𝛼 ] 

where,  

𝛼 = (𝑎 −
2𝑎

𝑁1
𝑥𝑒 − 𝑏𝑦𝑒) , 𝛽 = (𝑏𝑥𝑒𝑦𝑒 −

𝑎𝑥𝑒
2

𝑁1
) 

𝛼′ = (−𝑐 −
2𝑦𝑒𝑐

𝑁2
+ 𝑑𝑥𝑒) , 𝛽

′ = (
𝑐𝑦𝑒

2

𝑁2
− 𝑑𝑥𝑒𝑦𝑒) 

𝛾1 =
(𝛼 + 𝛼′) + √(𝛼 + 𝛼′)2 − 4(𝛼𝛼′ − 𝑏𝑑𝑥𝑒𝑦𝑒)

2
 

𝛾2 =
(𝛼 + 𝛼′) − √(𝛼 + 𝛼′)2 − 4(𝛼𝛼′ − 𝑏𝑑𝑥𝑒𝑦𝑒)

2
 

Proof: 
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For our convenience, we take following notations, 

𝛿 = (𝑎 −
2𝑎

𝑁1
𝑥𝑒 − 𝑏𝑦𝑒) , 𝛽 = (𝑏𝑥𝑒𝑦𝑒 −

𝑎𝑥𝑒
2

𝑁1
) 

𝛿′ = (−𝑐 −
2𝑦𝑒𝑐

𝑁2
+ 𝑑𝑥𝑒) , 𝛽

′ = (
𝑐𝑦𝑒

2

𝑁2
− 𝑑𝑥𝑒𝑦𝑒) 

Using these notations, equation (7) gets converted into following system, 

[
�̇̃�(𝑡)

�̇̃�(𝑡)
] = [

𝛿 −𝑏𝑥𝑒
𝑑𝑦𝑒 𝛿′

] [
�̃�
�̃�
] + (

𝛽

𝛽′
)  

with fuzzy initial condition, �̃�(0) = �̃�0, �̃�(0) = �̃�0. 

 

(8) 

 

To solve equation (8), Take fuzzy Laplace Transform on equation (8), 

ℒ (�̇̃�(𝑡)) =  𝛿ℒ(�̃�) − 𝑏𝑥𝑒ℒ(�̃�) + ℒ(𝛽) 

     𝐿(�̇̃�(𝑡)) = 𝛿′ℒ(�̃�) +  𝑑𝑦𝑒ℒ(�̃�) + ℒ(𝛽
′) 

Using fuzzy Laplace Transform derivative as in, Section 2.7, 

𝑠�̃�(𝑠) − �̃�0 = 𝛿�̃�(𝑠) − 𝑏𝑥𝑒�̃�(𝑠) +
𝛽

𝑠
 

(9) 

𝑠�̃�(𝑠) − �̃�0 = 𝛿′�̃�(𝑠) +  𝑑𝑦𝑒�̃�(𝑠) +
𝛽′

𝑠
 

(10) 

 

Now using elimination method on equations (11) and (12), and taking inverse fuzzy Laplace Transform we 

have, 

�̃�(𝑡)  = [
𝛽′𝑏𝑥𝑒

 𝛾1
 +  𝑏𝑥𝑒�̃�0 + 

𝛽(𝛾1−𝛿
′)

𝛾1
 +  �̃�0(𝛾1 − 𝛿

′)]
𝑒𝛾1𝑡

𝛾1−𝛾2
 + [

𝛽′𝑏𝑥𝑒

 𝛾2
 +  𝑏𝑥𝑒�̃�0 + 

𝛽(𝛾2−𝛿′)

𝛾2
 +  �̃�0(𝛾2 −

𝛿′)]
𝑒𝛾2𝑡

𝛾2− 𝛾1
+  

1

𝛾1𝛾2
 [𝛽′𝑏𝑥𝑒 − 𝛽 𝛿

′] , 

(11) 

�̃�(𝑡) = [
𝛽𝑑𝑦𝑒

 𝛾1
 +  𝑑𝑦𝑒�̃�0 + 

𝛽′(𝛾1−𝛿)

𝛾1
 +  �̃�0(𝛾1 − 𝛿)]

𝑒𝛾1𝑡

𝛾1−𝛾2
  +   [

𝛽𝑑𝑦𝑒

 𝛾2
 +  𝑑𝑦𝑒�̃�0 + 

𝛽′(𝛾2−𝛿)

𝛾2
 +  �̃�0(𝛾2 −

𝛿)]
𝑒𝛾2𝑡

𝛾2− 𝛾1
      +   

1

𝛾1𝛾2
 [𝛽𝑑𝑦𝑒 − 𝛽

′𝛿 ]    

(12) 

where,     

 𝛾1 =
(𝛿 + 𝛿′) + √(𝛿 + 𝛿′)2 − 4(𝛿𝛿′ − 𝑏𝑑𝑥𝑒𝑦𝑒)

2
 

𝛾2 =
(𝛿 + 𝛿′) − √(𝛿 + 𝛿′)2 − 4(𝛿𝛿′ − 𝑏𝑑𝑥𝑒𝑦𝑒)

2
 

 Taking 𝛼 − 𝑐𝑢𝑡 of equations (11) and (12), we get, 

�̃�(𝑡) =𝛼 [
𝛽′𝑏𝑥𝑒

𝛾1
 +  𝑏𝑥𝑒 �̃�0

𝛼 + 
𝛽(𝛾1−𝛿

′)

𝛾1
 +  �̃�0

𝛼 (𝛾1 − 𝛿
′)]

𝑒𝛾1𝑡

𝛾1−𝛾2
 + [

𝛽′𝑏𝑥𝑒

𝛾2
 +  𝑏𝑥𝑒 �̃�0

𝛼 + 
𝛽(𝛾2−𝛿′)

𝛾2
 +

 �̃�0
𝛼 (𝛾2 − 𝛿

′)]
𝑒𝛾2𝑡

𝛾2−𝛾1
+  

1

𝛾1𝛾2
 [𝛽′𝑏𝑥𝑒 − 𝛽 𝛿

′],    

�̃�(𝑡)𝛼   = [
𝛽𝑑𝑦𝑒

𝛾1
 +  𝑑𝑦𝑒 �̃�0

𝛼 + 
𝛽′(𝛾1−𝛿)

𝛾1
 +  �̃�0

𝛼 (𝛾1 − 𝛿)]
𝑒𝛾1𝑡

𝛾1−𝛾2
  +   [

𝛽𝑑𝑦𝑒

𝛾2
 +  𝑑𝑦𝑒 �̃�0

𝛼 + 
𝛽′(𝛾2−𝛿)

𝛾2
 +

 �̃�0
𝛼 (𝛾2 − 𝛿)]

𝑒𝛾2𝑡

𝛾2−𝛾1
      +   

1

𝛾1𝛾2
 [𝛽𝑑𝑦𝑒 − 𝛽

′𝛿 ]. 

Which gives the parametric form as follows, 

[𝑥(𝑡), 𝑥(𝑡)] = [
𝛽′𝑏𝑥𝑒

𝛾1
 +  𝑏𝑥𝑒 [𝑦0, 𝑦0 ] + 

𝛽(𝛾1−𝛿
′)

𝛾1
 +  [𝑥0, 𝑥0 ](𝛾1 − 𝛿

′)]
𝑒𝛾1𝑡

𝛾1−𝛾2
 + [

𝛽′𝑏𝑥𝑒

𝛾2
 +  𝑏𝑥𝑒 [𝑦0, 𝑦0 ] +

 
𝛽(𝛾2−𝛿′)

𝛾2
 +  [𝑥0, 𝑥0 ](𝛾2 − 𝛿

′)]
𝑒𝛾2𝑡

𝛾2−𝛾1
+  

1

𝛾1𝛾2
 [𝛽′𝑏𝑥𝑒 − 𝛽 𝛿

′], 

[𝑦(𝑡), 𝑦(𝑡)]  = [
𝛽𝑑𝑦𝑒

𝛾1
 +  𝑑𝑦𝑒[𝑥0, 𝑥0 ] + 

𝛽′(𝛾1−𝛿)

𝛾1
 +  [𝑦0, 𝑦0 ] (𝛾1 − 𝛿)]

𝑒𝛾1𝑡

𝛾1−𝛾2
  +   [

𝛽𝑑𝑦𝑒

 𝛾2
 +      𝑑𝑦𝑒[𝑥0, 𝑥0 ] +

 
𝛽′(𝛾2−𝛿)

𝛾2
 +  [𝑦0, 𝑦0 ] (𝛾2 − 𝛿)]

𝑒𝛾2𝑡

𝛾2−𝛾1
      +   

1

𝛾1𝛾2
 [𝛽𝑑𝑦𝑒 − 𝛽

′𝛿 ]. 

    As, we know that 𝑥0 ≤ 𝑥0 and 𝑦0 ≤ 𝑦0 and the parameters are used in above equations are positive. 

    Thus, the obtained fuzzy solution of equation (7) exists. 

In next section, we give stability condition for equation (4) about equilibrium points. 

 

4. STABILITY ANALYSIS  
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For stability, we linearize the equation (4), around the both equilibrium points (0,0) and 

(
𝑐𝑁1(𝑎−𝑏𝑐𝑁2)

𝑑𝑏𝑁1𝑁2+𝑎𝑐
,
𝑎𝑁2(𝑁1𝑑−𝑐)

𝑑𝑏𝑁1𝑁2+𝑎𝑐
)  and obtain linearized equations (6) and (7) respectively. 

In equation (6), for stability, we find eigenvalues of [
𝑎 0
0 −𝑐

]. 

i.e.,    𝜆1,2 = 𝑎,−𝑐  

Thus, at (0,0), equation (6) is unstable. 

The system in equation (7), is stable if the roots of [
𝛿 −𝑏𝑥𝑒
𝑑𝑦𝑒 𝛿′

] are imaginary and real part is negative. To 

establish stability condition, we take some assumptions which is stated in following theorem. 

 

4.1. Theorem 2 

The system in equation (7) is stable, if following conditions are satisfied, 

1) 
𝒙𝒆

𝒚𝒆
<

(𝒃+
𝟐𝒄

𝑵𝟐
)

(𝒅−
𝟐𝒂

𝑵𝟏
)
  for 𝑐 > 𝑎. 

2) Either,  
𝑎

𝑏𝑐
> 𝑁2, 𝑁1 >

𝑐

𝑑
  or 

𝑎

𝑏𝑐
< 𝑁2, 𝑁1 <

𝑐

𝑑
 condition satisfies. 

Proof: 

     For the stability analysis, first we obtain eigen values 𝜆1,2 of equation (7) as follows, 

[
𝜆 − 𝛼 −𝑏𝑥𝑒
𝑑𝑦𝑒 𝜆 − 𝛼′

] = 0 

∴ (𝜆 − 𝛿)(𝜆 − 𝛿′) +  𝑏𝑑𝑥𝑒𝑦𝑒 = 0 

∴ 𝜆2 − (𝛿 + 𝛿′)𝜆 +  𝛿𝛿′ + 𝑏𝑑𝑥𝑒𝑦𝑒 = 0 

∴ 𝜆1,2 =
(𝛿 + 𝛿′) ± √(𝛿 + 𝛿′)2 − 4(𝑏𝑑𝑥𝑒𝑦𝑒 + 𝛿𝛿′)

2
 

The equation (7) is stable if roots are imaginary and real part is negative. 

i.e.,  (𝛿 + 𝛿′)2 − 4(𝑏𝑑𝑥𝑒𝑦𝑒 + 𝛿𝛿′) < 0 and (𝛿 + 𝛿′) < 0. 
Now take another inequality, (𝛿 + 𝛿′) < 0.  

Put these values of  𝛿 = (𝑎 −
2𝑎

𝑁1
𝑥𝑒 − 𝑏𝑦𝑒) and 𝛿′ = (−𝑐 −

2𝑦𝑒𝑐

𝑁2
+ 𝑑𝑥𝑒) in (𝛿 + 𝛿′) < 0. 

Then, we have 

𝑎 −
2𝑎

𝑁1
𝑥𝑒 − 𝑏𝑦𝑒 − 𝑐 −

2𝑦𝑒𝑐

𝑁2
+ 𝑑𝑥𝑒 < 0 

According to first condition in theorem 2, 𝑐 > 𝑎 which gives, 

𝑥𝑒 (𝑑 −
2𝑎

𝑁1
) − 𝑦𝑒 (𝑏 +

2𝑐

𝑁2
) < 𝑐 − 𝑎, 

∴ 𝑥𝑒 (𝑑 −
2𝑎

𝑁1
) − 𝑦𝑒 (𝑏 +

2𝑐

𝑁2
) < 0. 

Which gives, 

                                
𝒙𝒆

𝒚𝒆
<

(𝒃+
𝟐𝒄

𝑵𝟐
)

(𝒅−
𝟐𝒂

𝑵𝟏
)
 . 

 

 

(13) 

Now for second condition, we take following inequality, 

∴    (𝛿 − 𝛿′)2 − 4 𝑏𝑑𝑥𝑒𝑦𝑒 < 0 

∴      (𝛿 − 𝛿′)2 < 4 𝑏𝑑𝑥𝑒𝑦𝑒 

Since, (𝛿 − 𝛿′)2 is positive term due to square. 

∴ 𝑏𝑑𝑥𝑒𝑦𝑒 > 0 ⇒ 𝑥𝑒𝑦𝑒 > 0. 

Now, putting value of 𝑥𝑒 =
𝑐𝑁1(𝑎−𝑏𝑐𝑁2)

𝑑𝑏𝑁1𝑁2+𝑎𝑐
, 𝑦𝑒 =

𝑎𝑁2(𝑁1𝑑−𝑐)

𝑑𝑏𝑁1𝑁2+𝑎𝑐
 in 𝑥𝑒𝑦𝑒 > 0. 

∴
𝑐𝑁1(𝑎 − 𝑏𝑐𝑁2)

(𝑑𝑏𝑁1𝑁2 + 𝑎𝑐)
 
𝑎𝑁2(𝑁1𝑑 − 𝑐)

(𝑑𝑏𝑁1𝑁2 + 𝑎𝑐)
> 0 

∴ 𝑐𝑁1(𝑎 − 𝑏𝑐𝑁2) 𝑎𝑁2(𝑁1𝑑 − 𝑐)  > 0 

From above inequality, we have two possibilities, 

Either, (𝑎 − 𝑏𝑐𝑁2) > 0 and  (𝑁1𝑑 − 𝑐) > 0 or (𝑎 − 𝑏𝑐𝑁2) < 0  and  (𝑁1𝑑 − 𝑐) < 0. 

Which gives, 
𝑎

𝑏𝑐
> 𝑁2, 𝑁1 >

𝑐

𝑑
  or  

𝑎

𝑏𝑐
< 𝑁2, 𝑁1 <

𝑐

𝑑
 . (14) 

  

Equations (13) and (14) together gives stability condition for equation (7). 

In next section, we solve a numerical illustration using proposed technique. 



 309 

5. NUMERICAL ILLUSTRATION 

We solve following illustration from [14] by proposed technique as in, Section 3. 

�̇̃�(𝑡) = �̃� (1 −
�̃�

100
) − 0.2�̃��̃� 

�̇̃�(𝑡) = −0.8 �̃� (1 +
�̃�

25
) + 0.04�̃��̃� 

with fuzzy initial condition, 

�̃�(0)𝛼 = 40̃𝛼 = [35 + 5𝛼 , 45 − 5𝛼] and �̃�(0)𝛼 = 15̃𝛼 = [10 + 5𝛼, 20 − 5𝛼]. 
 

First, we linearize the system using Taylor’s theorem, 

The above system gets converted as follows, 

 

�̇̃�(𝑡) = −0.2294 �̃� ⊖ 4.614�̃� ⊕ 23.04 

 

(15) 

�̇̃�(𝑡) = −0.768 �̃� ⊖ 5.65976�̃� ⊕ 17.71778 

 

(16) 

with fuzzy initial condition, 

�̃�(0)𝛼 = 40̃𝛼 = [35 + 5𝛼 , 45 − 5𝛼] and �̃�(0)𝛼 = 15̃𝛼 = [10 + 5𝛼, 20 − 5𝛼]. 
Taking Fuzzy Laplace transform on equations (15), 

ℒ (�̇̃�(𝑡)) = −0.2294 ℒ(�̃�) ⊖ 4.614ℒ(�̃�) ⊕ ℒ(23.04) 

𝑠�̃�(𝑠) ⊖ �̃�(0) = −0.2294 �̃�(𝑠) ⊖ 4.614�̃�(𝑠) ⊕
(23.04)

𝑠
 

𝑠�̃�(𝑠) ⊕ 0.2294 �̃�(𝑠) =⊖ 4.614�̃�(𝑠) ⊕
(23.04)

𝑠
 

 

(17) 

Taking Fuzzy Laplace transform on equations (16), 

ℒ (�̇̃�(𝑡)) = −0.768 ℒ(�̃�) ⊖ 5.65976 ℒ(�̃�) ⊕ ℒ(17.71778) 

𝑠�̃�(𝑠) ⊖ �̃�(0) =⊖ 4.614�̃�(𝑠) ⊕
17.71778

𝑠
 

𝑠�̃�(𝑠) ⊕ 4.614�̃�(𝑠) = �̃�(0) ⊕
17.71778

𝑠
 

(18) 

After solving equations (17) and (18), we have the graph of above system at fuzzy initial conditions as follows, 

 
Fig.1: Variation in products for Retailer 1 at fuzzy initial conditions (35, 40, 45) 
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Fig.2: Variation in products for Retailer 2 at fuzzy initial conditions (10, 15, 20) 

The following figures 3 and 4 shows the behaviour of  equations (15) and (16) at small time interval and large 

time interval in 3-dimension respectively. 

  
Fig.3 Behaviour of Retailer 1 and Retailer 2 at 

fuzzy initial conditions 

 

Fig: 4 Behaviour of Retailer 1 and Retailer 2 at 

different fuzzy initial conditions 

 

 

6. RESULT AND DISCUSSION 

 

From the fig.1 and fig.2, we observe that number of purchases of similar products of retailer 1 and retailer 2 

decrease as time increases and after sometime this change becomes constant. The proposed method is only 

applicable for a small time, interval. Fig.3 represents linear behaviour between retailer 1 and 2 in 3-dimension. 

In a large time, interval, the products become negative as in fig.4. The fuzzy solution of the system matches with 

solution of its crisp system at the core, that validates the proposed technique.  

 

7. CONCLUSION 

In this article, the competition between two retailers for similar products, is studied in the fuzzy environment. 

The interaction between two retailers affects each other’s business.We have solved system of nonlinear fuzzy 

differential equations, using fuzzy Laplace transform. We linearised the nonlinear term about equilibrium point 

then applied the technique which gives us fuzzy solution in compact form. We have also given the condition for 

stability analysis of the model. Lastly, one numerical illustration is solved which is compared at the core. Our 

proposed technique has limitation that it is valid only for small time interval. For future scope, one can take all 
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parameters fuzzy and add more parameters like trade credit and demand to give optimise condition for both 

retailers. 
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