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ABSTRACT 

In this study an effort has been made to classify the solvent effect on dynamics of a molecule by the means of statistical 
parameters. The proposed model comprises of Langevin stochastic differential equation whose solution is obtained through 
Euler’s method. A diatomic molecule O2 has been taken and its dynamics has been studied in two different solvent. The proposed 

study is concluded through the comparison of simulation results obtained for the motion of a diatomic molecule O2 in two 
different solvent. The mathematical model includes the key constraints such as frictional force, intermolecular force, random 
force and accelerationon. 
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ABSTRACTO 

En este estudio se ha hecho un esfuerzo por clasificar el efecto del disolvente sobre la dinámica de una molécula mediante 
parámetros estadísticos. El modelo propuesto consta de una ecuación diferencial estocástica de Langevin cuya solución se 

obtiene a través del método de Euler. Se ha tomado una molécula diatómica de O2 y se ha estudiado su dinámica en dos 

disolventes diferentes. El estudio propuesto se concluye mediante la comparación de los resultados de simulación obtenidos 
para el movimiento de una molécula diatómica de O2 en dos disolventes diferentes. El modelo matemático incluye las 

restricciones clave, como la fuerza de fricción, la fuerza intermolecular, la fuerza aleatoria y la aceleración. 

 
PALABRAS CLAVE: Matriz de covarianza, función de energía potencial, paso de tiempo, proceso de Weiner. 

 
 

1.  INTRODUCTION 

 
A good share of science depends on the flows of models that characterize our realism at different spatial 

and temporal scales. A model is a simplified and often theoretical depiction of an intricate natural structure. 

Models are used in science to assist, identify, hypothesize about, or simulate the behaviour of the natural 

structures they characterize. Moreover, models can be used to simulate aspects of the natural structure. A 

simulation is a rule-based review of the natural system’s behaviour under applicable conditions using the 

model [11]. 

Molecular dynamics (MD) simulation extensively used to exploit the dynamic and structural properties of 

molecular systems. But, it has two drawbacks': the time spans of the simulations and the approximation in 

the potential energy.  To extend the simulation time, Langevin equation based stochastic dynamics (SD) 

simulation is a widely acclaimed methodology in which merely the relatable part of the molecule is 

considered explicitly and the remnants of system like solvent supports to provide a friction drag, a random 

force and an effective potential [8]. 

The emphasis of this work is on mathematical modelling based on the Langevin equation to study the solvent 

effect on dynamics of a diatomic molecule O2. We have taken two different solvents, ethanol (polar) and 

benzene (non-polar solvent) to see the effects on dynamics or motion of a diatomic molecule O2. We resolute 

and calculated the important statistical constraints such as variance in velocity, variance in position, and 

covariance between velocity and position with respect to time for both solvent systems. 

We have used forward Euler’s method with discrete time step replacing continuous – time, determining the 

values at times .....,.........,tt 10 .Generally n1n tt −+  is a static sum Δt . 

 

2.  METHODOLOGY 

 

In the theory of molecular dynamics, the motion of atoms (considered as particle) by linking acceleration to 

intermolecular force are governed by the Newton’s equation of motion [6]. When the solvent effect on the 

motion of an atom or molecule flowing in a liquid medium incorporated then the motion of the molecule 
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is effected by two new forces, fluctuating force because of the collision of the molecule in the connecting 

medium and frictional force due to the viscidness of the medium then the motion of such molecule is given 

by Langevin equation [9] 
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The expression on the leftward is the multiplication of mass of the molecule m  and acceleration 2

2
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xd
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first expression on the rightward is the intra-molecular force, ),(xF because of the interface among the atoms 

of a molecule and define as [2]. 

dx
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Where, V(x) = Intra-molecular potential energy function. 

Here, Harmonic potential energy functions is chosen for the simulation of model (1) i.e. 
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Where ks and b are the force constants and ideal bond length of diatomic molecule O2, respectively. 

Now, F(x) can be shown as,    

)bx(k)x(F s −−=  

The next expression denotes a frictional force on the molecule because of the viscidness of the solvent. 

This force with the constant of proportionality being the friction coefficient is directly proportional to the 

velocity of the particle  

dt

dx
−= Force  Frictional

 

Where, 
dt

dx
 denote the swiftness of the particle and R 6= is the friction coefficient (   is viscous 

force and R  is the vanderwaals radius of imaginary spherical atom or molecule) [7]. The third force, )t(

, is the stochastic or random force, because of the thermal fluctuations of the solvent with the amplitude 

  associated to the frictional force   and the temperature T  given by mKT22 = (where K is the 

Boltzmann’s constant and T is the temperature) [8] and it can be defined as 

,
dt

dW
)t(),'tt()'t()t( t=−=    random force or white noise. Here tW  is a wiener process which 

follows Normal distribution since any appropriately scaled sum of independent, random disturbances effect 

the position of a moving particle will outcome in a Normal distribution [3]. 

 

The Wiener process Wt is considered by three facts [3]:  

1. 00 =W . 

2. tW  is almost surely continuous 

3. tW  has independent increments with distribution )st,(N~WW st −− 0 , ).ts( 0  

The expression ),(N 2    represents the normal distribution with mean valued μ and variance σ2. The 

fact that it has independent increments means 22110 tsts  then 
11 st WW − and 

22 st WW − are 

independent random variables. The solvent effect originates from the frictional and random forces on the 

explicit atoms. When the random and frictional forces are zero, the Langevin equation converted to 

Newton’s equation of motion [7]. 
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and equation (2) can be shown in matrix form as follows: 
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For numerical iterations eq. (3) can be shown as, 
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here 
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and nW is taken from the sample space of Normal distribution with zero mean and t variance, which is 

independent from mW  for mn  . 

Now, let the covariance matrix of equation (5) be [1]. 
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Where  , 2
x  and 

2
v  are covariance between position and velocity, variance in position and variance in 

velocity respectively. If 
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and covariance matrix TSΣΣ . 

Hence the covariance matrix for eq. , (5)  is given by 
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We can rewrite above eq. (6) in an appropriate matrix system as follow: 
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The iterative expression for the position and velocity by the Euler method, can be written as follows: 
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With the representation of (5),  
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Now by substituting the above values in equation (7), and using Gauss Elimination method the following 

solution is obtained, 
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3.  STATISTICAL ANALYSIS 

 

A diatomic molecule O2 was taken for the simulation in two different solvent ethanol and benzene respectively, 

with the values of the constraints included in above equations are as follows [5, 10, 4]  

m=1.38905×10-23pN.sec2/nm, η=3.4621×10-9pN.sec./nm. (Ethanol), η=1.88×10-9pN.sec./nm.(Benzene),  

KT=4.1pN.nm (at room temperature), ks=1140000 pN./nm. 

First, variance in position is calculated and plotted alongside time step Δt  upto10-14 seconds for both solvent 

ethanol and benzene after that in the same way variance in velocity and covariance are calculated and plotted 

alongside time stepΔt upto 10-14 seconds for both solvent ethanol and benzene respectively as shown in Fig.1, 

Fig.2 and Fig.3, Fig.4 and Fig.5, Fig.6 as follows.  
 

    

 

 

 

 

 

 

 

 

 

Figure 1: Variance in Position for ethanol versus time step                         Figure 2: Variance in position for benzene versus time step 

  
 

    

 

 

 

 

 

 

 

 

 

 

      

 

Figure 3: Variance in velocity for ethanol versus time step              Figure 4: Variance in velocity for benzene versus time step 
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Figure 5: Covariance for ethanol versus time step                    Figure 6: Covariance for benzene versus time step 

 

4.  RESULTS AND DISCUSSIONS 

 
First of all variance in position (Fig.1 and Fig.2) for both the solvent (ethanol and benzene) is calculated. It 
is observed that variance in position for ethanol (Fig.1) increases steadily up to 3.610-15 sec. and after that 
it starts decreasing and increasing unexpectedly i.e. it starts exhibiting the chaotic behaviour after the time 
step 3.610-15 sec. for very short duration of time and then it become stable. Similarly, computed variance in 
position for benzene (Fig.2) exhibits that variance in position increases steadily up to 1.510-15 sec. and after 
that it starts decreasing and increasing unexpectedly i.e. it starts exhibiting the chaotic behavior after the time 
step 1.510-15 sec. again  for very short duration of time and then it become stable. After that variance in 
velocity was computed for both the solvent (Fig.3 and Fig.4) which exhibits that variance in velocity for 
ethanol (Fig.3) is stable upto 2.910-15 sec. and for benzene (Fig.4) it is stable up to 1.510-15 sec. and again 
after the same time steps it starts exhibiting the chaotic behaviour for very short duration of time and then it 
become stable. Finally, the covariance (Fig.5 and Fig.6) between position and velocity is computed for both 
the solvent. It shows that both position and velocity vary together and then suddenly it shows the chaotic 
behavior again after the same time step 2.910-15 sec. and 1.510-15 sec. for ethanol and benzene solvent 
respectively for very short duration of time and then it become stable. From these three interpretations of 
statistical parameter it can be established that the dynamics of the molecule O2 becomes unstable after the 
same time step 2.910-15 sec. and 1.510-15 sec. for both ethanol and benzene respectively and then it starts 
exhibiting the chaotic behaviour for very short duration of time and then it become stable and almost constant. 
i.e. there is not much change  in the motion of the molecule beyond 2.910-15 sec. and 1.510-15sec. 
respectively. Therefore, it is not obligatory to go beyond 2.910-15 sec. and 1.510-15 sec. to study the 
dynamics of O2 in ethanol and benzene solvent respectively. It is concluded that the solvent with higher 
viscosity (Ethanol) gives longer time duration to exhibit the dynamics properties of a molecule in 

comparison to a solvent with lesser viscosity.  

 
5.  CONCLUSION  

 
The Langevin equation of motion is the initial point for the stochastic dynamics model. Molecular dynamics 

simulation provides atomic details of the structures and motions of the molecules which opens the way to 

simplify the description of interaction. We have applied Euler method for which the condition of stability is  

 Δtk
2

1
2ηΔt or ηΔtΔtk 2

s
2

s + [1]. Based on this condition we have attempted to see the effect of two different 

solvent to predict the maximum time steps to study molecular dynamics of the diatomic molecule O2 and we 

have observed solvent with higher viscosity gives longer time duration to exhibit the dynamics properties of 

a molecule. The present work of mathematical modelling to classify the solvent effect on dynamics of a 

molecule can be extended to complex molecules like protein, lipid etc. We can analyze important 

thermodynamic properties of the system by incorporating some more important parameters in the present 

model and then we can generate important information from the simulation. This work will contribute 

positively in studying the dynamics of a molecule and its important properties in a solvent.  
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