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ABSTRACT 

The main aim of this paper is to demonstrate common fixed point theorems in intuitionistic  Mengerspace.  In our main result 
we use the notion of CLR property for type (K) Compatible mappings. The importance of CLR property is that subspaces 

need not be closed for the survival of fixed points. Many authors utilize the concept of CLR property to prove theorems on 

fixed point in intuitionistic Mengerspaces for various type of compatible mappings.The results thus obtained, generalizes and 
extends some known results in intuitionistic menger space. 
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RESUMEN 

El objetivo principal de este artículo es demostrar los teoremas comunes del punto fijo en el espacio Menger intuicionista. En nuestro 

resultado principal, usamos la noción de propiedad CLR para mapeos compatibles de tipo (K). La importancia de la propiedad CLR es 

que no es necesario cerrar los sub-espacios para la supervivencia de los puntos fijos. Muchos autores utilizan el concepto de propiedad 

CLR para demostrar teoremas sobre puntos fijos en espacios Menger intuicionistas para varios tipos de aplicaciones compatibles. Los 
resultados así obtenidos generalizan y amplían algunos resultados conocidos en el espacio mental intuicionista. 

 

PALABRAS CLAVE: punto fijo común, espacios Menger intuicionistas, mapeos compatibles tipo (E), mapeos compatibles tipo (K), 
propiedad CLRg 

 
1. INTRODUCTION 

 

There have been a number of generalizations of metric spaces. One such generalization is Menger space introduced in 

1942 by Menger [10] who used distribution functions instead of nonnegative real numbers as values of the metric. This 

space was expanded rapidly with the pioneering works of Schweizer and Sklar[15,16]. Modifying the idea of Kramosil 

and Michalek [7], George and Veeramani [3] introduced fuzzy metric spaces which are very similar that of Menger 

space. Park [13] introduced the notion of intuitionistic fuzzy metric spaces as a generalization of fuzzy metric spaces. 

Kutukcu et. al [8] introduced the notion of intuitionistic Menger Spaces with the help of t-norms and t-conorms as a 

generalization of Menger space due to Menger [10]. Further they introduced the notion of Cauchy sequences and found 

a necessary and sufficient condition for an intuitionistic Menger Space to be complete. Sessa [17] initiated the tradition 

of improving commutativity in fixed point theorems by introducing the notion of weakly commuting maps in metric 

spaces. Jungck [5] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger 

space has been introduced by Mishra [11]. 

In 1993, G. Jungck, P. P. Murthy and Y. J. Cho [6] gave a generalization of compatible mappings called compatible 

mappings of type (A) which is equivalent to the concept of compatible mappings under some conditions. In 1996, H. 

K. Pathak, Y. J. Cho, S. S. Chang and S. M. Kang [12] introduced the concept of compatible mappings of type (P) and 

compared with compatible mappings of type(A) and compatible mappings. K. B. Manandhar et.al. [9] introduced the 

notion of compatible mappings of type (E) and obtained a common fixed point theorem for self mappings in complete 

fuzzy metric space in 2014. K. Jha, V. Popa and K. B. Manandhar [4] introduced the concept of compatible mappings 

of type (K) in metric space. Rao R. and Reddy B. [14] have obtained fixed point theorems for compatible mappings of 

type (K) in complete fuzzy metric space in 2016. 

Sintunayarat and Kuman [18] introduced the concept of common limit in the range property. The importance of CLR 

property is that we don’t require the closedness of subspaces for the existence of fixed points. 

AouaandAliouche [1] utilize the notion of common limit range property to prove fixed point theorems for weakly 

compatible mapping in intuitionistic Menger spaces. 
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2. PRELIMINARIES 

 

Definition2.1. A binary operation  : [0,1]  [0,1] →[0,1] is a t-norm if  is satisfying the following conditions: 

(1)  is commutative and associative, 

(2)  is continuous, 

(3) a  1 = a, for all a [0,1], 

(4) a  b  c  d whenever a  c and b  d, for all a, b, c, d [0,1].   
Definition2.2. A binary operation  : [0,1]  [0,1] →[0,1] is a t-conorm if  is satisfying the following conditions: 

(1)  is commutative and associative, 

(2)  is continuous, 

(3) a  0 = a, for all a [0,1], 

(4) a  b  c  d whenever a  c and b  d, for all a, b, c, d [0,1].   
Remark 2.3. The concept of triangular norms (t-norms) and triangular conforms (t-conorms) are known as the 

axiomatic skeletons that we use for characterizing fuzzy intersection and union respectively. These concepts were 

originally introduced by Menger [1] in his study of statistical metric spaces. 

Definition2.4. A distance distribution function is a function F : R →R+ which is non-decreasing, left continuous on R 

and  inf {F(t) : t  R} = 0 and sup {F(t) : t R} = 1. We will denote by D the family of all distance distribution 

functions while H will always denote the specific distribution function defined by                                                                                                                                                                                                    

 

If X is a non-empty set, F : X × X→D is called a probabilistic distance on X and F(x, y) is usually denoted by Fx, y . 

Definition2.5. A non-distance distribution function is a function L : R →R+ which is non-increasing, right continuous 

on R and  inf {L(t) : t  R} = 1 and sup {L(t) : t R} = 0. We will denote by E the family of all non-distance distribution 

functions while G will always denote the specific distribution function defined by  

 

If X is a non-empty set, L : X × X→E is called a probabilistic non-distance on X and L(x, y) is usually denoted by 

Lx, y . 

Definition2.6. [7] A 5-tuple (X, F, L, , ) is said to be an intuitionistic Menger space if X is an arbitrary set,  is a 

continuous t-norm,  is continuous t-conorm, F is a probabilistic distance and L is a probabilistic non-distance on X 

satisfying the following conditions: for all x, y,z X and t, s 0 

(1)Fx,y(t) + Lx,y(t)  1 , 

(2) Fx,y(0) = 0, 

(3) Fx,y(t) = H(t) if and only if x = y, 

(4) Fx,y(t) = Fy,x(t), 

(5) if Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t+s) = 1, 

(6) Fx,z(t+s) Fx,y(t) Fy,z(s),  

(7) Lx,y(0) = 1, 

(8) Lx,y(t) = G(t) if and only if x = y, 

(9) Lx,y(t) = Ly,x(t), 

(10) if Lx,y(t) = 0 and Ly,z(s) = 0, then Lx,z(t+s) = 0, 

(11) Lx,z(t+s) Lx,y(t) Ly,z(s). 

The functionFx,y(t) and Lx,y(t) denote the degree of nearness and degree of non-nearness between x and y with respect 

to t, respectively. 

Remark 2.7. Every Menger space (X, F,) is intuitionistic Menger space of the form  

(X, F,1 – F,,) such that t-norm  and t-conorm  are associated, that is x  y = 1- (1-x)    (1-y) for any x , y  X. 

Example 2.8. Let (X, d) be a metric space. Then the metric d  induces a distance distribution function F defined by 

Fx,y (t) = H (t - d (x, y)) and a non-distance function L defined by Lx,y (t) = G (t – d (x,y)) for all x,yX and t ≥ 0. Then 

(X,F,L) is an intuitionistic probabilistic metric space. We call this instutionistic probabilistic metric space induced by 

a metric d the induced intuitionistic probabilistic metric space. If t-norm  is a  b = min{a,b} and t-conorm  is a  b 

= min {1,a + b} for all a, b  [0,1] then (X,F,L, ,) is an intuitionistic Menger space. 
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Remark 2.9. Note that the above example holds even with the t-norm ab = min{a,b}and t-conorm a  b = max {a, 

b}and hence (X,F,L, ,) is an intuitionistic Menger space with respect to any t-norm and t-conorm. Also note t-

norm  and t-conorm  are not associated. 

Definition 2.10. [7] Let (X,F,L, ,) be an intuitionistic Menger space with t t ≥ t  and (1 – t )  (1 - t) ≤ (1 – t ). 

Then: 

(1) A sequence {𝑥𝑛} in X is said to be convergent to x in X if, for every > 0 and  (0,1), there exists positive 

integer N such that 𝐹𝑥𝑛,𝑥() > 1 -  and 𝐿𝑥𝑛,𝑥 () < whenever n ≥ N. 

(2) A sequence {𝑥𝑛} in X is called Cauchy sequence if, for every > 0 and  (0,1), there exists positive 

integer  N such that 𝐹𝑥𝑛,𝑥𝑚
() > 1-  and 𝐿𝑥𝑛,𝑥𝑚

 () < whenever n, m ≥ N. 

(3) An intuitionistic Menger space (X,F,L, ,) is said to be complete if and only if every Cauchy sequence in 

X is convergent to a point in X. 

The proof of the following lemmas is on the lines of Mishra [8]. 

Lemma 2.11. Let (X,F,L, ,) be an intuitionistic Menger space with tt ≥ t and (1 - t)  (1 - t) ≤   (1 - t) and {yn} be 

a sequence in X. If there exists a number k   (0, 1) such that:  

(1) Fyn+2,yn+1 (kt) ≥ Fyn+1,yn (t), 

(2) Lyn+2,yn+1 (kt) ≤ Lyn+1,yn (t) for all t > 0 and n =1,2,3,4,… Then{yn} is a Cauchy sequence inX. 

Proof.  By simple induction with the condition (1), we have for all t > 0 and n = 1,2,3,…, 

  Fyn+1,yn+2(t)  ≥  Fy1,y2 (t/kn)    ,    Lyn+1,yn+2 (t)  ≤  Ly1,y2 (t/kn). 

Thus by Definition 2.6 (6) and (11), for any positive integer m ≥ n and number t > 0, we have  

Fyn, ym(t)  ≥  Fyn,yn+1 Fyn+1,yn+2   ..…Fym-1,ym  

 

and Lyn, ym(t)  ≤  Lyn,yn+1 Lyn+1,yn+2   ..… Lym-1,ym  

 
  which implies that {yn} is a Cauchy sequence in X. This completes the proof. 

Lemma 2.12. Let (X,F,L, ,) be  an intuitionistic Menger space with t t ≥ t and (1 –t ) (1–t ) ≤ (1 – t ) and for all 

x,y X , t > 0 and if for a number k  (0,1) 

   Fx,y(kt) ≥ Fx,y(t)  and  Lx,y(kt) ≤ Lx,y(t)                                                               (I) 

then x = y. 

Proof. Since t > 0 and  k (0 , 1) we get t > kt. In intuitionistic Menger space (X,F,L, ,) , Fx,y is non decreasing 

and Lx,y is non-increasing for all x,y X, then we have 

   Fx,y (t)  ≥  Fx,y(kt)  and   Lx,y(t)  ≥  Lx,y(kt). 

Using (I) and the definition of intuitionistic Menger space, we have x = y. 

Definition 2.13. The self-maps A and B of an intuitionistic Menger space (X,F,L, ,) are said to be compatible if 

for all t > 0, 

𝐹𝐴𝐵𝑥𝑛 ,𝐵𝐴𝑥𝑛
(t) = 1   and   𝐿𝐴𝐵𝑥𝑛 ,𝐵𝐴𝑥𝑛

 (t) = 0, 

whenever {𝑥𝑛} is a sequence in X such that  A𝑥𝑛=  B𝑥𝑛 = z for some z  X. 

Definition 2.14The self-maps A and B of an intuitionistic Menger space (X,F,L, ,) are said to  be compatible of 

type (A)  if  𝐹𝐴𝐵𝑥𝑛 ,𝐵𝐵𝑥𝑛
(t) = 1   , 𝐹𝐵𝐴𝑥𝑛,𝐴𝐴𝑥𝑛

(t) = 1   and     𝐿𝐴𝐵𝑥𝑛 ,𝐵𝐵𝑥𝑛
 (t) = 0,  𝐿𝐵𝐴𝑥𝑛 ,𝐴𝐴𝑥𝑛

 (t) = 

0whenever {𝑥𝑛} is a sequence such that      limn→∞A𝑥𝑛 = limn→∞B𝑥𝑛 = z , for some z in X . 

Definition 2.15. The self-maps A and B of an intuitionistic Menger space (X,F,L, ,) are said to be compatible of 

type (P) if for all t > 0, 

𝐹𝐴𝐴𝑥𝑛 ,𝐵𝐵𝑥𝑛
(t) = 1   and   𝐿𝐴𝐴𝑥𝑛 ,𝐵𝐵𝑥𝑛

 (t) = 0, 



 4 

whenever {𝑥𝑛} is a sequence in X such that  A𝑥𝑛=  B𝑥𝑛 = z for some z  X. 

Definition 2.16  The self-maps A and B of an intuitionistic Menger space (X,F,L, ,) are said to  be compatible of 

type (E)   

iff 𝐹𝐴𝐴𝑥𝑛,𝐴𝐵𝑥𝑛
(t) = 1   , 𝐹𝐴𝐴𝑥𝑛 ,𝐵𝑧(t) = 1 , 𝐹𝐵𝐵𝑥𝑛 ,𝐵𝐴𝑥𝑛

(t) = 1, 𝐹𝐵𝐵𝑥𝑛,𝐴𝑧(t) = 1  and 𝐿𝐴𝐴𝑥𝑛 ,𝐴𝐵𝑥𝑛
 (t) 

= 0, 𝐿𝐴𝐴𝑥𝑛,𝐵𝑧  (t) = 0 , 𝐿𝐵𝐵𝑥𝑛,𝐵𝐴𝑥𝑛
 (t) = 0, 𝐿𝐵𝐵𝑥𝑛 ,𝐴𝑧 (t) = 0 whenever {𝑥𝑛} is a sequence such that      

limn→∞A𝑥𝑛 =  limn→∞ B𝑥𝑛 = z , for some z in X . 

Definition 2.17. The self-maps A and B of an intuitionistic Menger space (X,F,L, ,) are said to be compatible of 

type (K)ifffor all t > 0, 

  𝐹𝐴𝐴𝑥𝑛 ,𝐵𝑧(t) = 1 , 𝐹𝐵𝐵𝑥𝑛 ,𝐴𝑧(t) = 1   and   𝐿𝐴𝐴𝑥𝑛 ,𝐵𝑧 (t) = 0,  𝐿𝐵𝐵𝑥𝑛 ,𝐴𝑧 (t) = 0 

whenever {𝑥𝑛} is a sequence in X such that  A𝑥𝑛=  B𝑥𝑛 = z for some z  X. 

Obviously pair of two compatible of type (E) maps is also compatible of type (K) however 

the converse is not true. 

Definition 2.17A pair of self mapping A and B of an intuitionistic Menger space (X,F,L, ,) is said to satisfy the 

(CLRg)  property if there exists a sequence {𝑥𝑛}  in X such that limn→∞  A𝑥𝑛= limn→∞B𝑥𝑛 = Bu , for some u ∈ X . 

Definition 2.18Two pairs (A,S)  and (B,T) of self mappings of an intuitionistic Menger space (X,F,L, ,) are  said to 

share CLRg of S property  if there exist two sequence {𝑥𝑛}  and {𝑦𝑛} in X such thatlimn→∞  A𝑥𝑛 = limn→∞ S𝑥𝑛 =  

limn→∞  B𝑦𝑛 = limn→∞ T𝑦𝑛 = Sz,  for some  zX. 

Example 2.19Let  X = [ 0,∞) be the usual metric space . Define g , h : X→X by gx= x+ 3 and  hx = 4x , for all xX 

. We consider the sequence {xn} = { 1 +  1/n }. Since, limn→∞gxn = limn→∞hxn = 4 = h(1) X  Therefore g and h 

satisfy the (CLRg)  property. 

 

3. MAIN RESULT 

 

Now we prove our main result 

Theorem 3.1. Let (X, F, L, , ) be a complete intuitionistic Menger space with ttt and (1-t)  (1-t)  (1-t) and let 

A, B, S and T be selfmappings of X such that the following conditions are satisfied : 

(i) A(X)  T(X)  ,  B(X)  S(X) , 

(ii) (B,T) is compatible of type (K), 

(iii) There exists k  (0,1) such that for every x, y X and t > 0, 

𝐹𝐴𝑥,𝐵𝑦(𝑘𝑡) {𝐹𝑆𝑥,𝑇𝑦(𝑡)𝐹𝐴𝑥,𝑆𝑥(𝑡)𝐹𝐵𝑦,𝑇𝑦(𝑡)𝐹𝐴𝑥,𝑇𝑦(𝑡)}                                         (1) 

and     𝐿𝐴𝑥,𝐵𝑦(𝑘𝑡) {𝐿𝑆𝑥,𝑇𝑦(𝑡)𝐿𝐴𝑥,𝑆𝑥(𝑡)𝐿𝐵𝑦,𝑇𝑦(𝑡)𝐿𝐴𝑥,𝑇𝑦(𝑡)}                                                        (2) 

If the pair (A,S ) and ( B, T) share the common limit in the range of S property , then  A, B, S and T have a unique 
common fixed point. 

Proof  Let 𝑥0be an arbitrary point in X. Since A(X)  T(X) and B(X)  S(X), there exist 𝑥1, 𝑥2 X such that  

A𝑥0 = T𝑥1 and B𝑥1 = S𝑥2. Inductively, we construct the sequences {𝑦𝑛} and {𝑥𝑛} in X such that  

𝑦2𝑛+1 = A𝑥2𝑛 = T𝑥2𝑛+1,      𝑦2𝑛+2 = B𝑥2𝑛+1 = S𝑥2𝑛+2 

for n = 0,1,2,….Now putting in (1) and (2) x = 𝑥2𝑛, y = 𝑥2𝑛+1, we obtain 

𝐹𝐴𝑥2𝑛,𝐵𝑥2𝑛+1
(𝑘𝑡) {𝐹𝑆𝑥2𝑛,𝑇𝑥2𝑛+1

(𝑡)𝐹𝐴𝑥2𝑛,𝑆𝑥2𝑛
(𝑡)𝐹𝐵𝑥2𝑛+1,𝑇𝑥2𝑛+1

(𝑡)𝐹𝐴𝑥2𝑛,𝑇𝑥2𝑛+1
(𝑡)} 

that is   

𝐹𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡) {𝐹𝑦2𝑛,𝑦2𝑛+1

(𝑡)𝐹𝑦2𝑛+1,𝑦2𝑛
(𝑡)𝐹𝑦2𝑛+2,𝑦2𝑛+1

(𝑡)𝐹𝑦2𝑛+1,𝑦2𝑛+1
(𝑡)} 

𝐹𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡) {𝐹𝑦2𝑛,𝑦2𝑛+1

(𝑡)𝐹𝑦2𝑛+1,𝑦2𝑛+2
(𝑡)} 

𝐹𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡)𝐹𝑦2𝑛,𝑦2𝑛+1

(𝑡) 

and 

𝐿𝐴𝑥2𝑛,𝐵𝑥2𝑛+1
(𝑘𝑡) {𝐿𝑆𝑥2𝑛,𝑇𝑥2𝑛+1

(𝑡)𝐿𝐴𝑥2𝑛,𝑆𝑥2𝑛
(𝑡)𝐿𝐵𝑥2𝑛+1,𝑇𝑥2𝑛+1

(𝑡)𝐿𝐴𝑥2𝑛,𝑇𝑥2𝑛+1
(𝑡)} 

that is   

𝐿𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡) {𝐿𝑦2𝑛,𝑦2𝑛+1

(𝑡)𝐿𝑦2𝑛+1,𝑦2𝑛
(𝑡)𝐿𝑦2𝑛+2,𝑦2𝑛+1

(𝑡)𝐿𝑦2𝑛+1,𝑦2𝑛+1
(𝑡)} 

𝐿𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡) {𝐿𝑦2𝑛,𝑦2𝑛+1

(𝑡)𝐿𝑦2𝑛+1,𝑦2𝑛+2
(𝑡)} 
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𝐿𝑦2𝑛+1,𝑦2𝑛+2
(𝑘𝑡)𝐿𝑦2𝑛,𝑦2𝑛+1

(𝑡) 

Similarly, 

𝐹𝑦2𝑛+2,𝑦2𝑛+3
(𝑘𝑡)𝐹𝑦2𝑛+1,𝑦2𝑛+2

(𝑡) and  𝐿𝑦2𝑛+2,𝑦2𝑛+3
(𝑘𝑡)𝐿𝑦2𝑛+1,𝑦2𝑛+2

(𝑡). 

Thus, we have 

𝐹𝑦𝑛+1,𝑦𝑛+2
(𝑘𝑡)𝐹𝑦𝑛,𝑦𝑛+1

(𝑡) and  𝐿𝑦𝑛+1,𝑦𝑛+2
(𝑘𝑡)𝐿𝑦𝑛,𝑦𝑛+1

(𝑡)    for n = 1,2,3, …. 

Therefore, we have 

𝐹𝑦𝑛,𝑦𝑛+1
(𝑡)𝐹𝑦𝑛,𝑦𝑛+1

(
𝑡

𝑞
)𝐹𝑦𝑛−1,𝑦𝑛

(
𝑡

𝑞2) … 𝐹𝑦1,𝑦2
(

𝑡

𝑞𝑛) → 1 

and𝐿𝑦𝑛,𝑦𝑛+1
(𝑡)𝐿𝑦𝑛,𝑦𝑛+1

(
𝑡

𝑞
)𝐿𝑦𝑛−1,𝑦𝑛

(
𝑡

𝑞2) … 𝐿𝑦1,𝑦2
(

𝑡

𝑞𝑛) → 0 when n→ ∞ 

For each  > 0 and t > 0, we can choose 𝑛0N  

such that𝐹𝑦𝑛,𝑦𝑛+1
(𝑡)> 1 −  and 𝐿𝑦𝑛,𝑦𝑛+1

(𝑡)<  for each n ≥ 𝑛0 

For m, n N, we suppose m ≥ n. Then, we have 

𝐹𝑦𝑛,𝑦𝑚
(𝑡) 𝐹𝑦𝑛,𝑦𝑛+1

(
𝑡

𝑚−𝑛
) 𝐹𝑦𝑛+1,𝑦𝑛+2

(
𝑡

𝑚−𝑛
) … 𝐹𝑦𝑚−1,𝑦𝑚

(
𝑡

𝑚−𝑛
) 

> ((1−)  (1−) ...(m−n)times...  (1−)) 

≥ (1−), 

and  𝐿𝑦𝑛,𝑦𝑚
(𝑡)≤𝐿𝑦𝑛,𝑦𝑛+1

(
𝑡

𝑚−𝑛
) 𝐿𝑦𝑛+1,𝑦𝑛+2

(
𝑡

𝑚−𝑛
) … 𝐿𝑦𝑚−1,𝑦𝑚

(
𝑡

𝑚−𝑛
) 

< (()()...(m−n)times...( )) 

≤(). 

𝐹𝑦𝑛,𝑦𝑚
(𝑡)> (1−),𝐿𝑦𝑛,𝑦𝑚

(𝑡)<.  

Hence {𝑦𝑛} is a Cauchy sequence in X. As X is complete, {𝑦𝑛} converges to some point z X. Also, its subsequences 

converges to this point zX, i.e.{B𝑥2𝑛+1} →z, {S𝑥2𝑛} →z,{A𝑥2𝑛} →z,{T𝑥2𝑛+1}→z. 

Since the pair (A, S) and (B,T) share the common limit in the range of S property, then there exist two sequences 

{𝑥𝑛} and {𝑦𝑛}  in X such that 

lim
𝑛→∞

𝐴𝑥𝑛 = lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝐵𝑦𝑛 = lim
𝑛→∞

𝑇𝑦𝑛 = Sz for some zX. 

First we prove that Az = Sz 

By (1), putting x = z and y = 𝑦𝑛 , we get 

𝐹𝐴𝑧,𝐵𝑦𝑛
(𝑘𝑡) {𝐹𝑆𝑧,𝑇𝑦𝑛

(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝐵𝑦𝑛,𝑇𝑦𝑛
(𝑡)𝐹𝐴𝑧,𝑇𝑦𝑛

(𝑡)} 

Taking  limit𝑛 → ∞, we get 

𝐹𝐴𝑧,𝑆𝑧(𝑘𝑡) {𝐹𝑆𝑧,𝑆𝑧(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝑆𝑧,𝑆𝑧(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)} 

𝐹𝐴𝑧,𝑆𝑧(𝑘𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)             (3) 

By (2), putting  x = z and y = yn , we get 

𝐿𝐴𝑧,𝐵𝑦𝑛
(𝑘𝑡)≤ {𝐿𝑆𝑧,𝑇𝑦𝑛

(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝐵𝑦𝑛,𝑇𝑦𝑛
(𝑡)𝐿𝐴𝑧,𝑇𝑦𝑛

(𝑡)} 

Taking  limit𝑛 → ∞, we get 

𝐿𝐴𝑧,𝑆𝑧(𝑘𝑡)≤ {𝐿𝑆𝑧,𝑆𝑧(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝑆𝑧,𝑆𝑧(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)} 

𝐿𝐴𝑧,𝑆𝑧(𝑘𝑡)≤𝐿𝐴𝑧,𝑆𝑧(𝑡)                                                    (4) 

By lemma 2.12 ,  Az = Sz                                                  (5) 

Since, A(X)  T(X), therefore there exist u X, such that Az = Tu                                     (6) 

Again by inequality (1), putting x = z and y = u, we get 

𝐹𝐴𝑧,𝐵𝑢(𝑘𝑡) {𝐹𝑆𝑧,𝑇𝑢(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝐵𝑢,𝑇𝑢(𝑡)𝐹𝐴𝑧,𝑇𝑢(𝑡)} 

Using (5) and (6) 

𝐹𝑇𝑢,𝐵𝑢(𝑘𝑡) {𝐹𝑇𝑢,𝑇𝑢(𝑡)𝐹𝑇𝑢,𝑇𝑢(𝑡)𝐹𝐵𝑢,𝑇𝑢(𝑡)𝐹𝑇𝑢,𝑇𝑢(𝑡)} 

𝐹𝑇𝑢,𝐵𝑢(𝑘𝑡)𝐹𝑇𝑢,𝐵𝑢(𝑡) 

By (2), putting  x = z and y = u , we get 

𝐿𝐴𝑧,𝐵𝑢(𝑘𝑡)≤ {𝐿𝑆𝑧,𝑇𝑢(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝐵𝑢,𝑇𝑢(𝑡)𝐿𝐴𝑧,𝑇𝑢(𝑡)} 

Using (5) and (6) 

𝐿𝑇𝑢,𝐵𝑢(𝑘𝑡)≤ {𝐿𝑇𝑢,𝑇𝑢(𝑡)𝐿𝑇𝑢,𝑇𝑢(𝑡)𝐿𝐵𝑢,𝑇𝑢(𝑡)𝐿𝑇𝑢,𝑇𝑢(𝑡)} 

𝐿𝑇𝑢,𝐵𝑢(𝑘𝑡)≤𝐿𝑇𝑢,𝐵𝑢(𝑡) 

By lemma 2.12 ,  

Tu = Bu                                                                                                 (7) 

Thus from (5), (6) ,(7) , we get  

Az = Sz = Tu = Bu                                                                 (8) 
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Now we will prove that Az = z 

By inequality (1), putting x = z and y = 𝑥2𝑛+1, 

𝐹𝐴𝑧,𝐵𝑥2𝑛+1
(𝑘𝑡) {𝐹𝑆𝑧,𝑇𝑥2𝑛+1

(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝐵𝑥2𝑛+1,𝑇𝑥2𝑛+1
(𝑡)𝐹𝐴𝑧,𝑇𝑥2𝑛+1

(𝑡)} 

Taking lim
𝑛→∞

, we get 

𝐹𝐴𝑧,𝑧(𝑘𝑡) {𝐹𝑆𝑧,𝑧(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝑧,𝑧(𝑡)𝐹𝐴𝑧,𝑧(𝑡)} 

𝐹𝐴𝑧,𝑧(𝑘𝑡)𝐹𝐴𝑧,𝑧(𝑡) 

By (2), putting x = z and y = 𝑥2𝑛+1, 

𝐿𝐴𝑧,𝐵𝑥2𝑛+1
(𝑘𝑡) ≤ {𝐿𝑆𝑧,𝑇𝑥2𝑛+1

(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝐵𝑥2𝑛+1,𝑇𝑥2𝑛+1
(𝑡)𝐿𝐴𝑧,𝑇𝑥2𝑛+1

(𝑡)} 

Taking  limit𝑛 → ∞, we get 

𝐿𝐴𝑧,𝑧(𝑘𝑡) ≤ {𝐿𝑆𝑧,𝑧(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝑧,𝑧(𝑡)𝐿𝐴𝑧,𝑧(𝑡)} 

𝐿𝐴𝑧,𝑧(𝑘𝑡) ≤ 𝐿𝐴𝑧,𝑧(𝑡) 

By lemma 2.12, Az = z.. Thus from (8), we get z = Tu = Bu 

Now (B, T) is compatible of type (K)  then 

lim
𝑛→∞

𝐵𝐵𝑦2𝑛+1 = Tz   and   lim
𝑛→∞

𝑇𝑇𝑦2𝑛+1 = Bz 

that is Bz = Tz 

Now putting x = z and y = z in inequality (1), we get 

𝐹𝐴𝑧,𝐵𝑧(𝑘𝑡) {𝐹𝑆𝑧,𝑇𝑧(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝐵𝑧,𝑇𝑧(𝑡)𝐹𝐴𝑧,𝑇𝑧(𝑡)} 

𝐹𝐴𝑧,𝐵𝑧(𝑘𝑡)𝐹𝐴𝑧,𝐵𝑧(𝑡) 

By (2), we get 

𝐿𝐴𝑧,𝐵𝑧(𝑘𝑡) ≤ {𝐿𝑆𝑧,𝑇𝑧(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝐵𝑧,𝑇𝑧(𝑡)𝐿𝐴𝑧,𝑇𝑧(𝑡)} 

𝐿𝐴𝑧,𝐵𝑧(𝑘𝑡) ≤  𝐿𝐴𝑧,𝐵𝑧(𝑡) 

By lemma 2.12,  Az = Bz  and  hence Az = Bz = z 

Combining all results , we get z = Az = Bz = Sz = Tz. 

From this we conclude that z is a common fixed point of A, B, S and T. 

Uniqueness : Let 𝑧1 be another common fixed point of A, B, S and T . Then 

𝑧1  = A𝑧1 = B𝑧1 = S𝑧1 = T𝑧1and         z = Az = Bz = Sz = Tz 

then by inequality (1), putting x = z and y = 𝑧1 , we get 

𝐹𝐴𝑧,𝐵𝑧1
(𝑘𝑡) {𝐹𝑆𝑧,𝑇𝑧1

(𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡)𝐹𝐵𝑧1,𝑇𝑧1
(𝑡)𝐹𝐴𝑧,𝑇𝑧1

(𝑡)} 

𝐹𝑧,𝑧1
(𝑘𝑡)𝐹𝑧,𝑧1

(𝑡) 

By (2) , we get 

𝐿𝐴𝑧,𝐵𝑧1
(𝑘𝑡) ≤ {𝐿𝑆𝑧,𝑇𝑧1

(𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡)𝐿𝐵𝑧1,𝑇𝑧1
(𝑡)𝐿𝐴𝑧,𝑇𝑧1

(𝑡)} 

𝐿𝑧,𝑧1
(𝑘𝑡) ≤ 𝐿𝑧,𝑧1

(𝑡) 

By lemma 2.12, we get  z = z1. 

Thus z is the unique common fixed point of A, B, S and T. 

If we increase the number of self maps from four to six then we have the following . 

Corollary 3.2 Let (X, F, L, , ) be a complete intuitionistic Menger space with ttt and (1-t)  (1-t)  (1-t) . Let A, 

B, S, T, I and J be selfmappings of X such that the following conditions are satisfied : 

(i) AB(X)  J(X)  ,  ST(X)  I(X) , 

(ii) (ST,J) is compatible of type (K) 

(iii) There exists k  (0,1) such that for every x,y X and t > 0, 

                𝐹𝐴𝐵𝑥,𝑆𝑇𝑦(𝑘𝑡) {𝐹𝐼𝑥,𝐽𝑦(𝑡)𝐹𝐴𝐵𝑥,𝐼𝑥(𝑡)𝐹𝑆𝑇𝑦,𝐽𝑦(𝑡)𝐹𝐴𝐵𝑥,𝐽𝑦(𝑡)}                                               (9) 

and     𝐿𝐴𝐵𝑥,𝑆𝑇𝑦(𝑘𝑡) {𝐿𝐼𝑥,𝐽𝑦(𝑡)𝐿𝐴𝐵𝑥,𝐼𝑥(𝑡)𝐿𝑆𝑇𝑦,𝐽𝑦(𝑡)𝐿𝐴𝐵𝑥,𝐽𝑦(𝑡)}                                                 (10) 

If the pair (AB,I) and (ST,J) share the common limit in the range of I property , then  AB, ST, I and J have a unique 

common fixed point. Furthermore, if the pairs (A,B), (A,I),(B,I), (S,T),(S,J) and (T,J) are commuting mapping then 

A, B, S, T, I and J have a unique common fixed point. 

Proof. From theorem 3.1,z is the unique common fixed point of AB, ST, I and J. 

Finally, we need to show that z  is also a common fixed point of  A, B, S, T, I, and J. For this, let z be the unique 

common fixed point of both the pairs (AB,I) and (ST,J). Then, by using commutativity of the pair (A,B) , (A, I) , and 

(B, I) , we obtain 

Az = A(ABz) = A(BAz) = AB(Az) , Az = A( Iz) =I (Az) ,(11) 

Bz = B( ABz) = B( A(Bz)) = BA(Bz) = AB(Bz) , Bz = B( Iz) = I(Bz) , 
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which shows that Az and Bz are common fixed point of(AB, I) , yielding thereby 

Az = z = Bz = Iz = ABz                                                     (12) 

In the view of uniqueness of the common fixed point of the pair (AB,I). Similarly, using the commutativity of (S,T) 

,(S, J) , (T, J) , it can be shown that 

Sz  =Tz = Jz =  STz = z.                                                                                                               (13) 

Now, we need to show that Az = Sz (Bz = Tz) also remains a common fixed point of both the pairs (AB, I)and(ST, J) 

. For this, put x = z and y = z in (9) and using (12) and (13) , we get 

𝐹𝐴𝐵𝑧,𝑆𝑇𝑧(𝑘𝑡) {𝐹𝐼𝑧,𝐽𝑧(𝑡)𝐹𝐴𝐵𝑧,𝐼𝑧(𝑡)𝐹𝑆𝑇𝑧,𝐽𝑧(𝑡)𝐹𝐴𝐵𝑧,𝐽𝑧(𝑡)} 

𝐹𝐴𝑧,𝑆𝑧(𝑘𝑡)𝐹𝐴𝑧,𝑆𝑧(𝑡) 

and by (10) 

𝐿𝐴𝐵𝑧,𝑆𝑇𝑧(𝑘𝑡) {𝐿𝐼𝑧,𝐽𝑧(𝑡)𝐿𝐴𝐵𝑧,𝐼𝑧(𝑡)𝐿𝑆𝑇𝑧,𝐽𝑧(𝑡)𝐿𝐴𝐵𝑧,𝐽𝑧(𝑡)} 

𝐿𝐴𝑧,𝑆𝑧(𝑘𝑡)𝐿𝐴𝑧,𝑆𝑧(𝑡) 

By lemma 2.12, we getAz = Sz. Similarly, it can be shown that Bz = Tz. Thus, z  is the unique common fixed point 

of A, B, S, T, I, and J.  
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