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ABSTRACT
This review article covered 20 years of published papers on the detection of lesions of vascular and

neurological origin on Magnetic Resonance Imaging (MRI). The article provided concrete sugges-

tions about pulse sequences and algorithms for the jointly detection of lesions in the white matter.

The algorithm with the best adaptive features was Histogram. The results suggested to perform

comprehensive studies that evaluate segmentation algorithms on different types of lesions.
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RESUMEN
Este art́ıculo de revisión abarca 20 años de trabajos publicados sobre la detección de lesiones de

origen vascular y neurológico en Imágenes de Resonancia Magnética (IRM). El art́ıculo proporciona

sugerencias concretas sobre secuencias de pulso y algoritmos para la detección conjunta de lesiones

en la materia blanca. El algoritmo con las mejores caracteŕısticas de adaptabilidad fue Histograma.

Los resultados sugierieron realizar estudios integrales que evaluen algoritmos de segmentación en

diferentes tipos de lesiones.

PALABRAS CLAVE: neuroimágenes, algoritmo, segmentación, enfermedades vasculares y neu-

rológicas.

1. INTRODUCTION

In neuroimage, lesion segmentation includes designed algorithms to identify, delimiter and characterize

regions with some damages. These algorithms are oriented by heuristics (patterns and a priori informa-

tion) and anomalies that highlight on specific features (color, position and brightness). For the detection

of vascular and neurological lesions, the white matter hyperintensities are used as a selection criteria due

to the high contrasts between healthy and affected regions. In Magnetic Resonance Imaging (MRI), high

contrasts are signal of damage in the integrity of the white matter and high fluidity too [13].
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A segmented region is the result of identifying all pixels or voxels that composes and limits it. Although,

the procedure is mainly based on the intensity of the pixels; attributes such as texture can be considered.

In general, the segmentation process uses pattern recognition algorithm for processing medical images

with high variability [6]. Segmentation algorithms are grouped into two learning categories: supervised

and unsupervised. Yet, they can be automatic or semi-automatic if, at some point in the processing, the

human intervention is required or not [7].

The segmentation of White Matter Lesions (WML) is performed on weighted images T1, T2, FLAIR,

PD, T2∗ and multimodal sequences (T1,T2; T2,FLAIR; T1,FLAIR and others). In the process, some

sequences provide more information than others, with different characteristics. For example, FLAIR

provides better information than T2 for delimiting damaged regions in lesions with vascular origin[18].

However, FLAIR could overestimate lesions in the posterior fossa region in which T2 provides better

sensitivity. The combination of both sequences complement the results and reduce false positives. White

matter lesions may variate their shape like: periventricular caps, rims or halos[28]. In neurophysiology,

two fundamental types are recognized: periventricular (PVWML) and deep (DWML). A lesion is called

PVWML, if it is located less than 1cm from the ventricles. For example: a PVWML is considered DWML

when either its shape is irregular or its extension is prolonged. Dadar and colleagues [9] demonstrated the

ease of segmenting PVWML lesions with the T1. The evidences prove the complexity of the segmentation

process and the details to be consider.

White Matter Hyperintensities (WMHs) has high correlation with many clinical disorders including cere-

brovascular and neurological disorders. In general, cerebrovascular origins are common in Alzheimer’s

disease (AD) and vascular dementia [5, 34]. AD co-occurs with cerebral small vessel disease (SVD) and

hypertension [9]. WMHs resulting from SVD has been associated with vascular risk factors like hyper-

tension [2]. In patients with SVD, the risk of dementia and Parkinson’s disease increases, also associated

with cognitive, motor, and mood disturbances [17]. Mild cognitive impairment (MCI) has been associated

with Parkinson’s disease, cerebrovascular accident and other disorders.

This work studies the automated methods proposed for the segmentation of hyperintensities in white

matter (WMH), according to the nature of the lesions in MRI. The comparative analysis considers the

characterization schemes and selected sequence. The analysis might conduct upcoming researches in the

creation of hybrid algorithms and consequently the correct detection and segmentation of White Matter

(WM) lesions of vascular and neurological origin.

2. MATERIALS AND METHODS

SEARCH STRATEGY AND SELECTION CRITERIA

The review was conducted according the guidelines of systematic reviews and meta-analysis (PRISMA)[36].

The selected articles were published from January 2000 to March 2022 in PubMed, IEEEXplore, and Sci-

enceGov databases. The keywords used were segmentation, automatic detection, algorithms and white

matter. The queries were a combination of keywords and the selection was limited to studies published
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in English. In addition, reference lists were used to improve the search and identify other studies about

the same subject. Autors used JabRef to identify relevant papers and eliminate duplicates. Conference

abstracts, letters to the editor, case reports, guidelines and protocols were excluded. Also, systematic re-

views and meta-analysis were discarded. The withdrawal strategy allowed to reduce the selection biases,

ensuring homogeneity in the content of selected publication.

A first approach considered the presence of selected words in the title, the abstract and the keywords.

This strategy removed papers with relevant terms in the corpus of the manuscript. All published studies

using automatic or semi-automatic algorithms for the segmentation of the hyperintensities of neurological

or vascular origin were included. Yet, studies on Magnetic Resonance Imaging (MRI) in adult humans

were considered.

DATA EXTRACTION

The metadata of the articles was gathered by 2 reviewers and a third one verified the data. The data

collected included name of the algorithm, sample, sample size, sequences and quality control. The

algorithms were evaluated with the measures established in the next subsection. Validation measure of

each algorithm was recovered from the original paper. Although a subset of the metrics are referenced,

only those in common are used to compare the algorithms.

This review was oriented to the identification and analysis of segmentation algorithms which results have

been promising in different types of degenerative diseases. These techniques are considered adaptative

due to their ability to segment injuries of different nature.

METRICS TO EVALUATE EFFICIENCY OF ALGORITHMS

Three equivalent metrics were selected to evaluate the accuracy and consistency of algorithms[37, 65]:

Dice Similarity Coefficient (DSC), F1 score and Similarity Index (SI). The DSC values, F1 and SI takes

values into the range [0, 1] where low coefficients indicate no spatial overlap and those close to 1 mean

absolute overlap [21, 4]. According to literature, these three overlap metrics a 0.7 score or higher indicates

good segmentation. In the analysis, the term overlap metric (OM) represented DICE, F1 and SI measures

to avoid ambiguity.

3. RESULTS

The search returned 134 unique citations (Figure 1), of which 71 were excluded at the title and abstract

lecture. Furthermore, 25 articles were excluded after full-text review. Finally, 43 studies were selected

for evaluation in this review; 31 focused on diseases of neurological origin and 12 on diseases of vascular

origin.

Table 1 shows the performance of sequences in a particular disease. The quality coefficients were the means

of OM evaluations between methods grouped by disease and sequence. The coefficients were bounded

between 0 and 1 while their color interpretation varied between light and dark blue. Table 2 summarized

the result of proposed methods with at least two tested applications. In this table, highlighted patterns

556



ScienceGov
n=(529)

Pubmed
n=(46)

IEEEXplore
n=(2367)

Records identified through database serching
n=(2942)

Records after duplicates removed
(JabRef)

Records screened
n=(134)

Records excluded
n=(71)

Full-text articles assessed for eligibility
n=(63)

Full-text articles excluded
n=(25)

Articles from
other sources

n=(5)

Studies included in descriptive analysis
n=(43)

Figure 1: Design of the study. Flow of studies identified in literature search for systematic review on

segmentation of white matter lesions.

evidence adaptive characteristics in methods on different types of lesion. These algorithms have been

developed based on MRI modalities: T1, T2 and Fluid Attenuated Inversion Recovery (FLAIR) and

multiple combinations. Literature cited FLAIR as the sequence with the highest accuracy among the

MRI modalities for identifying the White Matter Lesion (WML). Single-modal methods are useful to

segment the brain into base regions such as white matter (WM), Grey Matter (GM), and Cerebrospinal

Fluid. In contrast, multimodal methods have been preferred for more robust lesion detection, despite the

high cost of acquiring multimodal MRI data.

3.1. NEUROLOGICAL DISEASE

Magnetic Resonance Imaging (MRI) data of older subjects exhibit features of abnormal brain white

matter such as tissue loss with ventricular enlargement and WML. This pattern is not usual on scans

of younger adults [61]. MRI scans performed in clinical inquiries showed an increase of WMLs in the

healthy elderly.

A lesion in Multiple Scleriosis (MS) is an area of focal hyperintensity on a T2, T2,FLAIR or a proton

density (PD), weighted sequence. MS lesions vary from round to oval shape and involve regions from a

few millimeters to two centimeters in diameter. They can appear in both hemispheres, but their distri-
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Table 1: Heat map created by OM coefficients as a quality measure of each sequence on a disease. The

values are the means quality (OM) obtained from algorithms group by sequence and disease.

Sequences
Disease M

S

A
D

M
C
I

P
D

D
L
B

V
D

B
I

H IS C
D
L

References

0 0 0 0 0 0 0 0 0 0

PD 0.95 0 0 0 0 0 0 0 0 0 [49]

DWI 0 0 0 0 0 0 0 0 0.85 0 [60]

FLAIR 0.63 0.64 0 0 0 0 0 0.83 0 0 [9, 29, 59]

T1,T2 0.46 0 0 0 0 0 0 0 0.70 0 [52]

T1,FLAIR 0.53 0.84 0.70 0.94 0.94 0 0.63 0.77 0.57 0.76 [3, 20, 39, 46, 50, 51, 62]

T2,FLAIR 0.68 0 0 0 0 0 0 0 0.76 0 [8, 64]

DWI,FLAIR 0 0 0 0 0 0 0 0 0.76 0 [32]

T1,T2,FLAIR 0.55 0.71 0.75 0 0 0.78 0 0 0 0 [3, 11, 12, 24, 33, 41, 48, 57, 58]

T1,T2∗,FLAIR 0 0 0 0 0 0 0 0 0.89 0 [42]

T1,DWI,FLAIR 0 0 0 0 0 0 0.83 0 0.80 0 [53]

PD,T1,T2,FLAIR 0.57 0 0 0 0 0 0 0 0 0 [45, 55, 56]

T1,T2,ADC,FLAIR 0 0 0 0 0 0 0 0 0 0.60 [35]

MS: Multiple Scleriosis, AD: Alzheimer’s disease, MCI: Mild Cognitive Impairment, PD: Parkinson’s disease, DLB: Lewy body dementia
VD: Vascular Dementia, BI: Brain Infart, H: Hypertension ,IS: Ischemic Stroke
CDL: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leucoencephalopathy (CADASIL)

bution is often mildly asymmetric in the early stages. These lesions affect not only the periventricular

and juxtacortical white matter but also the corpus callosum [16].

In MS lesion detection, automated and semiautomated approaches have been proposed in literature.

LaRosa and colleagues [30] proposed a fully convolutional deep learning approach based on U-Net using

T1 and FLAIR sequences. In addition, U-Net was used by Aslani and colleagues [3] with T1, T2 and

FLAIR sequences. Sudre and colleagues [52] proposed an adaptive framework for data modelling in the

presence of multiple outliers, named BaMoS (Bayesian Model Selection).

Alzheimer’s is the most common form of dementia that currently affects 44 million people worldwide and

is increasing in prevalence. White matter hyperintensities (WMHs) are highly prevalent in AD patients

as well as the elderly population. Larger WMH volumes have been associated with AD and cognitive

decline [54]. The lesions emerged close to the cerebral ventricles [9].

Recently, BaMoS models were applied by Fiford and colleagues [15] for WMH segmentation in Alzheimer’s.

They proposed the same pulse sequences in [57] with rigidly coregistered in T1 space. In [24], Ithapu

proposed Support Vector Machine (SVM) methods base on texture and intensity-variation features. Sub-

cortical vascular dementia is a neurodegenerative disorder that leads to a progressive decline in memory

and cognitive function. It is considered a common cause of dementia. Although, It is caused by various

types of cerebrovascular diseases (ischemia or hemorrhage). In the segmentation of WMH regions in

subcortical vascular dementia, Kawata and colleagues [27] proposed two segmentation methods. Region-

growing and a level-set method were combined to propose an hybrid solution that use an automatic and

adaptive strategy to select the best methodology for each WMH region based on its image features.
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Table 2: Methods of studies with application on lesions with vascular and neurological origin.

Algorithm Ref Sample nb Sequences Metric

BaMoS
[52] Multiple Scleriosis 20 T1,T2 0.46
[15] Alzheimer’s disease 60 T1, FLAIR 0.74

LST
[3] Multiple Scleriosis 51 T1, FLAIR 0.30
[24] Alzheimer’s disease 251 T1, T2, FLAIR 0.41

U-Net
[30] Multiple Scleriosis 90 T1, FLAIR 0.62
[60] Ischemic Stroke 429 DWI 0.85
[3] Multiple Scleriosis 51 T1, T2, FLAIR 0.63

MRF
[26] Multiple Scleriosis 25 T1, T2, FLAIR 0.69
[44] Hypertension 24 T1, FLAIR 0.70 a

SVM
[24] Alzheimer’s disease 251 T1, T2, FLAIR 0.54
[27] Vascular dementia 10 T1, T2, FLAIR 0.78

C-SVM [10] Alzheimer’s disease,Lewy body

dementia,Parkinson’s disease

102 T1, FLAIR 0.94

BIANCA [19]
Alzheimer’s disease, MCI 85 T1, T2, FLAIR 0.75
Ischemic Stroke 474 T2, FLAIR 0.76

[31] CADASIL 66 T1, FLAIR 0.80

Histogram
[53] Ischemic Stroke 30 T1,DWI,FLAIR 0.83
[23] MCI 30 T1, FLAIR 0.78

AMOS-2D [43] Brain Infarct , MCI 28 T1, FLAIR 0.63

a Exact values were not available, reported values are calculated from TP, TN, FP and FN.
b Sample size.

Damangir and colleagues [10] proposed a cascade of reduced Support Vector Machine (C-SVM) method

with active learning for WMHs segmentation in cases with Alzheimer’s disease, Lewy body dementia and

Parkinson’s disease. Dementia with Lewy bodies (DLB) is a common variant of cognitive impairment

with Parkinson’s dementia that include a spectrum of neurodegenerative dementias. Thus, the term Lewy

Body Disease is currently used to describe neurodegenerative conditions with similar clinical phenotype

(dementia combined with parkinsonism) and lower levels of α−synuclein [63]. WMHs can be visualized

as focal punctate areas of high intensity signal on T2 images. They have been reported to be similar

in DLB and AD [22]. Parkinson’s disease is a neurodegenerative disorder characterized by a range of

motor, non-motor features and neurobehavioral dysfunction [14]. Their lesions appear as hyperintense

periventricular signal on FLAIR sequences from MRI.
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3.2. CEREBROVASCULAR DISEASE

Focal White Matter Hyperintensities has been associated with various disorders related to Cerebrovascu-

lar Disease [50]. Vascular dementia is the manifestation of a cerebrovascular disease and the second most

frequent type of dementia following Alzheimer’s disease. Griffanti and colleages [19] develop BIANCA

(Brain Intensity AbNormality Classification Algorithm), a supervised method for WMH detection based

on the k-Nearest Neighbor (kNN) algorithm. They proposed this method for patient population whith

neurodegenerative and vascular disease.

Roy and colleagues[44] used a Random Forest (RF) classifier to generate lesion probability score for each

pixel in the brain region. Such scores were integrated into a Markov Random Field (MRF) cost func-

tion to obtain the final segmentation by removing false positives. This method processes multispectral

information from T1 and FLAIR intensities for hypertension lesion segmentation. White matter hyper-

intensities (WMHs) are common in patients with acute cerebral infarction and its presence increases the

risk of Stroke, Cognitive Impairment and death [53]. Stroke lesion appears as hyperintense signal in T2

from Magnetic Resonance Imaging (MRI) [40]. There are few segmentation algorithms that just use T1

weight image for Stroke lesions. Even thought, multimodal MRI sequences including Diffusion Weighted

Imaging (DWI), T2,FLAIR, and Perfusion Weighted Imaging are used to detect the presence of Stroke

lesions in the first few hours of an incident [25]. Tsai and colleagues [53] proposed to segment WMHs by

empirical threshold and atlas information. This method subtract white matter voxels affected by acute

infarction in Ischemic Stroke. The procedure combined information from T1, FLAIR and DWI sequences.

The BIANCA algorithm was used by Ling and colleagues [31] to segment extensive white matter lesion

caused by Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leucoencephalopa-

thy (CADASIL). They used three strategies to select the threshold that is applied to the probabilistic

output of BIANCA. They proved that BIANCA is a reliable and fast segmentation method to extract

masks of WMH in patients with extensive lesions.

There are many medical disorders known to have a positive association with MCI [1]. For example,

Parkinson’s disease, traumatic brain injury, cerebrovascular accident, Huntington disease, and human

immunodeficiency virus. Cognitive impairment or behavioral symptoms are manifested in early stages

of a neurodegenerative disease. The symptoms are common in disorders such as Alzheimer’s disease,

Vascular dementia, Lewy body disease, Prion disease and Frontotemporal dementia [34] [47]. In general,

amnestic MCI led to Alzheimer’s or Vascular dementia[38]. Whereas nonamnestic MCI produces fron-

totemporal dementia or Lewy body disease [38]. Iorio and colleagues [23] proposed a semi-automated

method based on the segmentation of intensity Histogram on FLAIR images. This algorithm was per-

formed using FSL and SPM which are freely available software. Few algorithms are been tested in Mild

Cognitive Impairment like BIANCA ([19]) and AMOS-2D ([43]).

To evaluate the quality of each algorithm in neurological and vascular disease, the Figure 2 customizes

the quality in a scale of color and coefficients of OM. The possible values are bounded between 0 and
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1. Their representation in the Barcolor is a gradient that varies between light and dark blue. Figure 3

represents each algorithm with its mean coefficients in Vascular and Neurological group. For this reason,

the graph includes a red line x = y as a position reference of balance and compromise between both

group. In the graph, an algorithm with null value in an axis means the absence of results on the group

associated. The 2D space was divided in 4 quadrants according to middle of both axis and their limits.

In the graph, the first quadrant is found in the upper-left corner and limited by 0.5-1 in Vascular disease

and 0-0.5 in Neurological disease. It includes methods with high quality (> 0.5) in the segmentation

lesions due to Vascular disease but poor (< 0.5) results for cases with Neurological origin. The second

one represents methods with low performance in both group with OM coefficients less than 0.5. The

third group represents methods with low quality in vascular group (< 0.5) and high acquire (> 0.5) in

neurological lesions. The last quadrant involves algorithms with high quality (> 0.5) in both group of

lesions.

4. DISCUSSION

This article customizes the principal approaches for segmentation of white matter hyperintensities on

MR images acquired from patients with neurological or vascular disease. In clinical practices, the right

selection of pulse sequence is relevant to obtain high quality in the segmentation process. The Table 1

presents the quality reached with different sequences in the process to segment lesions caused by each

type of disease.

In Multiple Sclerosis (MS), the sequence with the highest coefficient (0.95) was Proton Density (PD).

The sequence T1,T2 was the least relevant with 0.46 as OM coefficient. In Alzheimer’s disease, the

diversity of sequences used is less than MS and it has the highest quality coefficient with T1,FLAIR but

the lowest with FLAIR. This evidence how the combination of anatomical image T1 and FLAIR improve

the segmentation results. Mild cognitive impairment is a disease with poor information on the best se-

quence to use. However, two combination were applied in experimental researches: T1,T2,FLAIR (0.75)

and T1,FLAIR (0.7). In this case, the inclusion of T2 did not brought significant improvement to the

process. It is well-know that FLAIR and T2 bring the same information but the first one with less noise [7].

In Parkinson’s disease, T1,FLAIR was the only sequence used with C-SVM and reached the high score:

0.94. A similar result obtained this algorithm on Lewy body dementia. The T1,T2,FLAIR was the

sequence used to segment lesions caused by Vascular dementia with 0.78. In Brain infarct, two sequences

were proposed: T1,DWI,FLAIR and T1,FLAIR. The first one was the most suitable with 0.83 while the

T1,FLAIR sequence reached 0.63. The studies on Hypertension evidence better results just using FLAIR

without T1 sequence. The Ischemic Stroke was the second disease with more results on different se-

quences. Although DWI is the most suggested in clinical practices, the community have been looking for

another alternatives. In this case, T1,T2∗,FLAIR guaranteed high quality over the rest with 0.89 follow

it by DWI (0.85). On CADASIL, the only known result was using T1,FLAIR with WHASA algorithm

and its OM coefficient was 0.76.
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In the Figure 2, the algorithms with more than one applications are compared by their results on dif-

ferent diseases. The BaMoS algorithm was testing with MR images acquired from patients with MS

and Alzheimer’s disease. For the first case study, it used the information obtained from T1,T2 sequence

which was not the best choice for this disease (see Table 1). On Alzheimer’s disease, the results were

relevant with 0.74 and the sequence selected was T1,FLAIR that reached highest quality for this case in

the sequence analysis. Unfortunately, the quality coefficients were less than the mean OM value for the

sequences selected in both cases (Table 1).

The LST algorithm is a classic method in the lesion segmentation. For that reason, it has been considered

like standard reference in comparative analysis with new approaches. In the last decade, LST algorithm

results were stemmed from original articles on novel methods in MS and Alzheimer’s disease. In the first

one, the OM coefficient did not reached the average value for T1,FLAIR on this disease (refer to Figure

2). The same result was found in the sequence selected for cases with Alzheimer’s (T1,T2,FLAIR). In

addition, the worst coefficients were obtained by this algorithm.

In the period selected for this review, the applications of neural network increased in the field of image

processing to resolve segmentation problems. The U-Net algorithm was proposed to identify WMH le-

sions on patients with Multiple Scleriosis (MS) in two articles with T1,FLAIR and T1,T2,FLAIR (see

Table 2). However, the improvement between the first study to the second one was insignificant. The

inclusion of T2 sequence did not bring relevant information in the segmentation process. Although the

selected sequences were not the best choice for this type of lesions, the OM coefficients were better than

the estimated average (Table 1). Another research was oriented to detect regions with damages caused

by Ischemic Stroke from DWI images, reached satisfactory results [60].

The Markov Random Forest algorithm obtained similar coefficients on MS and Hypertension. In MS, the

algorithm surpass the OM average for T1,T2,FLAIR sequence. However, the quality was lower than the

expected mean on Hypertension with T1,FLAIR.

The SVM algorithm represents a group of supervised strategies and it has proved to be useful in med-

ical applications from previous researches. The results were obtained applying the same sequence on

Alzheimer’s disease (AD) and Vascular dementia (VD): T1,T2,FLAIR. The quality for AD was poor

than the mean estimated with this sequence and the same for VD. In [10], the authors proposed a new

variant of SVM and tested with data from patients with Lewy body dementia, Alzheimer’s and Parkin-

son’s disease. In general, C-SVM maintained the same high quality using T1,FLAIR sequence with 0.94.

It was the algorithm with highest performance among the methods selected by multiple applications

(Figure 2).

BIANCA is a supervised algorithm based on kNN optimized to detect lesion on patients with neurode-

generative and vascular disease. It was included in FSL toolbox and support different MRI protocols.

The results with T1, T2, FLAIR were similar to the mean for Alzheimer’s and Mild Cognitive Impair-

ment with 0.75. In addition, the quality for Ischemic Stroke did not change too much with 0.76 using
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Figure 2: Heat map based on the OM coefficient of the algorithms used in each type of disease.

T2,FLAIR. However, their results in CADASIL were above the mean OM coefficient with the T1,FLAIR

sequence. This algorithm is an adaptive approach for both disease groups. Histogram is another promis-

ing algorithms for lesion segmentation of vascular and neurological disease. For Ischemic Stroke, this

algorithm increment the mean of OM values with the sequence T1, DWI, FLAIR summarizes on Table

2. Also, it obtained good performance on Mild Cognitive Impairment using the sequences T1,FLAIR.

However, the algorithm AMOS-2D with the same sequence obtained low quality (refer to Table 1) on

Brain Infarct and Mild Cognitive Impairment with an OM coefficient below to the average.

In the Figure 3, the selected algorithms are represented in a 2D space defined by their quality on Vascular

and Neurological disease. Almost all of them are located in the four quadrant except: LST, BaMoS and

C-SVM. These three algorithms have just relevant results in neurological disease and the best one was

C-SVM with 0.94. In the four quadrant, the algorithms farthest from the red line are SVM and U-Net.

Both with more quality in vascular than neurological disease. The algorithms closest to the red line are

AMOS-2D, MRF, BIANCA and Histogram which evidence adaptative quality for both type of disease.

Among them, Histogram obtained highest results follow by BIANCA. In addition, AMOS-2D shows a

better compromise in the lesions segmentation between vascular and neurological diseases. However, it

was the lowest performing algorithm in this quadrant below 0.7. Another potential candidate is C-SVM

because had better results than Histogram on neurological lesions. Its performance on lesions of vascular
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Figure 3: Algorithm with its mean coefficients in Vascular and Neurological group.

origin lacks evidence, but its methodology is similar to SVM that reached relevant results for this type of

lesions. The U-Net algorithm reached the most relevant results on lesions with origin in vascular disease.

5. CONCLUSION

The sequence T1,FLAIR was the best choice in the lesion segmentation for both vascular and neuro-

logical disease. Their most relevant results were on Alzheimer’s, Parkinson’s, Lewy body dementia and

CADASIL. This sequence, in combination with T2∗, proved to be a great candidate as alternative to

DWI sequence for Ischemic Stroke. The sequence T1,T2,FLAIR was another derivation from T1,FLAIR

with high performance on lesions of Ischemic Stroke and MCI. A suggestion for future work is a more

deep evaluation for PD sequence in the segmentation process due to their results on MS.

In the comparative analysis, Histogram conserved high and stable OM coefficients in the segmentation of

lesions from vascular and neurological disease. This algorithm with a simple methodology has proved to be

useful for the clinical practices when the information about the type of lesion is poor. Although, BIANCA

was not an algorithm with a relevant quality, it was designed to detect White Matter Hyperintensities

without take account their origin. The algorithm C-SVM reached highlight results on neurological lesions.

However, the revision process did not find any evidences of applications on lesions of vascular origin. This

approach is a promising technique and should be test it their performance on lesions of vascular origin

in future works.

RECEIVED: OCTOBER, 2022.

REVISED: FEBRUARY, 2023.
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[14] FANG, E., ANN, C. N., MARÉCHAL, B., LIM, J. X., TAN, S. Y. Z., LI, H., GAN, J., TAN,

E. K., AND CHAN, L. L. (2019): Differentiating parkinson’s disease motor subtypes using automated

volume-based morphometry incorporating white matter and deep gray nuclear lesion load Journal of

Magnetic Resonance Imaging.

[15] FIFORD, C. M., SUDRE, C. H., PEMBERTON, H., WALSH, P., MANNING, E., MALONE, I. B.,

NICHOLAS, J., BOUVY,W. H., CARMICHAEL, O. T., BIESSELS, G. J., ET AL. (2020): Automated

white matter hyperintensity segmentation using bayesian model selection: Assessment and correlations

with cognitive change Neuroinformatics, pages 1–21.

[16] FILIPPI, M., PREZIOSA, P., BANWELL, B. L., BARKHOF, F., CICCARELLI, O., DE STE-

FANO, N., GEURTS, J. J., PAUL, F., REICH, D. S., TOOSY, A. T., ET AL. (2019): Assessment of

lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines Brain, 142(7):1858–

1875.

[17] GHAFOORIAN, M., KARSSEMEIJER, N., VAN UDEN, I. W., DE LEEUW, F.-E., HESKES, T.,

MARCHIORI, E., AND PLATEL, B. (2016): Automated detection of white matter hyperintensities

of all sizes in cerebral small vessel disease Medical physics, 43(12):6246–6258.

[18] GIBSON, E., GAO, F., BLACK, S. E., AND LOBAUGH, N. J. (2010): Automatic segmentation of

white matter hyperintensities in the elderly using flair images at 3t Journal of Magnetic Resonance

Imaging, 31(6):1311–1322.

[19] GRIFFANTI, L., ZAMBONI, G., KHAN, A., LI, L., BONIFACIO, G., SUNDARESAN, V.,

SCHULZ, U. G., KUKER, W., BATTAGLINI, M., ROTHWELL, P. M., ET AL. (2016): Bianca

(brain intensity abnormality classification algorithm): a new tool for automated segmentation of white

matter hyperintensities Neuroimage, 141:191–205.

[20] GUERRERO, R., QIN, C., OKTAY, O., BOWLES, C., CHEN, L., JOULES, R., WOLZ, R.,
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[37] MÜLLER, D., SOTO-REY, I., AND KRAMER, F. (2022): Towards a guideline for evaluation

metrics in medical image segmentation arXiv preprint arXiv:2202.05273.

[38] NICOLINI, P., MARI, D., ABBATE, C., INGLESE, S., BERTAGNOLI, L., TOMASINI, E., ROSSI,

P. D., AND LOMBARDI, F. (2020): Autonomic function in amnestic and non-amnestic mild cognitive

impairment: spectral heart rate variability analysis provides evidence for a brain–heart axis Scientific

reports, 10(1):1–16.

[39] ONG, K. H., RAMACHANDRAM, D., MANDAVA, R., AND SHUAIB, I. L. (2012): Automatic

white matter lesion segmentation using an adaptive outlier detection method Magnetic resonance

imaging, 30(6):807–823.

[40] OZENNE, B., SUBTIL, F., ØSTERGAARD, L., AND MAUCORT-BOULCH, D. (2015): Spatially

regularized mixture model for lesion segmentation with application to stroke patients Biostatistics,

16(3):580–595.

[41] PARETO ONGHENA, D., RAMIO TORRENTA, L., AND ROVIRA CAÑELLAS, A. (2017): Im-
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