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ABSTRACT
In this paper, we study a novel green financing model for a three-stage supply chain. The model

considers nonlinear relations among CO2 emissions, budget spent for emission control, and quantity of

products moved towards and worked in the facilities. Moreover, the model, besides the minimization

of CO2 emissions, aims at balancing the commodity flow over the different facilities. The latter

objective is represented by the linear combination of two quadratic penalty functions: one associated

with the arc flows and the other with the entering flows at the facilities, respectively. The model is

solved on both synthetic instances and a realistic network, demonstrating its effectiveness as a tool

for strategically supporting green financing decisions in supply chains.

KEYWORDS: CO2 emissions, Green Supply Chain Optimization, Green Financing.

MSC: 90C29 Multi-objective and goal programming, 90B06 Transportation, logistics and supply

chain management

RESUMEN
En este art́ıculo, estudiamos un nuevo modelo de financiación verde para una cadena de suministro

de tres etapas. El modelo considera relaciones no lineales entre las emisiones, el presupuesto gastado

para el control de emisiones y la cantidad de productos que se mueven hacia las instalaciones y se

trabajan en ellas. Además, el modelo, como segundo objetivo, pretende equilibrar el flujo de mer-

canćıas entre las diferentes instalaciones. Este último objetivo está representado por la combinación

lineal de dos funciones de penalización cuadráticas: una asociada a los caudales de arco y otra a los

caudales de entrada a las instalaciones, respectivamente. El modelo se resuelve tanto en instancias

sintéticas como en una red realista, lo que demuestra su eficacia como herramienta para apoyar

estratégicamente las decisiones de financiación verde en las cadenas de suministro.

PALABRAS CLAVE: Emisiones de CO2, optimización de la cadena de suministro, finanzas

verdes.

1. INTRODUCTION AND LITERATURE REVIEW

Climate change requires the integration of different approaches both for designing and operating supply

chain networks and to reach the demanding green targets. In these settings, Green Supply Chain

Management (GrSCM) and Green Supply Chain Network Design (GrSCND) require a rethinking in

organization and collaboration settings. New models for GrSCND, considering structural elements
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such as green corridors (see, e.g., [5]) and multiple objective functions, are worth considering. GrSCND

is a recent but more and more studied research topic as witnessed, e.g., by the review in [20]. The

extensive review in [1] classifies pressures, practices, and performance of GrSCM, emphasizing the

importance of financial performance measures and their impacts on practices within GrSCM. Under

this viewpoint, green finance plays an important role in defining strategies for CO2 emission control

and decarbonization of complex systems. Researchers analyzed relations between green financing and

social behavior like in [7, 19]. However, there are still a few attempts to formalize relations between

green financing decisions and operational decisions in green supply chains. In addition, CO2 emission

control is often accounted for only partially in supply chains, mainly for transport problems and

most of the time in a linear way. It is evident how, in several situations, emissions should be more

realistically dealt with considering both production and transportation factors as well as considering

nonlinear models.

In this paper, we try to follow this direction when it comes to three-layered supply chains. In the

literature, there are only a few cases where emission control in GrSCND is modeled by means of non-

linear functions as reported in the following. In [18], a nonlinear function is used to model warehouse

emissions that depend on the warehouse volume; the problem is solved by means of a Lagrangian ap-

proach. A similar method is used in [12] where the relations between emissions and vehicle weight are

assumed to be concave. [21] consider two minimum objectives for a Green Supply Chain, namely cost

and emissions. The relationship between budget and emissions is nonlinear because of the availability

of different technologies, discretely modeled, having different costs and unitary emissions. In [6], the

relations among emissions, budget for green financing, and quantity are nonlinear and continuous.

The model has a single objective while quadratic constraints relate the budget used for green and non

green investments.

The above analysis of the literature, therefore, shows that investigating the nonlinear effects of oper-

ations over carbon emissions represents a gap that deserves to be addressed. The model proposed in

this paper, which is an attempt to close this gap, is a bi-objective one and foresees the use of a financial

budget aimed at both mitigating emissions associated with transportation and production facilities,

and balancing flows over the facilities (and, in turn, over the network). This is quite an important

aspect since it allows for global and local optimization measures of the emissions over a three-echelon

supply chain with inbound logistics and handling operations at the intermediate levels. Indeed, even

though emissions could be globally minimized over the whole chain, we must also consider fairness in

distributing the emissions themselves over the network. Having a solution associated with an overall

minimum emission of CO2 which comprises only a subset of the facilities does not represent an equi-

table distribution of the pollutants over the territory. The need for an equitable distribution of the

flow in a solution is studied in several other logistic problems comprising possible negative impacts of

the operations on the environment as it happens, for instance, in hazardous transportation problems

(see, e.g., [4]).

The mathematical model proposed is solved on both synthetic instances and a realistic network,

demonstrating its effectiveness as a tool for strategically supporting green financing decisions in supply

chains where both global emission minimization and flow balancing over the facilities are sought.

The reminder of the paper is organized as follows. Section 2. details the formulation of the GrSCD
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problem. Section 3. discusses computational results and, finally, Section 4. reports conclusions.

2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

In the following, we formally describe the problem under consideration and the proposed mathematical

formulation. Given is a supply chain network modeled by means of a graph G = (N,A), where N

is the set of nodes and A is the set of arcs. The set N is formed by the union of three sets: the set

S of suppliers, the set F of facilities, and the set C of customers, i.e., N = S ∪ F ∪ C. The arc set

A models links among pairs of nodes belonging to the Cartesian products S × F and F × C. Given

the customer demands, the supply and the facility capacities, and a budget b, the goal is to decide

the investment in environmental protection to minimize the CO2 emissions associated with servicing

clients. Figure 1 depicts the G graph.

...

S

...

F

...

C

Figure 1: A generic network representing a three-stage supply chain

Let us define the problem formulation. The sets and parameters are:

� S: the set of supplies;

� F : the set of facilities;

� C: the set of customers;

� N : the set of nodes of the supply network;

� k: index for suppliers;

� j: index for facilities;
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� c: index for customers;

� i, i′: indices for generic nodes of the supply network;

� dc: the demand of customer c ∈ C;

� sk: the supply capacity of supplier k ∈ S;

� rj : capacity consumed by handling a unit of product in facility j ∈ F ;

� b: whole budget available to design the supply network;

� bv: part of the budget b available for green investments on transportation;

� chj : the unit handling capacity installation cost in facility j ∈ F ;

� capfj : the product handling capacity of facility j ∈ F ;

� capv: the capacity of a generic vehicle used for transportation;

� β1, β2: weight of CO2 and congestion in objective function, with 0 ≤ β1 ≤ 1, and β2 = 1− β1;

� βp, βv: weights for production and transportation congestion contributions, with 0 ≤ βp ≤ 1,

and βv = 1− βp.

The decision variables are:

� xp
i,i′ : the flow of product p ∈ P from node i ∈ N to node i′ ∈ N ;

� zj : the environment protection investment in facility j ∈ F ;

� v: level of green investment on the fleet of vehicles;

� uj : the amount of products worked in facility j ∈ F ;

� wj(zj , uj): CO2 emissions caused by a facility j ∈ F , as a function of the environment protection

investment zj and the amount of flow of products uj to be worked by that facility j;

� qii′(v, xi,i′): CO2 emissions generated by the flow of products xi,i′ on arc (i, i′) ∈ A as a function

of the level of green investment v on the fleet of vehicles;

� Γp congestion measure for production;

� Γv congestion measure for transport.

The objective function f minimizes both the CO2 emissions and a measure of the congestion in

production and transportation. As detailed in (2.1), the objective function is formed by the sum of

four components, namely, f1, f2, f3, and f4. f1 accounts for the emissions caused by the travels of

vehicles from suppliers to customers to service demands whilst f2 considers the emissions caused by the

activities carried out at each production facility; f3 penalizes the congestion caused by concentrating
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operations in a small number of facilities; finally, f4 penalizes the transport congestion along traveling

arcs.

min f = min [β1 (f1 + f2) + β2 (f3 + f4)]

= min
[
β1

(∑
(i,i′)∈A qii′(v, xi,i′) +

∑
j∈F wj(zj , uj)

)
+ β2

(
βPΓp + βvΓv

)] (2.1)

In the literature, transport CO2 emission functions, like f1, are modeled considering different factors

such as travel, weather, vehicle-related, roadway, traffic, and driver [22]. Comprehensive white box

models for truck emissions are treated in [2], where factors such as engine speed, mass, and power,

affect emissions. The comparative analysis reported in [8] analyzes different methods, such as the

MEET and COPERT III [17] in which emissions are considered mainly dependent on the vehicle

type and the distance traveled, with correction factors based on polynomial functions (of second

order or greater) considering velocity, load, acceleration, and power. The works of [3] and [10] survey

different operations research applications of MEET and COPERT III models in the road and maritime

transportation. The surveys highlight how a linear estimation of emissions is often not sufficient

to effectively model green problems. The above-mentioned measures of CO2 emissions (caused by

transportation) are in general dealt with operational problems; a very important example is the case

of the nonlinear dependency of emissions from vehicle velocity and load considered in the operative

pollution routing problem introduced by [9]. However, nonlinearities are less often considered in

literature within network design models. In this paper, to consider the strategic problem of investing

a budget b for green purposes, we propose a function that transforms levels of green investments in

the fleet of vehicles into coefficients representing emissions per unit of full truckload traversing an arc.

These coefficients are assigned to each arc and are dependent on the length of the latter and on the

amount of budget invested to this end. To determine the overall impact of the CO2 emissions caused

by the transportation activities, each coefficient must be multiplied by the ratio between the flow of

commodity traversing that arc and the capacity of a transport mean. This implies the hypothesis that

the fleet of vehicles considered in our model is homogeneous, i.e., all vehicles have the same capacity

capv.

Further pursuing the rationale hidden behind function f1, we note that for a given flow x̄ii′ on arc

(i, i′), a larger green investment v in the fleet of vehicles will lead to lower CO2 emissions; consequently,

in the long-term, the CO2 emissions associated with qii′(v, x̄ii′) will be lower. At the same time, given

a green investment level v̄, larger flows xii′ of goods flowing on arc (i, i′) will cause larger qii′(v̄, xii′)

values. Therefore, f1 can be defined as follows:

f1 =
∑

(i,i′)∈A

qii′(v, xii′) =
∑

(i,i′)∈A

ρii′ (b
v − v)

xii′

capv
. (2.2)

where ρii′ is a parameter allowing the transformation of the quantity (b − v) from money to CO2

emissions per unit of full truckload on arc (i, i′). Note that the ratio xii′
capv defines the number of full

truckload transports; the fractional part of the ratio identifies a less than truckload transport and the

CO2 emissions of the latter are, therefore, given by the corresponding fraction of ρii′(b
v − v).

The term f2, modeling the CO2 emissions caused by the production activities carried out in each

facility, is more complex since it considers both the number of products worked in each facility and
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the level of green investment made in each such facility. Roughly speaking, in our model, we consider

the CO2 emissions in a production site dependent upon two factors: the greater the flow of processed

products in a facility, the greater the CO2 emissions, and the greater the investment made in green

technology, the lower the CO2 emitted in the environment.

More formally, for a given amount of worked products ūj in a facility j, larger environmental invest-

ment values zj will lead to lower CO2 emissions; consequently, in the long-term, the CO2 emission in

a facility j ∈ F for handling product p ∈ P , denoted as wj(zj , ūj), will be lower. At the same time,

given a green investment level z̄j at facility j, larger flows of products uj in facility j will cause larger

wj(z̄j , uj) values. A similar approach has been addressed by [21] and [6]. These applications follow

several studies where emissions are accounted for in relation to the number of products worked, see,

e.g., [11], and in relation to green investments, see e.g., [14] and [13]. Therefore, f2 can be defined as

follows:

f2 =
∑
j∈F

wj(zj , uj) =
∑
j∈F

ϕj (b− zj)uj , (2.3)

where ϕj is a parameter allowing the transformation of the quantity (b − zj) from money to CO2

emissions per unit of worked product in j.

The penalties representing congestion terms in the objective function are f3 = Γp, and f4 = Γv,

respectively. As we know, CO2 has global effects and if we consider only the minimization of a

measure of the total CO2 emitted, local operations could be inefficiently planned. In the proposed

model, therefore, we introduce the second objective of balancing the allocation at both facility sites,

through the term f3, and traveling arcs, through the term f4.

The set of constraints (SC) of the problem is as follows:

∑
k∈S xkj −

∑
c∈C xjc = 0, ∀j ∈ F,∑

j∈F xjc = dc, ∀c ∈ C,∑
j∈F xkj ≤ sk, ∀k ∈ S,∑
k∈S rjxkj ≤ capfj , ∀j ∈ F,∑
k∈S xkj = uj , ∀j ∈ F,∑
j∈F (zj + chjuj) + v = b, ∀j ∈ F,(∑
k∈S xkj

)2 ≤ Γp, ∀j ∈ F,

(xi,i′)
2 ≤ Γv, ∀(i, i′) ∈ A,

xi,i′ ≥ 0, ∀(i, i′) ∈ A,

uj ≥ 0, ∀j ∈ F,

zj ≥ 0, ∀j ∈ F,

bv ≥ v ≥ 0,

Γp,Γv ≥ 0.

(2.4)

The first constraint models the mass conservation, i.e., the amount of flow entering node j must

outflow the same node, ∀j ∈ F . The second constraint imposes that client demands must be satisfied.

The third constraint warrants that, for every product p ∈ P , the amount of supply, from each supplier

k ∈ S, should not exceed its supply capacity spk. The fourth constraint imposes that the processing
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required for handling all the products in facility j ∈ F should not exceed the capacity capfj of facility

j. The fifth constraint considers the number of products worked in a facility. The sixth constraint

models the limitation on the available budget and limits the overall investment associated with both

the CO2 emissions reduction equipment and the installed capacity in a facility. The seventh constraint

limits the penalty for production to the square of flow entering each facility. The eighth constraint

limits the penalty for transportation to the square of flow per traveling arc. The remaining constraints

define the domains of the variables.

To underline the different purposes of the two objectives defined in (2.1), we used a gadget supply

chain network with 3 suppliers, 3 production sites, and 3 demand areas. The toy instance is solved

twice: the first time by considering the CO2 emission term only (β1 = 1) and the second time by

considering the penalty minimization term only (β1 = 0). From the first to the second run, the CO2

emissions pass from 20620.9 Kg to 37102 Kg. However, if we consider the balancing of flows on arcs

and at production sites, from the first to the second run, we obtain a variation of the total standard

deviation from 156.5 to 2.9. Figures 2 and 3 depict the different allocation of flows when the two

objectives are activated. In particular, Figure 2 reports only those arcs with no null flows (along with

their values). Over each facility node, the value of variable uj is reported as well. The solution of

the second run, as depicted in Figure 3, uses, differently from the other scenario, all the arcs and it

is possible to see how leveled the resulting flows are. Also, the flows entering the facilities are totally

balanced.

Figure 2: Example network: allocation of

flows with β1 = 1
Figure 3: Example network: allocation of

flows with β1 = 0

3. COMPUTATIONAL ANALYSIS

Computational experiments have been designed to investigate the behavior of the model in relation

to the two objectives over different instances. Parameters have been generated according to what is

reported in Table 1. In particular, the transport emission ρ is set to be compatible with the literature

findings in [15, 16] considering a full truck fuel consumption and emission of 0.33 km/L and 2.621 kg

CO2/L, respectively. ϕj is computed accordingly to [6].
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Table 1: Parameter setting

parameter value

dc uniform(50, 100) [units]

capfj uniform(120, 240) [units]

sk uniform(50, 100) ·⌈ |C|
|S| ⌉ [units]

rj 1

b 1000 [ke]

bv 0.5b [ke]

chj 0.001 [ke]

capv 100 [units]

distii′ uniform(800,1200) [km]

ρ 0.867 [kg CO2 vehicle/km ]

ρii′
ρ

capv distii′ [kg CO2/unit ke]

ϕj 0.000167 [kg/unit ke]

Instances have been generated and classified by size. Small size instances have |S| = 5, |F | = 5, and

|C| = 5; large instances have |S| = 30, |F | = 30, and |C| = 30. The model has been coded and

solved by means of the GUROBITM solver release 9.15 using Python API. The solver has the specific

functionality (which must be enabled) to solve problems containing non-convexity. This flag allowed

us to solve all the generated instances. The machine used for the experiments is equipped with a

processor Intel® CoreTM i7-1260P CPU 2100Mhz with 12 cores and 32GB RAM. A time limit was

set to 600 seconds.

In each test, we considered different values of β1 ∈ {1.00, 0.75, 0.50, 0.25, 0.00} (recall that β2 = 1−β1).

The weights for production and transport penalties βp and βv are set to 0.5.

Results are detailed in Tables 2 and 3 for small and large size instances, respectively. The results show

that the model can be easily solved in both the two scenarios. As for the large set, most of the time all

the running time limit is consumed. However, the optimality gap is less than 1%. To better evaluate

the impact of the penalty on the solution, the standard deviation of the flow on arcs - denoted by δ(p)

- and the standard deviation of the flow received by the facilities - denoted by δ(v) - are reported in

the tables. It is easy to see how the two objectives can be tuned to balance the penalty and the total

emissions of the supply chain.

The two objectives can also be compared by plotting the total CO2 (TotCO2) and the total penalty

Γp + Γv (TotGamma) over different values of β1 (see Figures 4 and 5).
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Table 2: Computational results for a network with |S| = 5, |F | = 5, and |C| = 5

β1 1.00 0.75 0.50 0.25 0.00

v 500.00 500.00 500.00 500.00 124.48

optVal 28,374.28 23,737.38 16,805.84 9,726.28 2,319.70

gap 0.00 0.00 0.00 0.00 0.00

runTime 0.04 0.49 0.11 0.11 0.04

Γp 33,856.00 6,526.34 4,329.64 4,329.64 4,329.64

Γv 33,856.00 2,407.08 1,082.41 659.52 309.76

Γp + Γv 67,712.00 8,933.42 5,412.05 4,989.16 4,639.40

COp
2 3,958.91 4,820.18 4,945.23 4,945.23 4,532.58

COv
2 24,415.37 25,340.75 25,960.42 26,476.16 49,797.53

δ(p) 68.12 29.93 0.00 0.00 0.00

δ(v) 34.36 19.00 15.22 11.13 2.46

COp
2 + COv

2 28,374.28 30,160.93 30,905.66 31,421.39 54,330.11

δ(p) + δ(v) 51.24 24.47 7.61 5.57 1.23

Table 3: Computational results for a network with |S| = 30, |F | = 30, and |C| = 30

β1 1.00 0.75 0.50 0.25 0.00

v 500.00 500.00 500.00 500.00 0.00

optVal 188189.02 144073.45 97477.75 50399.31 2638.41

gap 0.00 0.00 0.00 0.00 0.00

runTime 1.34 600.27 600.24 600.16 24.50

Γp 54084.19 7649.38 5563.60 5265.92 5265.92

Γv 43530.81 4134.95 1486.68 1242.55 10.89

Γp + Γv 97615.00 11784.33 7050.27 6508.47 5276.81

COp
2 34501.96 35628.78 35735.79 35752.61 35146.67

COv
2 153687.06 154505.10 155694.58 156081.94 378788.60

δ(p) 59.51 25.21 7.71 0.00 0.00

δ(v) 14.69 10.84 8.82 8.48 0.50

COp
2 + COv

2 188189.02 190133.88 191430.37 191834.55 413935.28

δ(p) + δ(v) 37.10 18.02 8.26 4.24 0.25
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Figure 4: Pareto front for a small size instance

Figure 5: Pareto front for a large size instance
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3.1. Tests on a realistic case study

A third instance set has been developed taking into account the real case study presented in [21] and

[6]. This test set considers |S| = 6, |8| = 5, |C| = 12, and a budget of 1800 ke. We computed distances

between network nodes using the geodesic distance. Investigating the results obtained for this test

set, it appears clear the impact of the penalties associated with flow balancing (both on arcs and in

the facilities). These indicators are represented by Γp and Γv values and by the standard deviations

δ(p) and δ(v). Detailed results are depicted in Table 4. Here, βp is set to 0.5. A set of instances with

different βp values is also solved and the results are detailed in Table 5. The Pareto front of the two

objective functions over different β1 values is shown in Figure 6.

Further scenario analysis is performed by varying the available budget that can be spent for emission

control. In this case, it is important to highlight the potential CO2 reduction. Thus, for each instance,

the maximum emission obtained when no budget is invested in emissions control is used to compute

the CO2 reduction obtained for each level of budget b ∈ {900, 1800, 2700, 3600, 4500}. The results for

this scenario are detailed in Table 6, and CO2 reduction is plotted against total penalty TotGamma

= Γp + Γv in Figure 7.

Table 4: Computational results for a network with |S| = 6, |F | = 8, and |C| = 12

β1 1.00 0.75 0.50 0.25 0.00

v 900.00 900.00 900.00 900.00 0.00

optVal 17,466,506.46 20,283,063.47 19,328,737.63 16,337,049.17 10,406,250.00

gap 0.00 0.00 0.00 0.00 0.00

runTime 0.06 3.49 0.82 0.75 1.33

Γp 36,000,000.00 22,914,342.25 25,000,000.00 20,250,000.00 20,250,000.00

Γv 36,000,000.00 18,306,789.94 9,000,000.00 4,081,295.06 562,500.00

Γp + Γv 72,000,000.00 41,221,132.19 34,000,000.00 24,331,295.06 20,812,500.00

COp
2 995,587.20 1,013,090.88 1,010,016.00 1,017,230.40 949,595.40

COv
2 16,470,919.26 19,160,805.05 20,647,459.26 27,834,023.70 116,049,518.36

δ(p) 1,500.00 590.85 866.03 0.00 0.00

δ(v) 1,322.88 1,150.20 1,027.40 783.35 353.55

COp
2 + COv

2 17,466,506.46 20,173,895.93 21,657,475.26 28,851,254.10 116,999,113.76

δ(p) + δ(v) 1,411.44 870.52 946.71 391.68 176.78
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Table 5: Computational results for the real case network for different βp values

βp 1.00 0.75 0.50 0.25 0.00

v 900.00 900.00 900.00 900.00 900.00

optVal 20,360,782.91 20,360,782.91 19,328,737.63 17,318,546.89 14,779,794.55

gap 0.00 0.00 0.00 0.00 0.00

runTime 0.72 0.17 0.86 2.23 2.00

Γp 20,250,000.00 20,250,000.00 25000000.00 25,000,000.00 50,128,051.42

Γv 20,250,000.00 20,250,000.00 9000000.00 8,038,078.92 6,970,640.69

Γp + Γv 40,500,000.00 40,500,000.00 34,000,000.00 33,038,078.92 57,098,692.11

COp
2 1,017,230.40 1,017,230.40 1,010,016.00 1,010,016.00 980,012.63

COv
2 19,454,335.41 19,454,335.41 20,647,459.26 21348518.58 21608935.77

δ(p) 0.00 0.00 866.03 866.03 1,387.77

δ(v) 1,224.74 1,224.74 1,027.40 988.95 971.04

COp
2 + COv

2 20,471,565.81 20,471,565.81 21,657,475.26 22,358,534.58 22,588,948.40

δ(p) + δ(v) 0.00 306.19 946.71 958.22 971.04

Table 6: Results for the real case network for different b values
b [k¿] 900 1,800 2,700 3,600 4,500

v 450 900 1,350 1,350 2,250

optVal 13,193,455.08 19,328,737.63 24,742,354.95 24,742,354.95 35,438,603.75

gap 0.00 0.00 0.00 0.00 0.00

runTime 0.18 0.88 0.32 0.32 0.21

Γp 20,250,000.00 25,000,000.00 25,000,000.00 25,000,000.00 23,810,636.44

Γv 5,062,500.00 9,000,000.00 9,000,000.00 9,000,000.00 13,855,619.70

COp
2 509,967.90 1,010,016.00 1,513,521.00 1,513,521.00 2,524,982.11

COv
2 13,220,692.26 20,647,459.26 30,971,188.90 30,971,188.90 49,519,097.31

δ(p) 0.00 866.03 866.03 866.03 681.86

δ(v) 866.03 1,027.40 1,027.40 1,027.40 1,075.93

COp
2 + COv

2 13,730,660.16 21,657,475.26 32,484,709.90 32,484,709.90 52,044,079.43

δ(p) + δ(v) 433.01 946.71 946.71 946.71 878.89

Γv + Γp 25,312,500.00 34,000,000.00 34,000,000.00 34,000,000.00 37,666,256.14

maxCO2 26,982,464.53 42,377,078.53 63,565,617.79 84,023,909.37 101,743,594.60

∆ CO2 13,251,804.36 20,719,603.27 31,080,907.90 51,539,199.47 49,699,515.17

4. CONCLUSIONS

In this paper, we studied a novel model for green financing on a three-stage supply chain. The model

considers nonlinear relations among CO2 emissions, budget spent for emission control, and number

of products moved towards and worked in the facilities. Besides the objective of minimizing CO2
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Figure 6: Pareto front for the case study instance

Figure 7: Plot of CO2 reduction and total penalty over different budget values for the case study

instance

emissions, commodity flow balancing is considered as a second objective and is represented by means

of two quadratic penalty functions of the flows on arcs and at the entering facilities, respectively.
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The model is solved both on synthetic instances and on a realistic network, with the aim to test the

computational effort to find solutions and verify the behavior of the bi-objective model in different

scenarios. For the real case instance, a quantification of the potential emissions reduction based on

the available budget for green financing is computed. The model resulted to be effective on both small

and large instances and, therefore, in our opinion, it may be useful in supporting green financing

decisions in real supply chains. Future work will be devoted to extending the model to multi-product

and multi-period environments.
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