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ABSTRACT:  

We propose a novel algorithm to perform efficient modified-Newton-Raphson optimization over the active set of selected features 

(AMNR), and show that it allows to estimate multiple penalized least-squares (MPLS) models. MPLS models are used to find flexible 

and adaptive least-squares solutions to highly ill-posed linear inverse problems, mainly requiring them to be simultaneously sparse 

and smooth. This is relevant for applications where there is no ground truth, e.g., estimating electrophysiological sources. In this work, 

we step on a modified Newton-Raphson algorithm that can be interpreted as a generalization of the Minorization-Maximization 

algorithm to include combinations of several constraints, and derive the AMNR algorithm following an approach similar to that used 

for Least Angle Regression. This algorithm allows us to implement many different MPLS models, including novel models such as the 

Smooth Nonnegative Garrote and the Nonnegative Smooth LASSO. The performance of the algorithm is evaluated using simulated 

data from a simple ill-posed linear regression and from a realistic Electroencephalographic setup. Different models containing one or 

two penalty functions, and including sign constraints were evaluated in both cases. The algorithm allowed the recovering of solutions 

in a fast way and with adequate quality in simulated scenarios for different n/p ratios.  
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RESUMEN 

Proponemos un algoritmo novedoso para realizar una optimización eficiente de Newton-Raphson modificada, sobre el conjunto activo 

de variables (AMNR). Mostramos que este permite estimar modelos de Mínimos Cuadrados con Múltiple Penalización (MPLS). Los 

modelos MPLS se utilizan para encontrar soluciones de mínimos-cuadrados flexibles y adaptables, para problemas inversos mal 

planteados de alta dimensionalidad, restringiéndolas a que sean simultáneamente ralas y suaves. Esto es relevante para resolver 

problemas inversos reales donde no hay criterio de verdad, como en la estimación de las fuentes electrofisiológicas. En este trabajo, 

partimos de un algoritmo de Newton-Raphson modificado que generaliza el algoritmo de Minorization-Maximization para incluir 

combinaciones de penalizadores, y derivamos el algoritmo AMNR siguiendo un enfoque similar al utilizado para la regresión LARS. 

El AMNR nos permite implementar muchos modelos MPLS diferentes, incluidos modelos novedosos como el Garrote suave no-

negativo y el LASSO suave no-negativo. El rendimiento del algoritmo se evalúa utilizando datos simulados de una regresión lineal 

mal planteada y datos reales de electroencefalografía, para un grupo de modelos que contienen una o dos funciones de penalización e 

incluyen además restricciones de signo. El algoritmo permitió recuperar soluciones de forma más rápida y con suficiente calidad en 

escenarios simulados para diferentes razones n/p. 

 

PALABRAS CLAVES: mínimos-cuadrados con múltiple penalización, conjunto activo, problema inverso, EEG, LARS.  

 

1. INTRODUCTION 

We consider the linear regression model y Xβ e= + , where the columns of matrix X ( 𝐱𝑗 ∈ ℝ𝑛, j=1… 𝑝) are 

predictors, 𝐲 ∈ ℝ𝑛 the response vector, 𝛃 ∈ ℝ𝑝 the vector of coefficients to be estimated and 𝜀 ∈ ℝ𝑛  the error 

term with 𝜀~𝑁(0,⃗⃗ 𝜎2𝐈). The interesting underdetermined scenario where 𝑝 ≫ 𝑛 leads to highly ill-posed problems 

with no unique solution. To find a plausible solution to a particular problem, the only way is to use additional 

constraints to the solution. The classical approach for this is the Tikhonov regularization [28] which formulates 

the problem as a penalized regression, where the penalty term Ψ(𝛃) defines the characteristics of the solution 

sought:  

𝛃̂ = argmin
𝛃

{(𝐲 − 𝐗𝛃)𝑇(𝐲 − 𝐗𝛃) + 𝝀Ψ(𝛃)}, 
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Here l  is a regularization parameter which determines the relative weight of the penalty function versus the 

likelihood term, which measures the level of data fitting. In the original Tikhonov approach, the solution is taken 

as the limit when the regularization parameter tends to zero. However, this usually tends to the Ordinary Least 

Squares (OLS) solution, which has the minimum variance among all unbiased estimators, but which was quickly 
recognized as not being the optimal one in real-world problems. An alternative way is to directly apply penalized 

regression methods, which lead to biased estimators with smaller variance than that of the OLS estimator [8]. This 

approach has been argued to be useful for both developing predictive models and selecting key indicators from a 

substantially larger pool of available indicators [9]. Following this penalized least-squares regression approach, 

many new extensions of regularization techniques have been applied to this type of problems in the last decade 

[32]. These techniques produce biased but stable linear solutions when using L2-norm penalties, being Ridge 

regression [12] the classical example, which can be stated in its general form as: 

𝛃̂ = argmin
𝜷

{(𝐲 − 𝐗𝛃)𝑇(𝐲 − 𝐗𝛃) + 𝝀‖𝛃‖2
2}, 

The advent of the least absolute shrinkage and selection operator (LASSO) [26] and the emergence of the more 

general penalized least squares formulation [4], allowed the recovery of sparse solutions, where only a small 

number of coefficients are nonzero, while Ridge does not produce sparse estimators. In this context, LASSO can 

be stated as 

𝛃̂ = argmin
𝜷

{(𝐲 − 𝐗𝛃)𝑇(𝐲 − 𝐗𝛃) + 𝝀‖𝛃‖𝟏}, 

which mainly differs from Ridge by using the L1-norm of coefficients instead of the L2-norm as the regularization 

term. As this type of penalty leads to sparse solutions, the estimation process can be seen as a variable selection 

technique. The penalty function can be based on the norm of linear combinations of the coefficients to impose 

smoother estimators and may also involve both L1-norm and L2-norm functions. A general formulation can thus 

be obtained when the penalty functional is a sum of several convex and non-convex constraints or penalty terms. 

This general model has been named as Multiple Penalized Least Squares (MPLS) [31, 24] and in this broad sense, 

specific methods that have been proposed and validated in the literature such as the Fused LASSO [27], the Elastic 

Net (ENET) [34], the Smooth LASSO (SLASSO) [11], and the recently proposed Liu-LASSO [8], can be seen as 

particular instances.  

From the computational point of view, the local quadratic approximation (LQA) [5] and the minorization-

maximization (MM) [13, 17] algorithms provide a numerical engine to implement specific penalized least-squares 
models. These algorithms can be seen as applications of the modified Newton-Raphson (NR) technique using an 

approximation of the objective function. LQA and MM inherits the virtues of the NR, but they cannot deal with 

any combination of penalty terms in more general MPLS models. To overcome this difficulty, Valdés-Sosa and 

colleagues introduced a generalized MM method for the estimation of massive autoregressive models of 

neuroimaging data [30], and for solving the M/EEG inverse problem [31]. Another drawback is that neither LQA 

nor MM produce true sparse solutions and depend on an additional parameter to assure numerical stability [19]. 

Although Kim et al. (2018) [14] found that MM are quite robust to correlated predictors and show stable 

convergence for a wide range of the regularization parameter, they also commented that in practice these 

algorithms can be combined with an active set strategy, which reduces the number of variables before the algorithm 

runs by setting the coefficients of the discarded variables to zero. Some examples of this approach are the least 

angle regression (LARS) [4] and the Shooting algorithm [7] also known as coordinate-wise descent [6]. These 
algorithms offer efficient implementations for some specific models (e.g., LASSO, ENET) with the advantage that 

they make variable selection and estimation simultaneously. However, their application scope is not as extensive 

as in the case of LQA and MM approaches [33].  

The recovery of simultaneously sparse and smooth estimators constitutes a challenge that was addressed by our 

group using a computational “trick” and the MM algorithm [30]. However, it cannot ensure strict sparseness or 

produce combined smooth and sign constrained solutions. Indeed, the use of NR techniques to solve penalized 

least-squares methods with nonnegative constraints has been much less explored (see [19] and [18] for alternative 

and closely related procedures for imposing nonnegativity in linear regression). Using direct variable selection 

methods seems to offer a more feasible approach, as shown by Mørup et al., 2008 [20], who introduced a version 

of the LARS algorithm to implement the LASSO model with nonnegative constraints. 

In this work, we step on a modified NR algorithm that can be interpreted as a generalization of the Minorization-

Maximization algorithm to include combinations of several constraints, and then propose an algorithm based on 
the active-set technique (AMNR). The AMNR can be seen as an extension of the LARS algorithm for convex and 

continuously differentiable cost functions in possible nonnegative (nonpositive) scenarios. The AMNR algebraic 

details and proof of the optimality conditions are discussed in this paper for the Adaptive LASSO [35], which 

makes it easy to use the algorithm for estimating a wider class of optimization problems using the combination of 

penalties based on L1 and L2 norms. In particular, it provides a straightforward application of the AMNR algorithm 

to estimate the “whole path of coefficients” for the Nonnegative Garrote. Then, we also extend it to include an L2-

norm penalty to create the Smooth Nonnegative Garrote (SNNG) and to include sign constraints on the Smooth 

LASSO model to create the Nonnegative Smooth LASSO (NN-SLASSO) method.  
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This article is organized as follows: The MNR algorithm for implementing MPLS methods to extract sparse and 

smooth solutions is formulated in Section 2, while the proposed general AMNR algorithm is shown in Section 3. 

Sections 4 and 5 will provide the proof of the optimality conditions and the implementation of the AMNR 

algorithm for the Adaptive LASSO model, respectively. Then, Section 6 is devoted to illustrate the performance 

of the proposed algorithm using simulated data, both with a general random design matrix and with realistic EEG 

sources. The Conclusions of the study follows, together with a discussion of limitations and future research. 

2. FORMULATION OF THE MODIFIED NEWTON-RAPHSON (MNR) ALGORITHM AND 

RELATION WITH THE MINORIZATION-MAXIMIZATION (MM) ALGORITHM 

The Multiple Penalized Least Squares (MPLS) model [31,24] is stated as the minimization of the following 

functional:  

                                  𝑓(𝛃) =
1

2
(𝐲 − 𝐗𝛃)𝑇(𝐲 − 𝐗𝛃) + Ψ(𝛃) (1) 

where the penalty term takes the form of a sum of several constraints or penalty functions, i.e., Ψ(𝛃) =

∑ 𝜆𝑟 ∑ 𝑔𝑟(|𝜃𝑖
(𝑟)|)𝑁𝑟

𝑖=1
𝑅
𝑟=1 . This is evaluated at the components of the vector 𝛉(𝑟) = 𝐋(𝑟)𝛃, with 𝐋(𝑟) ∈ ℝ 𝑁𝑟×𝑝 being 

linear operators that impose a structural relationship among coefficients, (e.g., the matrix of first or second 

differences). The regularization parameters 𝜆𝑟, for 𝑟 = 1, … , 𝑅, establish the relative importance of each constraint. 

As can be easily shown, LASSO and Ridge regression minimize instances of equation (1), setting 𝑅 = 1, 𝐋 = 𝐈𝑝 

(the 𝑝 × 𝑝 identity matrix) and using the L1 and L2 norms as penalty functions, respectively. These and other 

known particular examples of this general model are summarized in Table 1. 

In order to derive a general modified Newton-Raphson algorithm for the MPLS model, it is important to find the 

gradient and the Hessian of the objective function of equation (1): 

∇𝑓(𝛃) = −𝐗𝑇(𝐲 − 𝐗𝛃) + ∑ 𝜆𝑟 ∑ ∇𝜃𝑖
(𝑟)(𝛃)𝑔𝑟′(|𝜃𝑖

(𝑟)|)𝑠𝑔𝑛(𝜃𝑖
(𝑟))

𝑁𝑟

𝑖=1

𝑅

𝑟=1

= −𝐗𝑇(𝐲 − 𝐗𝛃)+ ∑ 𝜆𝑟 ∑ 𝐋𝑖
(𝑟)𝑇(𝑔𝑟′(|𝜃𝑖

(𝑟)|)/|𝜃𝑖
(𝑟)|)𝐋𝑖

(𝑟)𝛃
𝑁𝑟

𝑖=1

𝑅

𝑟=1
 

∇2𝑓(𝛃) = 𝐗𝑇𝐗 + ∑ 𝜆𝑟 ∑ 𝐋𝑖
(𝑟)𝑇 (𝑔𝑟′′(|𝜃𝑖

(𝑟)
|))𝐋𝑖

(𝑟)
𝑁𝑟

𝑖=1

𝑅

𝑟=1
 

where the scalar magnitude 𝜃𝑖
(𝑟)

 is the i-th element of 𝛉(𝑟) and 𝑠𝑔𝑛(∙) represents the sign function, which was 

conveniently written as 𝑠𝑔𝑛(𝑥) = 𝑥/|𝑥|; ∀𝑥 ≠ 0 and 𝑠𝑔𝑛(0) = 0. In this expression, both 𝑔𝑟′ and 𝑔𝑟′′ represent 

the first and second derivatives of the scalar function 𝑔𝑟 with respect to |𝜃𝑖
(𝑟)|, while 𝐋𝑖

(𝑟)
 represents the i-th row 

of the matrix 𝐋(𝑟). We now follow the same rationale used by the minorization-maximization (MM) algorithm of 

Hunter and Li [13]. They showed that the local quadratic approximation is an instance of an MM algorithm. 

Therefore, we need to verify that our general penalty function Ψ(𝛃) = ∑ 𝜆𝑟 ∑ 𝑔𝑟(|𝜃𝑖
(𝑟)|)𝑁𝑟

𝑖=1
𝑅
𝑟=1  satisfies the 

conditions established in Proposition 3.1 presented in [5] that we rewrite here with our notation for an easier 

understanding of its application to the general MPLS case. 

Name Penalty term Function definition 

Ridge I 

Ψ = 𝜆∑𝑔(|𝜃𝑖|)

𝑝

𝒊=𝟏

 

𝑔(|𝜃|) = |𝜃|2; 𝛉 = 𝛃 

Ridge L 𝑔(|𝜃|) =|𝜃|2; 𝛉 = 𝐋𝛃 

LASSO 𝑔(|𝜃|) = |𝜃|; 𝛉 = 𝛃 

Fusion LASSO 𝑔(|𝜃|) =  |𝜃|; 𝛉 = 𝐋𝛃 

Smooth LASSO 

(SLASSO) 

Ψ = 𝜆1 ∑𝑔1(|𝜃𝑖
(1)|)

𝑝

𝑖=1

+ 𝜆2 ∑𝑔2(|𝜃𝑖
(2)|)

𝑝

𝑖=1

 

𝑔1(|𝜃|) =  |𝜃|; 𝛉(1) = 𝛃 

𝑔2(|𝜃|) =  |𝜃|2; 𝛉(2) = 𝛀𝛃 

Elastic Net 

(ENET L) 

𝑔1(|𝜃|) =  |𝜃|; 𝛉(1) = 𝐋𝛃 

𝑔2(|𝜃|) =  |𝜃|2; 𝛉(2) = 𝐋𝛃 

Adaptive LASSO 

(ALASSO) 
Ψ = 𝜆∑𝛾𝑖 𝑔(|𝜃𝑖|)

𝑝

𝑖=1

 
𝑔(|𝜃|) =  |𝜃|; 𝛉 = 𝛃 

with 𝛾𝑖 > 0 for i = 1,… , 𝑝 
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Nonnegative Garrote 

(NNG) 

𝑔(|𝜃|) =  |𝜃|; 𝛉 = 𝛃 

with 𝛾𝑖 = 1/|𝛽𝑖
𝑜𝑙𝑠| 

for i = 1,… , 𝑝 

𝛃 ≥ 0     𝑖𝑓   𝛃𝒐𝒍𝒔 > 0 

𝛃 ≤ 0     𝑖𝑓   𝛃𝒐𝒍𝒔 < 0 

Smooth Non-

Negative Garrote 

(SNNG) 

Ψ = 𝜆1 ∑𝑔1(|𝜃𝑖
(1)|)

𝑝

𝑖=1

+ 𝜆2 ∑𝛾𝑖 𝑔2(|𝜃𝑖
(2)|)

𝑝

𝑖=1

 

𝑔1(|𝜃|) =  |𝜃|; 𝛉(1) = 𝛃 

𝑔2(|𝜃|) =  |𝜃|2; 𝛉(2) = 𝐋𝛃 with 

𝛾𝑖 = 1/|𝛽𝑖
𝑟𝑒𝑓|; 𝛃 ≥ 0  

Non-Negative 

Smooth LASSO  

(NN-SLASSO) 

𝑔1(|𝜃|) =  |𝜃|; 𝛉(1) = 𝛃 

𝑔2(|𝜃|) =  |𝜃|2; 𝛉(2) = 𝛀𝛃 

with 𝛾𝑖 = 1; 𝛃 ≥ 0  

Table 1: Known models represented as instances of the general MPLS model (equation (1)). Here, 𝛀 ∈ ℝ 𝑝×𝑝 is 

the first-differences operator and 𝐋 ∈ ℝ 𝑝×𝑝 is a matrix used for imposing a correlation structure in the solution, 

typically being the first- or second-differences operator. The 𝛃𝑜𝑙𝑠 represents the ordinary least squares solution. 

Proposition 1: (adapted from Proposition 3.1 in Hunter & Li, 2005 [13]). Suppose that on (0, ∞), 𝑔(⋅) is piecewise 

differentiable, nondecreasing and convex. Furthermore, it is continuous at 0 and 𝑔′(0+) < ∞ (i.e., the limit of 

𝑔′(𝑥) as 𝑥 → 0 from positive values is finite). Then, for all θ0 ≠ 0, the magnitude defined as: Φθ0
(θ) = 𝑔(|θ0|) +

(θ2 − θ0
2)𝑔′(|θ0|+)  2 |θ0|⁄ , satisfies  

a) Φθ0
(θ) ≥ 𝑔(|θ|) for all θ, with equality when θ = ±|θ0|; i.e., Φθ0

(θ) majorizes 𝑔(|θ|)  

b) Φθ0
(θ) < Φθ0

(θ0) implies that 𝑔(|θ|) < 𝑔(|θ0|) 

Carrying out simple mathematical transformations, the penalty term of the objective function for MPLS models 

can be written as the sum of new functions: 

Ψ(𝛃) = ∑ 𝜆𝑟 ∑ 𝑔𝑟(|𝜃𝑖
(𝑟)|)

𝑁𝑟

𝑖=1

𝑅

𝑟=1
= ∑ ∑ 𝜆𝑟𝑔𝑟(|𝜃𝑖

(𝑟)|) 
𝑅

𝑟=1

𝑁𝑟

𝑖=1
 = ∑ 𝒢(|𝜃𝑖|)

𝑁𝑟

𝑖=1
 

In simple terms, the sums can be exchanged only if all linear operators 𝐋(𝑟) are the same, such that the vector 

functions 𝛉(𝑟)(𝛃) = 𝐋(𝑟)𝛃 lead to the same variable with components 𝜃𝑖
(𝑟)

 for all r. In that case, it is easy to see 

that if every penalty function 𝑔𝑟(|𝜃𝑖
(𝑟)|) satisfies the conditions of Proposition 1, then 𝒢(|𝜃𝑖|) =

∑ 𝜆𝑟𝑔𝑟(|𝜃𝑖
(𝑟)|)𝑅

𝑟=1   is piecewise differentiable on (0,+∞) and the results of Proposition 1 will hold. However, an 

algorithm for a more general case when the 𝐋(𝑟) are not the same, can be derived with the use of the local quadratic 

approximation proposed by [13] for all functions 𝑔𝑟, which converts the original penalty term in an equivalent 

quadratic penalty. To avoid numerical problems when 𝜃𝑖 ≈ 0, they proposed to modify the objective function (i.e., 

an approximation 𝑓𝜀(𝛃)) by perturbing the penalty function 𝑔, using some small 𝜀 > 0, as: 𝑔𝜀(|𝜃|) = 𝑔(|𝜃|) −

𝜀 ∫
𝑔′(𝑡)

𝜀+𝑡

|𝜃|

0
𝑑𝑡. 

Applying this perturbation to every penalty function 𝑔𝑟 in the MPLS model, we can obtain a local quadratic 

approximation for all of them as a function of a common variable |𝜃|:  

 𝑔𝜀
(𝑟)(|𝜃|) ≈ 𝑔𝑟(|𝜃𝑖

(𝑟)|) +
(|𝜃|2−|𝜃𝑖

(𝑟)
|
2
)𝑔𝑟

′(|𝜃𝑖
(𝑟)

|
+
)

2(𝜀+|𝜃𝑖
(𝑟)

|)
, 

where the symbol 𝑓(𝜃+) denotes the limit of 𝑓(𝑥) as 𝑥 → 𝜃 from positive values. The Newton-Raphson technique 

is then used to minimize the perturbed objective function through its first and second derivatives: 

 ∇𝑓𝜀(𝛃) = −𝐗𝑇𝐲 + (𝐗𝑇𝐗 + ∑ 𝜆𝑟𝐋
(𝑟)𝑇𝐃(𝑟)𝐋(𝑟)𝑅

𝑟=1 )𝛃 

          ∇2𝑓𝜀(𝛃) = 𝐗𝑇𝐗 + ∑ 𝜆𝑟𝐋
(𝑟)𝑇𝐃(𝑟)𝐋(𝑟)𝑅

𝑟=1  

where 𝐃(𝑟) is a diagonal matrix with diagonal elements defined as 𝑑𝑖
(𝑟)

= 𝑔𝑟
′ (|𝜃𝑖

(𝑟)|) (𝜀 + |𝜃𝑖
(𝑟)|)⁄  for 𝑖 = 1, … ,𝑁𝑟 

and some very small 𝜀 > 0. Note that in this case, the diagonal matrix 𝐃(𝑟) is the same in both the gradient and 

the Hessian, as the penalty functions are now approximated as locally quadratic where 𝑔′′(|𝜃|) = 𝑔′(|𝜃|)/|𝜃|. 
Then, we can locally minimize the perturbed objective function 𝑓𝜀(𝛃) for some 𝛼𝑘 > 0, using the iterative formula: 

𝛃𝑘+1 = 𝛃𝑘 − 𝛼𝑘{∇
2𝑓𝜀(𝛃𝑘)}

−1∇𝑓𝜀(𝛃𝑘) = 𝛃𝑘 + 𝛼𝑘 [(𝐗𝑇𝐗 + ∑𝜆𝑟𝐋
(𝑟)𝑇𝐃(𝑟)𝐋(𝑟)

𝑅

𝑟=1

)

−1

𝐗𝑇𝐲 − 𝛃𝑘] 

Note that ‖𝑓(𝛃) − 𝑓𝜀(𝛃)‖ → 0 and ‖∇𝑓(𝛃) − ∇𝑓𝜀(𝛃)‖ → 0 uniformly whenever 𝜀 → 0. Thus, any limit point of 

the estimated sequence 𝛃1, 𝛃2, … represent a critical point of the original objective function 𝑓(𝛃) [14].  
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In our case, the objective function may be more complex if it combines different convex and non-convex penalty 

functions with correlation structure. In those cases, the NR algorithm can be stuck at saddle or local stationary 

points. However, the function 𝑓(𝛃) is convex for penalty functions based on L1 and L2 norms, e.g., Fused LASSO 

[27], Fusion LASSO [15] (Land and Friedman 1996) and Smooth LASSO [11]. Therefore, for these cases the 

MNR implementation and, in particular, the canonical version (𝛼𝑘 = 1), achieves the global minimum. Finally, 

the parameter 𝜀 can be selected as proposed by Hunter & Li, (2005): 

𝜀 =
𝑡𝑜𝑙

2𝑅𝑀
min{|𝜃𝑖

(𝑟)|: 𝜃𝑖
(𝑟)

≠ 0}, for 𝑖 = 1, … , 𝑁𝑟 and 𝑟 = 1,… ,𝑅, 

where 𝑀 = max{𝑔𝑟
′ (0+)}, for 𝑟 = 1, … ,𝑅, and 𝑡𝑜𝑙 > 0 is the convergence parameter (i.e. convergence is 

determined when an absolute change in every element of the vector solution is below a predefined value 𝑡𝑜𝑙, such 

that |𝜕𝑗𝑓𝜀(𝛃)| < 𝑡𝑜𝑙 2⁄ ). The parameter 𝜀 becomes smaller through iterations but it is usually fixed after the first 

iteration to avoid numerical instability (see [10]). 

We then propose a canonical version of the MNR algorithm in the table Algorithm 1, following the same rationale 

as Hunter and Li on the Minorization-Maximization algorithm. The basic difference with the MM is that, in step 

5 of Algorithm 1, the sum of the derivatives of all penalty functions are included in the regularization of the design 

matrix. This is precisely what makes this algorithm general for any differentiable penalty functions 𝑔𝑟 and linear 

operators 𝐋(𝑟). 

This algorithm depends on the regularization parameters 𝜆1, … , 𝜆𝑅, which can be chosen from a given grid of 

values or from an automatically determined range according to the singular values of 𝐗. The selection of the 

‘optimal values’ for these parameters is a process that will not be considered here in detail. This is usually done 

by minimizing information criteria such as Akaike (AIC), Bayesian (BIC) or the generalized cross-validation 
(GCV) function. For this purpose, it is necessary to compute the degrees of freedom, which can be estimated as 

proposed in Hunter & Li, (2005)[13]. In order to avoid the selection of optimal parameters in an R-dimensional 

grid, we prefer to set 𝜆𝑟 = 𝜆𝜇𝑟 and set ad hoc values for the proportions 𝜇𝑟 > 0, for ∀𝑟 = 1,… , 𝑅, (such that 
∑𝜇𝑟 = 1), which represent prior assumptions about relative penalty contributions and allow simplifying the 

process to estimating only the overall weight as a single parameter 𝜆.  

Algorithm 1. MNR for MPLS (𝐲 ∈ ℝ𝑛×1, 𝐗 ∈ ℝ𝑛×𝑝 , 𝜆1, … , 𝜆𝑅 ,  𝐋(1),..., 𝐋(𝑟) ∈ ℝ𝑁𝑟×𝑝) 

1. Start with 𝑘: 𝑘 ⟵ 0 and set τ ← 10−8, 𝜀 ← 10−8, MaxIter← 100 and 𝛀 ← 𝐈𝑝 

2. Set 𝑘 ⟵ 𝑘 + 1 and compute 𝛃𝑘 ⟵ (𝐗𝑇𝐗 + 𝛀)−1𝐗𝑇𝐲 

3. Set 𝛉(𝑟) ← 𝐋(𝑟)𝛃𝑘 for 𝑟 = 1,… ,𝑅 and compute 

𝐃(𝑟) ⟵ diag(𝑔𝑟
′ (|𝜃1

(𝑟)|) (𝜀 + |𝜃1
(𝑟)|)⁄ ,… , 𝑔𝑟

′ (|𝜃𝑁𝑟

(𝑟)|) (𝜀 + |𝜃𝑁𝑟

(𝑟)|)⁄ ) 

4. If 𝑘 = 1, then set 𝑀 ← max{𝑔𝑟
′ (0+)} and 𝜀 ⟵

𝜏

2𝑅𝑀
min{|𝜃𝑖

(𝑟)|: 𝜃𝑖
(𝑟) ≠ 0} 

5. Set 𝛀 ⟵ ∑𝜆𝑟𝐋
(𝑟)𝑇𝐃(𝑟) 𝐋(𝑟) and compute 𝛅 ← −𝐗𝑇𝐲 + (𝐗𝑇𝐗 + 𝛀)𝛃𝑘 

6. If |δ𝑗| < τ 2⁄  for all 𝑗 ∈ {1, … , 𝑝} such that|β𝒋| ≥ 𝜀, then goto Step 8. 

7. If 𝑘 < MaxIter, then goto Step 2. 

8. Stopping criterion: if convergence is reached then the solution is 𝛃̂ ⟵ 𝛃𝑘. 

3. DERIVATION OF THE GENERAL ACTIVE-SET MODIFIED NEWTON-RAPHSON 

TECHNIQUE 

Consider the MPLS optimization problem defined in its unconstrained variant, as the minimization of the 

functional stated in equation (1). Recall that Ψ(𝛃) is a sum of convex functions, which guarantees the convexity 

of the objective or cost function 𝑓(𝛃). An algorithm that solves this minimization problem can be a sequence of 

steps in the space of 𝛃 that reduces the values of 𝑓(𝛃) until no more reduction can be achieved. Alternatively, the 

same algorithm can be interpreted as a sequence of steps in the space of 𝛃 that solves the equation ∇𝑓(𝛃) = 0, as 

this become a sufficient condition of the global minimum when 𝑓 is a convex function. Let’s assume we are at 

step 𝑘 of the minimization of 𝑓(𝛃) with coefficients vector 𝛃𝑘 that will be updated as 𝛃𝑘+1 = 𝛃𝑘 + 𝐛𝑘 . If we take 

into account that the effect of previous steps can be absorbed by the residuals: 𝐫𝑘 = 𝐲 − 𝐗𝛃𝑘, the cost function at 

step 𝑘 + 1 can be expressed as a function of the vector update 𝐛𝑘:  

𝑓𝑘+1(𝐛𝑘) =
1

2
‖𝐲 − 𝐗𝛃𝑘+1‖2

2 + Ψ(𝛃𝑘 + 𝐛𝑘) 

𝑓𝑘+1(𝐛𝑘) =
1

2
‖𝐫𝑘 − 𝐗𝐛𝑘‖2

2 + Ψ(𝛃𝑘 + 𝐛𝑘) 

The change in the cost function from the previous iteration (𝑓𝑘 = 𝑓(𝛃𝑘) =  𝑓𝑘+1(𝒃𝑘)|𝒃𝑘=0) to the next iteration 

(𝑓𝑘+1(𝐛𝑘) = 𝑓(𝛃𝑘 + 𝐛𝑘)), can be found from the second term in the first-order Taylor approximation of 𝑓𝑘+1(𝐛𝑘) 

around 𝐛𝑘 = 0: 
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𝑓𝑘+1(𝐛𝑘) ≈ 𝑓𝑘+1(𝐛𝑘)|𝒃𝑘=0 + (∇b𝑓𝑘+1(𝐛𝑘)|𝐛𝑘=0)
𝑇
𝐛𝑘 

𝑓𝑘+1(𝐛𝑘) ≈ 𝑓𝑘 − (𝐗𝑇𝐫𝑘 − ∇Ψ(𝛃𝑘))
𝑇
𝐛𝑘                                           (2) 

where we have used that the gradient of the continuous and differentiable penalty function with respect to 𝐛𝑘, 

evaluated at 𝐛𝑘 = 0, is equal to the gradient with respect to 𝛃𝑘, i.e. ∇bΨ(𝛃𝑘 + 𝐛𝑘)|𝐛𝑘=0 = ∇𝛃𝑘
Ψ(𝛃𝑘) = ∇Ψ(𝛃𝑘), 

which is easy to verify.  

Interestingly, the change in the cost function 𝑓𝑘+1 − 𝑓𝑘 = −(𝐗𝑇𝐫𝑘 − ∇Ψ(𝛃𝑘))
𝑇
𝐛𝑘 = −∇𝑓(𝛃𝑘)

𝑇(𝛃𝑘+1 − 𝛃𝑘), for 

small update vectors, is proportional to the product between the residuals and the predictors (columns of 𝐗) minus 

the gradient of the penalization term, and convergence will be achieved when these terms become equal. From this 

equation, we can then follow a procedure similar to the one used to derive the LARS algorithm (Efron et al. 2004), 

in order to find the update (size and direction) 𝐛𝑘 that ensures the minimization of the cost function in each iteration 

(i.e., 𝑓𝑘+1 ≤ 𝑓𝑘  for all k). This implies that 𝑓𝑘+1 − 𝑓𝑘 ≤ 0, which leads to the local-global minimum condition 

∇𝑓(𝛃𝑘)
𝑇(𝛃𝑘+1 − 𝛃𝑘) ≥ 0. In the case that 𝛃𝑘 reaches a minimum of the cost function, say 𝛃𝑘 = 𝛃∗, this is a 

sufficient condition for 𝛃∗ to be a global minimum of 𝑓 over a convex set 𝑆, as long as the cost function is 

continuously differentiable and its gradient is continuous on 𝑆 [1], [2]. A general optimality condition will be 

formally introduced in the next Section, from which -and a proper definition of 𝑆- two important properties of the 
solutions are derived. In this work we will refer to those properties as the two optimality conditions of the problem, 

i.e., a set of sufficient conditions for the estimator 𝛃𝑘 at each iteration to be a local minimum, which means that 

such algorithm will provide the path of optimal solutions along iterations. 

The optimality conditions allow us to derive a general Active-set Modified Newton-Raphson (AMNR) algorithm 

for MPLS models, as they impose a relationship between the gradient of the cost function and its minimum. As in 

classical optimization problems, the active set is defined as the set of coefficients that comply with the (usually 

inequality) constraints of the problem. We will show that in our formulation and derived algorithm the solution in 

every iteration will fulfill this condition. Since the solution consists in a few nonzero coefficients, in this work we 

restrict our definition of the active set to be the set of coefficients that are nonzero in every iteration, i.e. 𝒜={j = 

1,..., l: 𝛽𝑗 ≠ 0}. This is convenient to represent the subset of the design matrix that contains only those columns 

corresponding to coefficients in the active set (changing in every iteration) and also to formulate the properties of 

the algorithm that only depend on those coefficients.  

The first optimality condition implies that nonzero coefficients (components of the vector solution included in the 

active set) and their corresponding derivative of the cost function (components of the gradient), must have opposite 

signs. The other optimality condition implies that the absolute value of the gradient for all coefficients included in 

the active set is the same and is the highest among all predictors. These conditions can be fulfilled by selecting in 

every iteration one coefficient to be included in the active set, as the one with the highest absolute value of the 

gradient, while using other empirical procedures to ensure that the sign of the gradient is opposite to that of the 

coefficient itself. In particular, a general LARS-type constraint to be fulfilled in every iteration 𝑘 is: 

|∇𝑓(𝛃𝑘)| = |𝐗𝒜
T 𝐫𝑘 − ∇Ψ(𝛃𝑘)| = 𝐶𝑚𝑎𝑥𝟏𝒜 with 𝐶𝑚𝑎𝑥 > 0 

where the active set is represented as 𝒜, the columns of the corresponding predictors form the matrix 𝐗𝒜, and 𝟏𝒜 

represents a vector of ones with length equal to the cardinality of the active set (later denoted by |𝒜| as it changes 

in every iteration). This implies that the absolute value of the gradient for all coefficients included in the active set 

will be equal to the value 𝐶𝑚𝑎𝑥. The common use of the absolute value in this condition in LARS aims at 

controlling the sign of the updated coefficients and ensuring that the last term in equation (2) is positive [4]. We 

propose that a more natural way of taking this into account is by explicitly including the sign of the solution in the 

equation (i.e., 𝑠𝑔𝑛(∇𝑓(𝛃𝑘)) = −𝑠𝑔𝑛(𝛃𝑘), as imposed by the first optimality condition): 

∇𝑓(𝛃𝑘) = |∇𝑓(𝛃𝑘)|𝑠𝑔𝑛(∇𝑓(𝛃𝑘)) 

−(𝐗𝒜
T 𝐫𝑘 − ∇Ψ(𝛃𝑘)) = −𝐶𝑚𝑎𝑥𝑠𝑔𝑛(𝛃𝑘) 

𝐗𝒜
T 𝐫𝑘 − ∇Ψ(𝛃𝑘) = 𝐶𝑚𝑎𝑥𝑠𝑔𝑛(𝛃𝑘)                                            (3) 

where the component-wise sign function of a vector (𝑠𝑔𝑛(𝐱)) returns a vector containing the sign of each 

component of the argument (𝐱). 

The derivation of the more general MPLS problem deserves a subsequent theoretical paper. We here follow a 

simpler approach consisting in making use of the quadratic approximation of the MNR procedure explained in the 

previous Section. Briefly, an MPLS model consisting of multiple penalties (Ψ(𝛃) = ∑ 𝜆𝑟 ∑ 𝑔𝑟(|𝜃𝑖
(𝑟)|)𝑵𝒓

𝒊=𝟏
𝑅
𝑟=1 ), 

can be rewritten as a general quadratic model by using the quadratic approximations of 𝑔𝑟 functions; i.e. obtaining 

Ψ(𝛃) = ‖𝐖𝛃‖𝟐
𝟐 (where 𝐖 = (∑ 𝜆𝑟𝐋

(𝑟)𝑇𝐃(𝑟)𝐋(𝑟)𝑅
𝑟=1 )

1 2⁄
 is a general matrix that combines all linear operators for 

the different penalty functions). However, this also means that any model formed by a combination of penalty 

functions based on L1 and L2 norms can be taken to a simple LASSO or Adaptive LASSO model, by joining all 

other penalties (except one based on the L1-norm) into a quadratic term and using the trick of data augmentation 
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[11]. Therefore, in this work we derive and implement one of the simplest versions of the AMNR algorithm, which 

corresponds to the Adaptive LASSO model, conveniently established on the constrained equivalent formulation: 

minimize ‖𝐲 − 𝐗𝛃‖2
2 subject to  ∑ 𝛾𝑗|𝛽𝑗|

𝑝
𝑗=1 ≤ 𝜏, 

where 𝛾𝑗 are positive weights, thus reducing this model to LASSO when they are all set to 1. This formulation 

avoids the explicit use of regularization parameters by replacing them by a thresholding parameter (𝜏 > 0). 

Importantly, it is easy to see, from Table 1, that this model includes the NonNegative Garrote (NNG), introduced 

by Breiman as a variable selection technique that shrinks the ordinary least squares (OLS) estimator, in order to 

give intermediate results between OLS and subset selection [3]. This means that the AMNR can be used to 

implement this method but also to extend to use other reference solutions instead of the OLS, and to include an 

L2-norm term that allows to impose smoothness with this method, which we will call the Smooth Nonnegative 

Garrote (SNNG). A similar method would be the Smooth LASSO, but this one does not use weights obtained from 

other reference solutions. Anyway, the AMNR algorithm allowed us to implement a nonnegative version of the 

Smooth LASSO that will be called NN-SLASSO, in order to compare both models and specifically the influence 
of the reference solutions. These two extensions are also formulated in Table 1. 

The AMNR implementation is very similar to the LARS algorithm (see [4]) for LASSO; however, it does not 

require predictors to be standardized and can also be used to minimize a continuously differentiable objective 

function while imposing sign constraints over the parameters. As in LARS, the active set is updated at every 

iteration in one of two ways: 1) including a new predictor or 2) excluding an existent one; such that the active sets 

in two consecutive iterations differ only by one predictor. If the optimality conditions are satisfied within the 

algorithm, the solutions (determined by nonzero coefficients included in the active set in every iteration) will 

always comply with the constraint of the optimization problem (∑ 𝛾𝑗|𝛽𝑗|
𝑝
𝑗=1 ≤ 𝜏 ). Therefore, in practice, we do 

not need to check that this condition holds and it is usually easier to use a simpler stop criterion based on the 

convergence of the absolute value of the gradient to a value smaller than a tolerance (𝑡𝑜𝑙). Although it is not 

straightforward, there exist a relationship such that we can fix a value for 𝜏 and find the corresponding tolerance 

to be used in the algorithm (i.e., hard constraint). If the 𝑡𝑜𝑙 is fixed first, then the level of the constraint 𝜏 will 

depend on the values attained by coefficients in the final solution (i.e., soft constraint). 

4. OPTIMALITY CONDITIONS FOR ADAPTIVE LASSO 

In this section we formulate and prove a Theorem that proposes two important properties of the solution of the 

Adaptive LASSO model in the multiple penalized regression context. This model is particularly useful because 

many MPLS models based on combinations of L1 and L2 norms can be reduced to its formulation. Although the 

properties are derived from the classical optimality condition for this type of optimization problem, in this work 

we will refer to the two properties as the optimality conditions of the optimization problem. 

 

Theorem 1: Consider the optimization problem 𝛃̂ = argmin
𝛃

{𝑓(𝛃)} , subject to 𝛃 ∈ S, where 𝑓:ℝ𝑝×1 → ℝ is a 

smooth (in particular, continuously differentiable) convex function, 𝑆 = {𝛃 ∶  ∑𝛾𝑗|𝛽𝑗| ≤ 𝜏}, 𝛾𝑗 > 0 ∀𝑗, and 𝜏 > 0 

is a given scalar 

Then, if 𝛃∗ is a local minimum of 𝑓 over 𝑆, the following properties hold: 

a) If β𝑗
∗ > 0 then 𝜕𝑗𝑓(𝛃∗) ≤ 0. 

b)  If β𝑗
∗ < 0 then 𝜕𝑗𝑓(𝛃

∗) ≥ 0. 

c) If |β𝑗
∗| > 0 then 𝛾𝑖|𝜕𝑗𝑓(𝛃

∗)| ≥ 𝛾𝑗|𝜕𝑖𝑓(𝛃∗)|, ∀𝑖. 

Proof:  

First note that as |𝛽𝑗| is a convex function and 𝛾𝑗 > 0 the constraint describing S is convex. So, 𝑆 is a convex 

subset of ℝ𝑝. As 𝑓 is a smooth convex function, the Propositions 4.7.1 and 4.7.2 of Bertsekas et al. 2003 [1] 

establish that 𝛃∗ is a local minimum of 𝑓 over 𝑆 if and only if the following optimality condition is satisfied:  

𝛻𝑓(𝛃∗)𝑇(𝛃 − 𝛃∗) ≥ 0 for all 𝛃 ∈ S    (T1) 

which can also be expressed as: 

∑𝜕𝑗𝑓(𝛃∗)(𝛽𝑗 − 𝛽𝑗
∗)

𝑝

𝑗=1

≥ 0, ∀𝛃 ∈ S 

In order to verify a), suppose that 𝛽𝑗
∗ > 0 for some 𝑗 ∈ {1, … , 𝑝} and 𝛃  is a feasible solution to the problem (that 

is ∑𝛾𝑗|𝛽𝑗| ≤ 𝜏). For instance, take 𝛽𝑖 = 𝛽𝑖
∗, for every 𝑖 ≠ 𝑗, and 𝛽𝑗 = 𝛽𝑗

∗ − 𝜀, for 0 < 𝜀 < 𝛽𝑗
∗. Therefore, if we 

apply the condition (T1), we get inequality −𝜀𝜕𝑗𝑓(𝛃∗) ≥ 0, which means that 𝜕𝑗𝑓(𝛃∗) ≤ 0. 
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Similarly, if 𝛽𝑗
∗ < 0 for some 𝑗 ∈ {1, … , 𝑝}, we can take 𝛽𝑖 = 𝛽𝑖

∗, for every 𝑖 ≠ 𝑗, and 𝛽𝑗 = 𝛽𝑗
∗ + 𝜀, for 0 < 𝜀 <

−𝛽𝑗
∗. Applying the optimality condition (T1), we get 𝜀𝜕𝑗𝑓(𝛃∗) ≥ 0, which means that 𝜕𝑗𝑓(𝛃∗) ≥ 0. This shows 

b) 

To prove c), suppose 𝛽𝑗
∗ ≠ 0, in particular 𝛽𝑗

∗ > 0, for some 𝑗 ∈ {1, … , 𝑝}, and let 𝑖 be another index. Take a 

feasible solution 𝛽 such that 𝛽𝑗 = 𝛽𝑗
∗ − 𝜀 𝛾𝑗⁄ , for some 0 < 𝜀 < 𝛾𝑗𝛽𝑗

∗, while 𝛽𝑖 = 𝛽𝑖
∗ + 𝜀 𝛾𝑖⁄  and 𝛽𝑘 = 𝛽𝑘

∗ for all 

other indices 𝑘 ∉ {𝑖, 𝑗}. Applying the optimality condition (T1), we obtain 𝜀(𝜕𝑖𝑓(𝛃∗) 𝛾𝑖⁄ − 𝜕𝑗𝑓(𝛃
∗) 𝛾𝑗⁄ ) ≥ 0, 

which implies that 𝛾𝑗𝜕𝑖𝑓(𝛃
∗) ≥ 𝛾𝑖𝜕𝑗𝑓(𝛃

∗). Similarly, by taking 𝛽𝑖 = 𝛽𝑖
∗ − 𝜀 𝛾𝑖⁄ , we obtain −𝜀(𝜕𝑖𝑓(𝛃∗) 𝛾𝑖⁄ −

𝜕𝑗𝑓(𝛃∗) 𝛾𝑗⁄ ) ≥ 0, which implies that −𝛾𝑗𝜕𝑖𝑓(𝛃
∗) ≥ 𝛾𝑖𝜕𝑗𝑓(𝛃

∗). From these and condition a), we conclude that 

𝛾𝑖|𝜕𝑗𝑓(𝛃
∗)| = −𝛾𝑖𝜕𝑗𝑓(𝛃∗) ≥ 𝛾𝑗|𝜕𝑖𝑓(𝛃

∗)|. On the other hand, if 𝛽𝑗
∗ < 0 is chosen with the same considerations, 

the same procedure leads us to 𝛾𝑖|𝜕𝑗𝑓(𝛃
∗)| = 𝛾𝑖𝜕𝑗𝑓(𝛃

∗) ≥ 𝛾𝑗|𝜕𝑖𝑓(𝛃∗)| and thus, condition c) is proved. ∎ 

5. AMNR ALGORITHM FOR THE ADAPTIVE LASSO MODEL 

In this section we show that an algorithm based on the AMNR technique for the Adaptive LASSO model 
guarantees that optimality conditions in Theorem 1 are sufficient conditions for the estimator at each iteration to 

be a local minimum, and thus allows obtaining the path of optimal solutions. In principle, similar algorithms can 

be derived from equation (3) for any other model that is an instance of the MPLS as shown in Section 3. We 

present the pseudo code of the AMNR algorithm for Adaptive LASSO (Algorithm 2) and then provide two 

Propositions to prove that the procedure for selecting the coefficients to be included in the active set and the 

selection of the update direction and step size, ensure that the algorithm offers feasible solutions that are also 

optimal in every iteration. 

Algorithm 2. AMNR algorithm for Adaptive LASSO (Input: 𝐲 ∈ ℝ𝑛×1, 𝐗 ∈ ℝ𝑛×𝑝, 𝛾1 , … , 𝛾𝑝) 

Step description Formula 

Initialization 𝑘 ⟵ 0, 𝑡𝑜𝑙 ← 10−8,𝒜 ← {  }, 𝒜𝐶 ← {1,2,… , 𝑝},  𝛃0 ← 𝟎𝑝  

Loop over 𝑘 until stop condition 𝑘 ⟵ 𝑘 + 1 

Step 1. Compute the residuals and 

correlations between predictor 

and residuals.  

𝐫𝑘 ⟵ 𝐲 − 𝐗𝛃𝑘−1   

𝐜𝑘  ⟵ 𝐗𝑇𝐫𝑘 

Step 2. Select the next predictor 

𝑗∗ to be included in the active set 

𝒜. Exclude it from 𝒜𝐶 , and 

update the maximum correlation 

𝐶𝑘. 

𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗{|𝑐𝑘𝑗| γ𝑗⁄ : 𝑗 ∈ 𝒜𝐶} 

𝒜 ⟵ [𝒜 ∪ {𝑗∗}] 
𝐶𝑘 ← |𝑐𝑘𝑗∗| γ𝑗∗⁄  

Step 3. Compute the update 

direction 𝛅𝑘 (OLS over 𝒜 and 

residuals 𝐫𝑘). 

𝛅𝑘 ← (𝐗𝒜
𝑇 𝐗𝒜)−1𝐗𝒜

𝑇 𝐫𝑘 , 𝑗 ∈ 𝒜;    𝛅̅𝑘 ← [𝛅𝑘
𝑇  𝟎𝑇]𝑇 

𝐚𝑘 ← 𝐗𝑇𝐗𝒜𝛅𝑘 

Step 4. Compute the step size 𝛼 

for this iteration by selecting the 

minimum of three possible 

conditions. 

𝛼𝑘
+ = min{1, (𝐶𝑘γ𝑗 − 𝑐𝑘𝑗) (𝐶𝑘γ𝑗 − 𝑎𝑘𝑗): 𝑎𝑘𝑗 < 𝐶𝑘γ𝑗 , 𝑗 ∈ 𝒜𝐶  ⁄ } 

𝛼𝑘
− = min{1, (𝐶𝑘γ𝑗 + 𝑐𝑘𝑗) (𝐶𝑘γ𝑗 + 𝑎𝑘𝑗): 𝑎𝑘𝑗 > −𝐶𝑘γ𝑗 , 𝑗 ∈ 𝒜𝐶⁄ } 

𝛼𝑘
0 = min{1,−𝛽𝑘−1𝑗 𝛿𝑘𝑗⁄ : 𝛽𝑘−1𝑗(𝛽𝑘−1𝑗 + 𝛿𝑘𝑗) < 0, 𝑗 ∈ 𝒜} 

𝛼𝑘 ⟵ min{𝛼+, 𝛼−, 𝛼0} 

Step 5. Update coefficients 𝛃𝑘 ← 𝛃𝑘−1 + 𝛼𝑘𝛅̅𝑘  

Step 6. Verify stopping conditions 𝒜𝐶  is empty or if |𝑐𝑗𝑘| γ𝑗⁄ ≤ 𝑡𝑜𝑙 for all 𝑗 ∈ 𝒜𝐶  

Proposition 2. Given the model for obtaining the Adaptive LASSO solution to the problem of minimizing 

Equation (1), where Ψ = ∑ 𝛾𝑖 𝑔(|𝛽𝑖|)
𝑝
𝑖=1  with 𝑔(|𝛽|) =  |𝛽| and 𝛾𝑖 > 0,∀𝑖, then:  

a) The LARS-type constraint (also known as the stationarity condition) to ensure that the gradient of the 

cost function is minimum in each iteration becomes:  

𝐗𝒜
𝑇 𝐫𝑘 = 𝐶𝑘𝚪𝒜𝑠𝑔𝑛(𝛃𝑘)     (4) 

b) The minimum value of the gradient of the cost function corresponds to taking the maximum of the 

absolute gradient, weighted by the inverse of penalty weights:  

𝐶𝑘 = max (|𝚪−1𝐗𝑇𝐫𝑘|) 
and this selection ensures the fulfillment of part b) of Theorem 1. 

Proof: 

The gradient of the penalty function of the Adaptive LASSO model can be conveniently written as ∇Ψ =
𝚪𝑠𝑔𝑛(𝛃), where the diagonal (squared) matrix 𝚪 contains the positive penalty weights 𝛾𝑖 for each coefficient 𝛽𝑖 . 

It is straightforward to see that its value is the same if we reduce the matrix and the vector of signs to the subset of 
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coefficients that are in the active set at iteration k, since the rest of the coefficients are zero: ∇Ψ(𝛃𝑘) = 𝚪𝒜𝑠𝑔𝑛(𝛃𝑘). 

Introducing this in the general stationarity condition given by Equation (3) we can obtain: 

𝐗𝒜
T 𝐫𝑘 − 𝚪𝒜𝑠𝑔𝑛(𝛃𝑘) = 𝐶𝑚𝑎𝑥𝑠𝑔𝑛(𝛃𝑘) 

𝐗𝒜
T 𝐫𝑘 = (𝐶𝑚𝑎𝑥𝚪𝒜

−𝟏 + 1)𝚪𝒜𝑠𝑔𝑛(𝛃𝑘) 
Then, if we select 𝐶𝑘 = 𝐶𝑚𝑎𝑥𝚪𝒜

−𝟏 + 1, this magnitude will be positive since 𝐶𝑚𝑎𝑥 is positive by definition and 

substituting it we obtain the equation (4) and prove the part a) of this Proposition. 

For proving part b) it is easy to use the definition of 𝐶𝑘 to find that 𝐶𝑚𝑎𝑥 = (𝐶𝑘 − 1)𝚪𝒜. Then, the coefficient that 

makes 𝐶𝑚𝑎𝑥 to have the maximum value in each iteration will be the one that also makes 𝐶𝑘 maximum. From 

equation (3), the maximum value of 𝐶𝑚𝑎𝑥 is the maximum of the full negative gradient, while from equation (4) 

we obtain 𝐶𝑘 = max (|𝚪𝒜
−𝟏𝐗𝒜

T 𝐫𝑘|), which means that 𝐶𝑘 will take the (absolute) value of the component of the 

vector 𝚪𝒜
−𝟏𝐗𝒜

T 𝐫𝑘 with the maximum absolute value. Equation (4) then implies that the absolute values of the 

gradient, divided by the weights of the penalty, is the same for all coefficients included in the active set. However, 

in order to decide which coefficient will enter the active set, the index corresponding to this maximum value must 

be found among all coefficients that are not in the active set in every iteration.  

The generalization of this expression to compute 𝐶𝑘 for the whole set of coefficients is straightforward, just 

including all columns of 𝐗 and the corresponding columns and rows of 𝚪, leading to 𝐶𝑘 = max (|𝚪−1𝐗𝑇𝐫𝑘|. Then, 

it is easy to verify that for each coefficient in the active set we get 𝐶𝑘 ← |𝐱𝑗∗
𝑇 𝐫𝑘| γ𝑗∗⁄ , where 𝑗∗ is last index selected 

to be included in the active set (Step 2 of the algorithm). Now recognizing that the gradient of the unconstrained 

problem is ∇𝑓 = −𝐗𝑇𝐫𝑘, with 𝜕𝑗∗𝑓 = 𝐱𝑗∗
𝑇 𝐫𝑘, we obtain that 

|𝜕𝑗∗𝑓|

𝛾𝑗∗
≥

|𝜕𝑖𝑓|

𝛾𝑖
, ∀ 𝑖 = 1,2, … , 𝑝, since 𝐶𝑘 =

|𝜕𝑗∗𝑓|

𝛾𝑗∗
 is the 

same for all indices of coefficients included in the active set and it was selected as the maximum among all indices 

of coefficients not in the active set. This leads directly to the condition given in part b) of Theorem 1, which 

completes the proof of the second part of this Proposition. ■ 
Proposition 3. The selection of the Newton-Raphson direction and the step size for updating the coefficients, 

given in Steps 3-4 of the AMNR algorithm for the Adaptive LASSO model, ensures the fulfillment of the global-

local minima condition for the model. It also ensures the optimality condition a) given in Theorem 1, which states 

that the sign of every coefficient included in the active set does not change from one iteration to another, as long 

as they remain in the active set.  

Proof: 

In order to prove both statements of the Proposition, we show that if we start from equation (4) -which was derived 

from the original local-global minimum condition- we can obtain the Newton Raphson direction and the step size 

shown in Step 4 of the AMNR algorithm, used for updating the coefficients. We then write the update vector as 

𝐛𝑘 = 𝛼𝑘𝛅𝑘 to explicitly separate it in size (𝛼𝑘) and direction (𝛅𝑘), with the latter being nonzero for those 

coefficients in the active set, thus we will work with 𝛅𝑘 and 𝛃𝑘 as vectors with only |𝒜| components in each 

iteration. Writing equation (4) for iteration 𝑘 + 1, and substituting residuals 𝐫𝑘+1 =  𝐲 − 𝐗𝒜𝛃𝑘 = 𝐲 − 𝐗𝒜𝛃𝑘−1 −
𝐗𝒜𝐛𝑘 = 𝐫𝑘 − 𝛼𝑘𝐗𝒜𝛅𝑘, for those coefficients included in the active set, we get:  

𝐗𝒜
𝑇 𝐫𝑘+1 = 𝐶𝑘+1𝚪𝒜𝑠𝑔𝑛(𝛃𝑘+1) 

𝐗𝒜
𝑇 𝐫𝑘 − 𝛼𝑘𝐗𝒜

𝑇 𝐗𝒜𝛅𝑘 = 𝐶𝑘+1𝚪𝒜𝑠𝑔𝑛(𝛃𝑘+1) 

𝐶𝑘𝚪𝒜𝑠𝑔𝑛(𝛃𝑘) − 𝛼𝑘𝐗𝒜
𝑇 𝐗𝒜𝛅𝑘 = 𝐶𝑘+1𝚪𝒜𝑠𝑔𝑛(𝛃𝑘+1) 

𝛼𝑘𝐗𝒜
𝑇 𝐗𝒜𝛅𝑘 = (𝐶𝑘 − 𝐶𝑘+1)𝚪𝒜𝑠𝑔𝑛(𝛃𝑘) 

The last step assumed that the sign of coefficients included in the active set does not change from one iteration to 

the next one. This is ensured within the algorithm, as will be proved in the following paragraphs. From this 

equation we can solve for both the size and direction by splitting it in vector and scalar part. The vector part leads 

to the Newton-Raphson direction when conveniently dividing by 𝐶𝑘 in both sides, and using equation (4) again: 

𝛅𝑘 = (𝐗𝒜
𝑇 𝐗𝒜)−1𝐶𝑘𝚪𝒜𝑠𝑔𝑛(𝛃𝑘) 

𝛅𝑘 = (𝐗𝒜
𝑇 𝐗𝒜)−1𝐗𝒜

𝑇 𝐫𝑘 

while the scalar part leads to 𝛼𝑘 = (𝐶𝑘 − 𝐶𝑘+1) 𝐶𝑘⁄ , or equivalently 𝐶𝑘+1 = 𝐶𝑘(1 − 𝛼𝑘). This means that the 

AMNR algorithm uses the Newton-Raphson direction to update the coefficients in the active set and move over 

the space of optimal solutions 𝛃𝑘+1 = 𝛃𝑘 + 𝛼𝛅𝑘+1 for some 𝛼 ∈ (0, 𝛼𝑘+1], where 0 < 𝛼𝑘+1 ≤ 1 and 𝛃𝑘+1 not 

including here any new predictor yet.  

The second part of the Proposition implies that the algorithm will comply with the optimality condition a) only if 

𝑠𝑔𝑛(𝛃𝑘) = 𝑠𝑔𝑛(𝛃𝑘+1) for all coefficients that remain in the active set. Therefore, at every iteration we first need 

to check if exists a step size 𝛼 ∈ (0, 𝛼𝑘+1] such that any active coefficient becomes zero and should be removed 

from the active set, i.e., if for any coefficient 𝑖 ∈ 𝒜, it holds that 𝛽𝑘𝑖
+ 𝛼𝛿𝑘+1𝑖

= 0. This leads to compute, at 

iteration k, the value 𝛼𝑘
0 = min+ {𝛼𝑗

0 = −𝛽𝑘𝑗
𝛿𝑘𝑗

⁄ : 𝛽𝑘𝑗
(𝛽𝑘𝑗

+ 𝛿𝑘𝑗
) < 0, 𝑗 ∈ 𝒜} , where min+ indicates that the 

minimum is taken considering only the positive values for computed elements. This means that if any coefficient 

in the active set will change the sign when updating its value, the step size is chosen to make that coefficient 0, 
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i.e., to remove it from the active set. As the algorithm continues, this coefficient is again available to be included 

in the active set in subsequent iterations with any sign, as explained in the next paragraph. 

For those non-active predictors (𝐱𝑗 : 𝑗 ∈ 𝒜𝐶), equation (4) is not valid at iteration k, but it must be valid for the 

new predictor 𝐱𝑗∗ selected to join the active set at iteration 𝑘 + 1. Therefore, we have 𝐱𝑗∗
𝑇 𝐫𝑘 − 𝛼𝑘𝐱𝑗∗

𝑇 𝐗𝒜𝛅𝑘 =

𝐶𝑘+1𝛾𝑗∗𝑠𝑔𝑛 (𝛽𝑘+1𝑗∗). From this condition, using the relation 𝐶𝑘+1 = 𝐶𝑘(1 − 𝛼𝑘) and a shorter notation for the 

correlation of the predictor with residuals (𝑐𝑘𝑗∗ = 𝐱𝑗∗
𝑇 𝐫𝑘) and with the projection of the update direction (𝑎𝑘𝑗∗ =

𝐱𝑗∗
𝑇 𝐗𝒜𝛅𝑘), we obtain the analytical expression for the step size 𝛼𝑘 needed for computing the coefficient 

corresponding to the non-active predictor 𝛽𝑘+1𝑗∗ to be included in the active set:  

𝑐𝑘𝑗∗ − 𝛼𝑘𝑎𝑘𝑗∗ = 𝐶𝑘+1𝛾𝑗∗𝑠𝑔𝑛(𝛽𝑘+1𝑗∗) 

𝑐𝑘𝑗∗ − 𝛼𝑘𝑎𝑘𝑗∗ = 𝐶𝑘(1 − 𝛼𝑘)𝛾𝑗∗𝑠𝑔𝑛 (𝛽𝑘+1𝑗∗) 

𝛼𝑘 =
𝐶𝑘𝛾𝑗∗𝑠𝑔𝑛(𝛽𝑘+1𝑗∗) − 𝑐𝑘𝑗∗

𝐶𝑘𝛾𝑗∗𝑠𝑔𝑛(𝛽𝑘+1𝑗∗) − 𝑎𝑘𝑗∗

 

The sign of the coefficient to be computed is not known a priori, but this expression implies that the step sizes 

needed to enter a coefficient in the active set with positive or negative values will be different:  

𝛼𝑘
+ =

𝐶𝑘𝛾𝑗 − 𝑐𝑘𝑗

𝐶𝑘𝛾𝑗 − 𝑎𝑘𝑗

 

𝛼𝑘
− =

−𝐶𝑘𝛾𝑗 − 𝑐𝑘𝑗

−𝐶𝑘𝛾𝑗 − 𝑎𝑘𝑗

=
𝐶𝑘𝛾𝑗 + 𝑐𝑘𝑗

𝐶𝑘𝛾𝑗 + 𝑎𝑘𝑗

 

Therefore, as long as step sizes are valid (i.e., they are positive), this means that -in any iteration k- if the minimum 

step size for a predictor to join the active set corresponded to 𝛼𝑘
+ (𝛼𝑘

−), then the corresponding coefficient will take 

a positive (negative) value when included in the active set. This is a very useful result, as it allows us to have a 
natural way to impose nonnegative or nonpositive constraints. For instance, if we want to find the best positive 

(negative) solution we can just ignore the step sizes that will lead to negative (positive) coefficients and include in 

the active set only coefficients that will enter with a positive (negative) value. As we are also ensuring that all 

coefficients in the active set will keep the same sign or removed from the active set if they tend to change sign, it 

turns out that all coefficients in the final solution will have the same sign and we will get properly sign-constrained 

solutions. 

Finally, recall that the fundamental property of the algorithm is that the absolute gradient of the objective function 
|𝐗𝒜

𝑇 𝐫𝑘| monotonically decreases along the selected step direction with a positive step size. As a result, there will 

always be a step size ensuring that a new predictor, not included in the active set, joins the active set. This step 

size should be taken to be the minimum among all predictors, no matter if it is for including a negative or a positive 

coefficient. However, another important point is to keep the signs of the coefficients already in the active set 

unchanged, therefore, the step size for which one of these coefficients becomes zero 𝛼𝑘
0 should be used if it is 

smaller than 𝛼𝑘
+ and 𝛼𝑘

−. With these considerations, the final estimate for the step size becomes 𝛼𝑘 =

min+ {𝛼𝑘
0, 𝛼𝑘

+
𝑗
, 𝛼𝑘

−
𝑗
: 𝑗 ∈ 𝒜𝐶}. ■ 

The two Propositions presented in this section show that the proposed AMNR algorithm fulfills the optimality 

conditions for the Adaptive LASSO model (Theorem 1), ensuring than in every iteration the solution is optimal 

and the gradient or the objective function is decreased. In essence, the convergence properties of the algorithm are 

similar to those of the MNR (MM algorithm, [16]) in each iteration. Therefore, convergence of the AMNR 

algorithm is ensured, since the gradient of the cost function is decrease in each iteration. Similarly, the order of 

the algorithm is the same as an OLS solution in every iteration, but in this case not all iterations have the same 

computational complexity as they have different sizes of the effective parameters to be estimated (active set). 

Assuming that there are no many removals of coefficients from the active set, i.e., every iteration the active set 

only increase by one, for a sparse solution (number of iterations equal or less than 𝑛) the order of all iterations 

together is 𝑂(𝑛3), while for the worst case in which the algorithm needs to compute the whole set of coefficients, 

the complexity would be at most 𝑂(𝑝2). Although we explore the computational time empirically with simulations 

in the next section, this property makes it a faster alternative to deal with high dimensional problems and multiple 

penalized models. The computational time can be shortened by selecting other stopping criterion or in case of a 
prior knowledge about the number of nonzero coefficients of the final solution. Since the algorithm controls the 

number of nonzero values (changing in just one every iteration), this allows to control or establish the exact sparsity 

of the final solution.  
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6. PRELIMINARY VALIDATION USING SIMULATED DATA 

We used a simple simulation study to assess the performance of the AMNR algorithm in comparison with the use 

of the MNR algorithm (non active-set, equivalent to minorization-maximization in many models) and the LARS 

algorithm (active-set but updating in the OLS direction). One hundred independent repetitions of data were 

simulated using the linear model  𝐲 = 𝐗𝛃 + 𝛆, with 𝑝 = 200 predictors and 𝑛 = {10, 50, 100} observations, thus 

having three different 𝑛/𝑝 ratios (𝑛/𝑝 = {0.05, 0.25, 0.5}), which reflects the level of ill-posedness (the lowest 

ratio, the highest ill-posedness). We simulated a “true” solution showing three nonzero regions: the ‘bell’, the 

‘square’ and the ‘point’ sources. Mathematically, we set 𝛽𝑗 = 0 except for:  

𝛽𝑗 = {
𝑒−0.015(𝑗−50)2 , for  30 < j < 70  (bell) 

1, {
for 95 < j < 105  (square)

and j = 150 (point)

 

The predictors 𝐗𝑗 and the noise 𝛆 are sampled from a standard normal distribution for each of the 100 simulations. 

The simulated true solution is not easy to recover with classical particular models based on L2 or L1 norm, as it is 

a sparse piece-wise combination of smooth, constant and isolated coefficients. We choose this construction in 

order to evaluate the flexibility of the MPLS models that uses combinations of penalty functions based on different 

norms. We selected three measures previously used in the literature for assessing the performance of the different 

algorithms: the average computational time of one solution, the reconstruction relative error (𝑅𝐸 =

 ∑ (𝛽𝑖 − 𝛽̂𝑖)
2𝑛

𝑖=1 /∑ 𝛽𝑖
2𝑛

𝑖=1 ), and the area under the ROC curve (AUC) [21].  

Figure 1 presents a boxplot of the computational time (in seconds) of all models and algorithms, showing that -

besides the non-iterative Ridge solutions- the faster models are LASSO using LARS algorithm, as well as NN-

SLASSO and NNG using AMNR for whatever reference estimator. As expected, the same models using AMNR 

were generally faster than when computed with the MNR algorithm. 

 
Figure 1 Boxplots of the time necessary for computing one solution in each combination of model and 

algorithm, from the simulations using 𝑝 =200 and 𝑛 = 100. The Ridge solutions were found using Tikhonov 

regularization. In the case of NNG and SNNG models, they are shown using three different reference solutions: 
OLS, Ridge I and FnLASSO. 

Figure 2 shows the median of AUC, median Relative Error and median computational time across the 100 

estimated solutions in the three cases of n/p ratios {0.05, 0.25, 0.5} and the mean across these three n/p ratios 

(black line). The methods with better behavior for any n/p relation were SLASSO (with LARS and AMNR 

algorithms), ENET L (with LARS and AMNR algorithms), SNNG (with FnLASSO as reference estimator) and 

the nonnegative version of SLASSO (NN-SLASSO). Together with a visual inspection of typical reconstructions, 

these results suggest that SLASSO, ENET L, SNNG and NN-SLASSO are the solutions that better reconstructed 
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the simulated bell and square regions. We found that all methods had more problems in reconstructing the isolated 

point source, although it is clear that this problem will not be largely reflected in the quantitative measures, as it is 

just one out of 200 estimated points.  

 

 

 
Figure 2: Medians of evaluation criteria (AUC, Relative Error and Computational Time) obtained from all 100 estimated  

solutions for the three different n/p ratios. The black line represents the mean value across all n/p ratios. The 22 methods in the x-axis 

correspond to combination of models and algorithms (Alg.) as named in the last row, where Tikh.  refers to the Tikhonov algorithm 
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As a second validation study, we used a synthetic realistic EEG data, created from four different sets of simulated 

primary current density (PCD) distributions, all of them represented as three-dimensional Gaussian sources with 

amplitude of 10 nA/mm2 and width of 10 mm (spherical). Each dataset contains seven PCDs: a ‘centroid’ PCD 

with maximum located in a particular anatomical structure of a brain space of 3862 generators, and 6 others derived 

from this one by locating the maxima in each of the 6 closest neighbor generators (2 in each direction x, y, z). The 

maximum values of the simulated PCDs were located in 1) the cingulate region left (Cingulate), 2) occipital pole 

left (Occipital), 3) postcentral gyrus (Postcentral), and temporal gyrus right (Temporal) as shown in the first row 

of Figure 3. Talairach Coordinates [25] of the maximum value of each simulated PCD appear in Table 2. The EEG 

data was obtained by projecting these sources to the scalp using the Electric Lead Field computed for the brain 

space, using a three-spheres piece-wise homogeneous and isotropic model [23]. Finally, a low level of Gaussian 
noise was added in order to have an SNR of about 10 db. 
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Coordinate 

x y z x y z x y z x y Z 

-8 48 5 20 -43 68 -22 -99 -2 41 -8 -37 

6 48 5 13 -43 68 -29 -99 -2 34 -8 -37 

-1 48 5 27 -43 68 -15 -99 -2 34 13 -30 

-8 48 12 20 -43 75 -22 -99 5 41 -8 -30 

-8 48 -2 20 -43 61 -22 -99 -9 41 -8 -44 

-8 55 5 20 -36 68 -22 -92 -2 41 -1 -37 

-8 41 5 13 -43 61 -22 -92 -9 41 -15 -37 

Table 2: Talairach coordinates of the maximum value of simulated four sets of solutions. The first row in each 
case shows the coordinates of the "centroid" simulated PCD (bold). 

Figure 3 presents the estimated sources by the methods that showed the best reconstructions of the simulated 

‘centroid’ PCDs in each region, both visually and according to the results in the previous simulation study. We 

also added the Ridge L solution, which is mathematically equivalent to a classical solution known as LORETA in 

the field of EEG source localization [22]. It can be seen that as expected, the Ridge L solutions are very smooth, 

while ENET L and SNNG methods (computed with AMNR) offered solutions that fluctuate between different 

degrees of sparsity/smoothness. Also, the use of sign constraints (allowed by AMNR) in the new inverse solutions 

SNNG and NN-SLASSO, led to sparser solutions than the unconstrained counterparts. SNNG solutions seem to 

be sparser versions of the reference solutions but without removing all ghost sources. The NN-SLASSO solutions 

are over-sparse but showing much less ghost sources as a convenient side effect. This solution also improves the 

localization of the main source with respect to ENET L, offering a very good localization even for the deepest 

simulated PCD (Temporal). 
 

7. CONCLUSIONS 

In this work, we gave a theoretical derivation of an algorithm based on the active-set strategy for solving Multiple 

Penalized Least Squares regression models. We showed that optimality conditions hold for the Adaptive LASSO 

model, which allows us to address many other different models based on multiple penalization that can be 

algebraically reduced to it. The main objective of proposing this type of algorithm is to offer an alternative to other 

classical approaches that critically depend on the correct estimation of one or more regularization parameters. We 

also carried out a preliminary exploration of the performance of the AMNR using simulated data from well-known 

ill-posed problems, including realistic simulations based on the EEG inverse problem. 

Other active-set based algorithms have been proposed for an efficient estimation without losing accuracy, but 

usually targeting specific problems or models, such as the LARS [4] and the Fast Marginal Likelihood 
Maximization for Relevance Vector Machine (RVM, [29]). The former was derived mainly for the LASSO model, 

although subsequent developments have been able to adapt it to other similar models. The RVM is based in a 

Sparse Bayesian Model using a Gaussian prior with different weights (precisions) for each coefficient of the 

solution, which make it similar to an Adaptive Lasso. Both cases avoid the search for optimal values of 

regularization parameters using empirical information criteria, such as Akaike’s or Generalized Cross Validation. 

In the AMNR algorithm, similar to LARS, the selection of an optimal regularization parameter is replaced by 

iterating along a path of optimal solutions with respect to a bounding constraint which can be imposed or is fulfilled 

automatically by the stopping criteria based on the convergence of the solution. The step in which the algorithm 

converges define the level of sparsity of the solution attained. This is anyway an empirical solution to the problem 

and does not allow to make a deeper comparison and insight of the difference between solutions obtained with 

classical Newton-Raphson methods and their corresponding active set strategy. We believe that the AMNR 
strategy, which can be derived directly for more general MPLS models might help searching, in future studies, for 

an analytical relationship between the regularization parameter and the thresholding parameter in the equivalent 

constrained formulation of the problem.  
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Figure 3: Maximum intensity projection in the sagittal plane of the four simulated ‘centroid’ PCDs (top row) and the corresponding 

estimated PCDs using five different methods (Ridge L; ENET L, SNNG with two different reference estimators and NN-SLASSO, 

the last four computed using the AMNR algorithm). 

Given that the AMNR algorithm can be derived by following the same steps proposed by Efron in the derivation 

of the LARS algorithm, we can also expect that these algorithms are closely related. Analytically, we can say that 

the AMNR generalizes the idea of updating the solution by increments in the direction of the Newton-Raphson 

solution of the general penalized problem. This direction corresponds to the Ordinary Least Squares in LARS, for 

the LASSO type solution. In this sense, LARS can be said to be a particular case of the AMNR algorithm. Indeed, 

we found that in the case of low noise in the data, the AMNR solution for the LASSO model coincides with the 
LARS solution. However, for more general models, the Newton-Raphson direction takes into account not only the 

minimization of the likelihood, but the minimization of the whole cost function which includes the penalization 

terms. Therefore, what is claimed in LARS as following the direction that ensures equiangularity with respect to 

the residuals of all coefficients included in the active set, becomes in the AMNR in following the direction that 

ensures their equi-contribution to the fitting of both the data (residuals) and the penalization terms. 

Our results also suggest that for popular MPLS models such as LASSO and ENET, the AMNR algorithm can 

reach the solutions faster than the Modified Newton-Raphson algorithms such as the classical Minorization-
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Maximization and Local Quadratic which need to be done in the future. For instance, the influence of the initial 

estimates on the final solution must be studied, as well as the robustness of the solutions given by the algorithm 

when analyzing data with different levels of signal-to-noise ratio, which can be explored by varying the variance 

of the additive noise affecting the simulated data. In the context of the EEG inverse problem, it is also relevant to 

study how well the algorithm performs when estimating solutions with main activation at different depths in the 

brain, (i.e. at different distances from the sensors) and also for many different configurations of multiple sources 

in the brain. Our results also suggest that for popular MPLS models such as LASSO and ENET, the AMNR 

algorithm can reach the solutions faster than the Modified Newton-Raphson algorithms such as the classical 

Minorization-Maximization and Local Quadratic Approximation. 

This makes it a promising alternative for handling data with very high dimensionality and the associated highly 
ill-posed problems. However, this study did not cover all experiments necessary to make a thorough 

characterization of the advantages and disadvantages of the AMNR as compared with other methods, 

Finally, we think that a more complete theoretical study of the properties of this algorithm, as well as the derivation 

of versions to handle more complex models with several penalization terms, should be carried out to evaluate its 

usefulness in real-world applications of penalized regression to solve highly ill-posed inverse problems. This is 

particularly important for those problems where it is not possible to have a ground truth to compare the solution 

with, so different flexible penalization models that can adapt to the data at hand should be adopted. This is precisely 

the case of the Electroencephalography Inverse Problem. 
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