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ABSTRACT
The diagnosis of various types of sleep disorders requires the experts to perform sleep stage scoring.

However, it is an arduous and repetitive task and, therefore, an important candidate for automation.

This work seeks to evaluate several scoring algorithms based on Machine Learning from the scientific

literature. The comparison is performed with the same experimental design, using EEG, EOG and

EMG signals from the polysomnographic records of the ISRUC-Sleep dataset. It is compared the

precision, memory and speed of methods based on Linear Discriminant Analysis, Support Vector

Machines, Random Forests and Neural Networks. As a result, several of the analyzed algorithms

reach high levels of accuracy, exceeding 75%. Also, it is demonstrated that the accuracy can be

raised to 85% by skipping the classification of doubtful epochs and still classify 65% of them.
KEYWORDS: Polysomnography, Sleep Stage Scoring, Digital Signal Processing, Machine Learning

MSC: Artificial Intelligence

RESUMEN
El diagnóstico de varios tipos de trastornos del sueño requiere que los especialistas clasifiquen las

fases del sueño. Sin embargo, esta es una tarea ardua y repetitiva y, por lo tanto, un importante

candidato a automatizarse. El trabajo busca evaluar varios tipos de algoritmos de clasificación basa-

dos en Aprendizaje Automático disponibles en la literatura cient́ıfica. La comparación se efectúa

con el mismo diseño experimental, utilizando señales de EEG, EOG y EMG de los registros poli-

somnográficos del conjunto ISRUC-Sleep. Se compara la precisión, memoria y velocidad de métodos

basados en Análisis Discriminante Lineal, Máquinas de Vectores de Soporte, Bosques Aleatorios y

Redes Neuronales. Se comprueba que varios de los algoritmos analizados alcanzan altos niveles de

exactitud, superando el 75%. Además, se demuestra que puede aumentarse la exactitud al 89% si se

deja de clasificar las épocas dudosas, aun aśı clasificando el 65% de las mismas.
PALABRAS CLAVE: Polisomnograf́ıa, Fases del Sueño, Procesamiento Digital de Señales, Apren-

dizaje Automático

1. INTRODUCTION

Sleep stage scoring is a necessary step for diagnosing sleep disorders such as insomnia, sleep apnea,

narcolepsy and hypersomnia. According to the American Association of Sleep Medicine (AASM),
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this operation is performed by dividing a Polysomnographic (PSG) record in consecutive 30 second

windows, also called epochs. The stage of each epoch must be classified as Wake (W), REM sleep (R)

or one of the non-REM sleep stages: N1, N2 or N3 [16]. Also, the AASM defines a set of guidelines

that the experts should follow while scoring a PSG record through the visual inspection of each epoch.

A PSG record contains the behavior of several electrophysiological signals during the analyzed time

period. The most important signals for sleep scoring are the electric activity of the cerebral cortex,

measured using Electroencephalography (EEG), of the facial muscles, using Electromyography (EMG)

and the ocular movements, using Electrooculography (EOG). There may be additional signals, such

as the cardiac activity or Electrocardiogram (ECG), the respiratory activity and body movements.

The scoring rules are based on the identification of several patterns in the signals, including Alpha

activity (8-13 Hz), Beta activity (13-35 Hz), Theta activity (4-8 Hz), K-complexes, sleep spindles,

Rapid Eye Movements (REM), Slow Eye Movements (SEM) and chin activity.

The PSG records can reach eight hours in duration and, therefore, the number of epochs in a sleep

study is close to a thousand. This implies that the scoring process is an arduous and repetitive one

and, consequently, it invites potential mistakes. The scientific literature contains many instances

of algorithms that automate this process using Machine Learning techniques. However, even though

there are established rules for the process, their subjective nature and the low agreement level between

experts [5] do not allow the algorithms to be precise enough to completely replace the experts in clinical

contexts.

The consulted articles propose the usage of various signal processing methods, including High Order

Spectra (HOS) [4], the Continuous Wavelet Transform (CWT) [8], the Discrete Wavelet Transform

(DWT) [22], the Fourier Transform and several statistic methods [25, 14]. They also use classification

methods based on Random Forest (RF) [9], Support Vector Machines (SVM) [14, 3] and Artificial

Neural Networks. This last group includes Multilayer Perceptrons (MLP) [22, 2] and Recurrent Neural

Networks (RNN) [27, 6].

In previous works [15], the authors make a performance comparison among classification methods

based on LDA, RF, SVM, MLP and RNN, using PSG records from the Sleep-EDFx dataset [10, 12].

It was concluded that an algorithm based on RNN achieves the best results according to the evaluated

parameters. But, even though the dataset is a common one among the consulted articles [2, 7, 19, 24,

26], the provided expert-based sleep scoring does not conform to the AASM guidelines.

The objective of this work is to select a sleep scoring algorithm that makes the job of the sleep experts

easier. The algorithm must be included in a software system dedicated to the clinical analysis of

PSG records. Hence, the selection has to be based on the accuracy of the results, but taking into

consideration the execution speed and the memory usage. Consequently, a public dataset is chosen

and the performance of several classification methods from the scientific literature is compared in

similar conditions.

2. MATERIALS

This work uses PSG records obtained from the ISRUC-Sleep public dataset [13], including 10 healthy

subjects and 100 with different kinds of sleep disorders, one record from each subject. Also, each
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one of the records was separately scored by two sleep experts following the AASM guidelines. Table

1 summarizes the distribution of the sleep stages in the records of the dataset. It also shows the

agreement level between the experts using the F-score metric.

The records include EEG, EOG and EMG signals with a sampling frequency of 200 Hz. The signals

that are considered by the AASM as optional for sleep scoring [16] are not used as, in case of been

absent, it would render the algorithms unusable.

Expert 1 Expert 2

Stage Count Percent Count Percent F1

W 22490 22.90 23554 23.98 0.919

N1 12694 12.92 10181 10.36 0.560

N2 30664 31.22 33158 33.75 0.803

N3 19408 19.76 17882 18.20 0.858

R 12971 13.21 13459 13.70 0.904

Total 98227 98234 0.809

Table 1: Distribution of sleep stages in the dataset records and expert agreement.

3. METHODS

The records are randomly split in two groups, the first one for training and the second one for

validation, with a size ratio of 75%-25%. The implemented algorithms are trained separately with

the annotations provided by both experts, so the training process produces two trained models from

each algorithm. Then, the trained models are tested using the records from the validation group,

classifying each epoch twice and comparing the prediction with the annotation of the corresponding

expert.

The execution time of the analyzed algorithms can be split in three main phases: Data preprocessing,

feature extraction and classification.

3.1. Preprocessing

The goal of the preprocessing phase is to prepare the data for the feature extraction phase. In order

to achieve it, the records are segmented in 30 second windows that match the epochs that will be

classified later. Also, the epochs that were registered with the lights turned on and the ones with

unknown or invalid sleep stages are excluded from consideration.

3.2. Feature Extraction

The feature extraction phase obtains a limited number of descriptive values that reflect the information

inside the signals that is relevant for the classification process. The values or features used in this

work are obtained by analyzing the signals in each epoch in the time domain, the frequency domain,
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the time-frequency domain and by some other nonlinear means. Table 2 shows a summary of the

extracted features.

Method EEG(F) EEG(C) EEG(O) EOG EMG Total

Kurt 1 1 1 1 1 5

Skew 1 1 1 1 1 5

P75 1 1 1 1 1 5

Act 0 1 0 1 1 3

Mob 0 1 0 1 1 3

Cpx 0 1 0 1 1 3

ShEn 1 1 1 1 1 5

ApEn 0 1 0 1 1 3

LLE 0 1 0 1 1 3

HFD 0 1 0 1 1 3

LZC 0 1 0 1 1 3

FFT 4 6 4 3 0 17

HOS 0 4 0 4 4 12

CWT 0 2 0 0 0 2

DWT 0 6 0 6 0 12

Total 8 29 8 24 15 84

Table 2: Summary of extracted features from each signal, including frontal (F), central (C) and

occipital (O) EEG, EOG and EMG. The specific extraction methods are explained in section 3.2.

3.2.1. Descriptive Statistics

This kind of features are obtained by computing descriptive statistics from the signal’s samples. The

Variance, Kurtosis (Kurt), Skewness (Skew) and 75th Percentile (P75) have been employed in this

work.

3.2.2. Hjorth’s Parameters

The Hjorth’s parameters, called Activity, Mobility and Complexity, reflect the spectral properties of a

signal in the time domain [11]. The Activity is equivalent to the variance of the signal (Act = var(X)),

while the Mobility is defined in equation 3.1,

Mob =

√
var(X ′)

var(X)
(3.1)

where X ′ is the first derivative of the signal X. Complexity is the ratio between the Mobility of the

signal’s derivative and the signal itself (Equation 3.2).

Cpx =
Mob(X ′)

Mob(X)
(3.2)
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3.2.3. Entropy

Entropy is a measure of the irregularity of a signal in the time domain [21]. The equation 3.2.3. shows

the formula proposed by Shannon for this measure:

ShEn = −
N∑
i=1

p (xi) log p (xi) (3.3)

where p (xi) is the probability of a signal sample having the value xi.

There are other estimation methods, including the Approximate Entropy, displayed in equation 3.2.3..

ApEn(r,m) = ϕmr − ϕm+1
r (3.4)

The values of ϕ can be obtained using an algorithm that represents the signal in the phase domain

Xi =
{
xi, xi+1, ..., xi+(m−1)

}
and calculates the distance between those patterns using the L1 norm.

Then,

ϕmr =
1

M

M∑
i=1

log
Nm
r (i)

M
M = N −m+ 1 (3.5)

where Nm
r is the number of Xj patterns that satisfy ∥Xi −Xj∥1 ≤ r.

In this work the pattern length (m) is 2 and r is the standard deviation of the signal in the epoch,

multiplied by 0.1, as estimated in [21].

3.2.4. Largest Lyapunov Exponent

The Largest Lyapunov Exponent (LLE) is an indicator of how unpredictable a signal is. It has been

demonstrated that it can be useful for discriminating the N1 and N2 stages [14]. The algorithm pro-

posed by [20] allows to estimate LLE by calculating the distances between the most similar trajectories,

that are also distant in the time domain. Equation 3.2.4. describes this distance,

dj(0) = min
k

∥Xj −Xk∥, |i− j| > τ (3.6)

where τ is the threshold in time domain and Xi =
{
xi, xi+J , ..., xi+(m−1)J

}
is a trajectory in phase

domain. Once the distances have been calculated, the LLE can be obtained using linear regression

with equation 3.2.4..

y(i) =

M∑
j=1

log dj(i)

TsM
M = N − (m− 1)J (3.7)

In our work we use the values 10 and 7 for m and J , respectively, while τ is the mean period of the

signal (MNF−1).

3.2.5. Fractal Dimension

The Higuchi Fractal Dimension (HFD) is an estimate of the fractional dimensions of the geometric

shape of a signal in the time domain [21]. In [14] it is stated that this measure is especially useful for

recognizing the N3 stage.
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The Higuchi algorithm calculates the fractal dimension as the slope of the mean squares fit of the

values of log(L(k)) against log(1/k) for k between 1 and kmax. The values of L(k) are calculated using

the equation 3.2.5.:

L(k) =

k∑
m=1

Lm(k) (3.8)

where Lm(k) is the mean length of the sequence

xkm = (xm, xm+k, xm+2k, ..., xm+Nk
m k), N

k
m = ⌊(N −m)/k⌋ k

calculated with equation 3.2.5.:

Lm(k) =
(N − 1)

∑Nk
m

i=1 xm+i k − xm+(i−1) k

Nk
m k

(3.9)

In this work we use the value 40 for kmax, that was estimated in [21].

3.2.6. Lempel-Ziv Complexity

The Lempel-Ziv complexity (LZC) is an estimation of the complexity of a signal [14, 21]. It can

be calculated by first transforming the signal x in a binary sequence x2 by comparing each sample

with a predefined threshold T . Then, the sequence is used to calculate c(x2), the number of different

sub-sequences of x2, scanning sequentially from left to right. Finally, the value of x2 is normalized

using equation 3.10,

LZC =
c(x2)
N

log2N

(3.10)

where N is the length of the sequence. This works uses the median of the samples of X as the value

of T [21].

3.2.7. Discrete Fourier Transform

The Fast Fourier Transform (FFT) algorithm efficiently estimates the frequency spectrum of a signal.

The spectrum can be used to obtain the mean frequency of the signal, the spectral entropy and the

relative spectral density of the relevant frequency bands.

The mean frequency can be calculated using equation 3.2.7.:

MNF =

M∑
i=1

fi Pi (3.11)

whereM in the number of frequency bins, fi are the frequency values and P is the normalized spectral

frequency (
∑
Pi = 1) [18]. Similarly, the spectral entropy of a frequency band can be obtained from

equation 3.2.7.:

SpEn = −
fh∑
i=fl

Pi logPi
logNf

(3.12)

where fl and fh are the minimum and maximum frequencies, respectively and Nf is the number of

frequency bins in the range [fl, fh] [21].
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3.2.8. High Order Spectra

The High Order Spectra (HOS) analysis can be employed to extract features related to third order

statistics of a signal [4]. Before calculating the features, the Bispectrum has to be estimated using

equation 3.2.8.,

B(f1, f2) =

W∑
i=1

Xi(f1)Xi(f2)Xi(f1 + f2)

W
(3.13)

where Xi is the Short-Time Fourier Transform (STFT) of the signal on the i-th window and W is

the number of windows. The STFT in a vicinity of xi is the FFT of the product of the signal and

a window function centered on xi [23]. In our work, we use 2 seconds long Haan windows, with 1

second (50%) of overlap between consecutive windows. The Bispectrum is symmetric in both axes, so

its domain of interest is defined in the expression 3.2.8..

Ω = {(f1, f2)| f1 ≥ 0 , f1 ≥ f2 , f1 + f2 ≤ 0.5} (3.14)

Once the Bispectrum is calculated, it is possible to calculate its mean amplitude, the Normalized

Bispectral Entropy (equation 3.2.8.), its logarithmic sum (equation 3.2.8.) and its mean frequency

(equation 3.2.8.):

BiEn = −
N∑
n=1

pn log pn

pn =
|B(f1, f2)|∑
Ω |B(f1, f2)|

(3.15)

H1 =
∑
Ω

log |B(f1, f2)| (3.16)

WCOB1 =

∑
Ω f1B(f1, f2)∑
ΩB(f1, f2)

(3.17)

3.2.9. Wavelet Transform

The Wavelet Transforms translate a signal into the time-frequency domain. The transformation

approximates the signal inside a time window by a Wavelet base (ψ) using different time scales [23].

The scale factors are inversely proportional to the frequency of the Wavelet base, as stated in equation

3.2.9.,

ω =
fψ
a Ts

(3.18)

where Ts is the sampling period and fψ is the mean frequency of the Wavelet base [8].

The Continuous Wavelet Transform (CWT) can be used to estimate the instantaneous frequency along

the time domain of the signal and is computed using equation 3.19

Lψ(a, t) =
1√
|a|

∞∫
−∞

ψ̄

(
u− t

a

)
f(u) du (3.19)
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where f(x) is the signal and ψ is a Wavelet base [23]. However, computing the CWT across the whole

frequency domain of the signal is a very computationally expensive operation. Therefore, in this work

the usage of the CWT is limited to the detection of K-Complexes and sleep spindles in the 0.5-1.5 Hz

and 12-14 Hz frequency bands, respectively, of the EEG signals.

The Discrete Wavelet Transform (DWT) decomposes the signal in two coefficient vectors with N/2

values, satisfying

α1 = Hψ x δ1 = Gψ x (3.20)

where Hψ and Gψ are dual filters with sub-sampling, related to the Wavelet base [23]. The α1 vector

contains an approximation of the original signal in the frequency range
[
0, 14fs

]
, while δ1 is a detail

vector in the frequency range
[
1
4fs,

1
2fs

]
, where fs is the sampling frequency [22]. The DWT can

be computed again from vector α1, in order to obtain the vectors α2 and δ2 with frequency ranges[
0, 18fs

]
and

[
1
8fs,

1
4fs

]
, respectively. Thus, successively, the signal can be decomposed in L levels,

after which the vectors δ1, δ2, ..., δL, αL belong to different frequency bands.

From the transform, the entropy of each relevant frequency band along the epoch in question can be

calculated. In our work we use the Daubechies function (db1 ) as the Wavelet base for the EOG signals

and the reverse biorthogonal function (rbio3.3 ), for the EEG signals. Given the 100 Hz sampling

frequency of the signals, once they are decomposed in 5 levels, the frequencies of the coefficient

vectors approximately match the frequency bands of interest.

3.3. Classification

The classification phase is responsible for assigning a sleep stage to each epoch contingent on the

features extracted from it. The classification can take into consideration historic information by also

using the features extracted from the previous K − 1 epochs, given a predefined sequence length K.

This work uses classifiers based on LDA, SVM, RF, MLP and RNN. Additionally, it evaluates an

ensemble based classifier, using majority Voting (V) of the LDA, SVM and MLP models.

For the implementation of the LDA, SVM, RF, MLP and V classifiers this work uses the Python

package Sciki-Learn [17]. On the other hand, the RNN based classifier, a neural network with two

Long-Short Term Memory (LSTM) bidirectional layers, is implemented using the TensorFlow [1]

package.

Given that the previously mentioned implementations are capable of estimating the probability of the

offered predictions, the authors propose an algorithm that takes into consideration that information.

Given the classifier C and a minimum probability Pmin, the algorithm scores epoch E only when the

classification probability PC satisfies PC(E) > Pmin.

3.4. Evaluation

The performance of each algorithm has been analyzed taking into consideration the accuracy (Acc),

Cohen’s Kappa coefficient and the F-score (F1). Additionally, the amount of space required for the

storage of the trained models and execution time are also considered, but as secondary parameters. In

the latter case, it is only compared the execution time of the classification phase, as the preprocessing

and feature extraction phases are common to all the analyzed algorithms.
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4. RESULTS

The estimation of the optimum sequence length (K) and other model-specific hyperparameters is

accomplished through 10-fold cross validation, using the first group of PSG records of the ISRUC-

Sleep dataset. Then, the training is repeated with the estimated hyperparameters and all the records

of the group.

After training the classifiers, two instances of each algorithm are obtained, associated to each one of the

experts (E1 and E2). Then, the obtained classifiers are tested using the second group of PSG records

and the results are compared. Table 3 shows the comparison of the performance of the algorithms.

Algorithm Acc Kappa F1 F1 by stage Memory Time

W N1 N2 N3 REM (KB) (s)

RF-E1 0.7659 0.6983 0.7454 0.8446 0.4330 0.7491 0.8507 0.8494 44874 0.390

RF-E2 0.7696 0.7009 0.7409 0.8508 0.3983 0.7595 0.8444 0.8515 44266 0.389

MLP-E1 0.7497 0.6782 0.7243 0.8253 0.3903 0.7426 0.8475 0.8155 34 0.048

MLP-E2 0.7487 0.6763 0.7309 0.8448 0.4400 0.7394 0.8105 0.8197 34 0.048

LDA-E1 0.7710 0.7059 0.7570 0.8346 0.4798 0.7686 0.8573 0.8449 7 0.012

LDA-E2 0.7720 0.7062 0.7515 0.8423 0.4517 0.7703 0.8509 0.8423 7 0.013

SVM-E1 0.7736 0.7097 0.7451 0.8570 0.4273 0.7559 0.8609 0.8246 10 0.039

SVM-E2 0.7726 0.7092 0.7440 0.8601 0.4257 0.7554 0.8619 0.8167 10 0.038

V-E1 0.7829 0.7212 0.7621 0.8574 0.4688 0.7768 0.8631 0.8426 64 0.187

V-E2 0.7842 0.7223 0.7596 0.8578 0.4532 0.7818 0.8606 0.8402 64 0.189

LSTM-E1 0.7804 0.7181 0.7592 0.8580 0.4541 0.7623 0.8600 0.8615 3759 4.500

LSTM-E2 0.7910 0.7291 0.7476 0.8746 0.3407 0.7825 0.8758 0.8645 3759 4.326

Table 3: Comparison of the performance of the classifiers using the testing records.

Additionally, the performance of the classifiers is tested while limiting the minimum classification

probability. Table 4 shows the obtained results using 0.5 and 0.75 as limits, as well as the fraction of

epochs that were actually classified in each case. Similarly, Figure 1 shows the effect of different Pmin

values on the performance of the V and LSTM classifiers.

Figure 1: Effect of the minimum probability in the performance of the algorithms
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Pmin = 0.5 Pmin = 0.75

Algorithm Acc Kappa F1 Classified Acc Kappa F1 Classified

RF-E1 0.8551 0.8082 0.7724 0.7579 0.9638 0.9493 0.7710 0.3214

RF-E2 0.7587 0.6894 0.7303 0.9743 0.9658 0.9536 0.7744 0.3353

MLP-E1 0.7564 0.6861 0.7364 0.9803 0.8185 0.7656 0.7674 0.7885

MLP-E2 0.7783 0.7150 0.7633 0.9805 0.814 0.7593 0.7725 0.8004

LDA-E1 0.7815 0.7179 0.7585 0.9741 0.8394 0.793 0.8066 0.7941

LDA-E2 0.8230 0.7691 0.7624 0.8892 0.8434 0.7964 0.7962 0.7944

SVM-E1 0.8212 0.7657 0.7335 0.8851 0.9358 0.9145 0.8152 0.4960

SVM-E2 0.8551 0.8082 0.7724 0.7579 0.9353 0.9137 0.7698 0.5147

V-E1 0.8054 0.7489 0.7807 0.9405 0.8866 0.8520 0.8272 0.6759

V-E2 0.8068 0.7501 0.7781 0.9366 0.8964 0.8639 0.8238 0.6516

LSTM-E1 0.8092 0.7539 0.7786 0.9248 0.902 0.8712 0.8034 0.6376

LSTM-E2 0.8222 0.7677 0.7530 0.9185 0.9006 0.8687 0.7465 0.6898

Table 4: Comparison of the performance of the classifiers with minimum classification probability

Pmin

5. DISCUSSION

The LSTM algorithm obtains the best results among the individual classifiers, achieving above 0.78

accuracy, 0.71 Kappa coefficient and 0.74 F-score. The amount of memory that occupies this model,

approximately 3 Megabytes (MB), is greater than the remaining classifiers, except RF, but not in a

significant amount. Its execution time is also greater than the required by the other classifiers, but it

is significatively smaller than 1768 seconds, the time it takes to execute the common feature extraction

phase. Additionally, the proposed method (V) achieves a precision level similar to the one of LSTM,

with 0.78 accuracy, 0.72 Kappa coefficient and 0.75 F-score, but requiring less memory and time.

The analysis of the stage-specific classification accuracy of the methods demonstrates that N1 is

significantly harder to predict than the remaining stages. Table 1 demonstrates that the experts have

a very low agreement on this stage, so the low N1 classification accuracy is not an exclusive trait of

the algorithms.

The obtained results are still below the precision level expected from a sleep expert. This statement

is supported by the agreement level between the experts that are involved in the dataset, with 0.8259

accuracy, 0.7747 Kappa coefficient and 0.8088 F-score. Thus, the sleep scoring process requires the

supervision of an expert.

Taking this into consideration, by limiting the minimum classification probability, the precision of

the performed predictions can be increased and the classification of the most doubtful epochs can be

delegated to the experts. For instance, by limiting the probability to 0.5 the accuracy is increased

to 0.80, the kappa coefficient to 0.75 and the F-score to 0.78, while the amount of classified epochs

remains above 92%. Furthermore, by limiting the probability to 0.75 the accuracy is increased to 0.89,

the kappa coefficient to 0.85 and the F-score to 0.80, keeping the amount of classified epochs around
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65%. Increasing the minimum probability produces more precise predictions, but it also decreases the

number of classified epochs, as can be observed in Figure 1.

6. CONCLUSIONS

This work compares the performance of a wide range of sleep scoring methods that are available in

the scientific literature. Its objective is to find out which one is more useful in a clinical context.

Consequently, it uses several selection criteria, including scoring precision, memory and speed. The

results show that the LSTM and V algorithms achieve the highest precision levels, reaching 78%

accuracy, 0.72 Kappa coefficient and 0.75 F-score. Also, among them, V is faster and requires less

memory. The accuracy of these automatic scoring methods is close, but inferior to the accuracy of

a sleep expert, so the former requires the supervision of the latter. Additionally, by delegating to

the experts the classification of the most doubtful epochs, the accuracy can be increased to 89%, the

Kappa coefficient to 0.85 and the F-score to 0.80 and still classify 65% of the epochs.
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