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ABSTRACT
The minimization of an energy functional is the main ingredient of several segmentation and geo-
metric modeling problems. When the solution of this kind of optimization problem is described by
a curve, the most popular approach consists in representing the curve as a parametric curve and to
compute the minimum in terms of the free parameters of the curve. In free form design tasks, the
fairness (energy) functional depends of the arc length and the bending energy of the curve and the
classical approach requires to compute first and second derivatives. This work presents a Hermite
interpolating subdivision scheme, based on Bézier rational curves, with local tension parameters
and discusses an efficient software implementation of the algorithm for energy minimization of the
functional. The curve that minimizes the functional is called the fair curve, and it shows excellent
properties to be used for design purposes. The novelty of the proposed method lies in the fact it is
derivative free. Also we include a discussion of the implementation of our method and show some
numerical results.
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RESUMEN
La minimización de un funcional de enerǵıa es el ingrediente principal de varios problemas de seg-
mentación y modelación geométrica. Cuando la solución de este tipo de problema de optimización es
descrita por una curva, el enfoque más popular consiste en representar la curva en forma paramétrica
y calcular el mı́nimo en términos de los parámetros libres de la curva. En los problemas de diseño
libre, el funcional de enerǵıa (fairness) depende de la longitud de arco y de la enereǵıa de defor-
mación (bending) de la curva y se requiere calcular primeras y segundas derivadas. Este trabajo
presenta un esquema de subdivisión interpolante de Hermite, basado en curvas racionales de Bézier,
con parámetros de control local y se discute la implenetación eficiente del algoritmo de minimización
de la enerǵıa. La curva que minimiza el funcional se denomina curva fair is muestra excelentes
propiedades para el diseño. Lo novedoso de este trabajo consiste en el hecho que es libre de derivadas.
Además se incluye una discusión de la implementación del método y se muestran varios resultados
numéricos.

PALABRAS CLAVE: Fairness, interpolación de Hermite, esquema de subdivisión, elástica, curva

racional de Bézier.

1. INTRODUCTION

A very popular technique in curve design is to construct a spline curve that interpolates a sequence of points
on the plane. But the interpolation is not only limited to these points, it can also be specified that the
curve is tangent to certain directions at each of the interpolated points (Hermite interpolation). There are
infinitely many smooth curves that satisfy these interpolation conditions, so it is expected that the designer
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will select the one that best fits the data. In this sense, it is introduced the notion of elastic curve, which
is one that minimizes a certain functional from the Theory of Elasticity, which depends on the function and
its derivatives.
Our first step is to study the Hermite subdivision scheme with rational quadratic Bézier curves and prepare
a computational implementation of it. A second step consists in the approximate calculation of the elastic
energy of the curve and, finally, to calculate a value of the tension parameter that minimizes an elastic energy
functional, this is, that achieves the fair curve.

1.1. Related work

A-spline curves, introduced in the founding article [2], are polynomials in barycentric coordinates with
respect to a reference triangle, written in Berntein-Bézier form. Subsequently, in [3], A-spline interpolation
schemes are presented that minimize certain energies from the Theory of Elasticity (see [15]); and for this
reason they are called elastica. Since the calculation of the A-spline curve that minimizes these functionals
results in the calculation of complicated integrals that can only be solved numerically, the authors introduce
in [3] a simplified formulation of these energies and develop in detail the case of the quadratic A-splines
which are (approximately) elastica.
The sections of the quadratic A-spline curves have different representations, both as implicit or rational
parametrized (rational Bézier spline) curves. From each representation, it is possible to calculate, with more
or less computational effort, the coordinates of points on the curve, as well as their tangent directions and
curvature values. More recently, in [8, 12, 7] a G1-continuous Hermite interpolation subdivision scheme is
studied with very good properties for the design of curves, whose limit curve is a quadratic A-spline curve.
Particularly in [12] an initial approximation of the limit curve is achieved, however, the evaluation of the
bending energy functional is performed by calculating the parametric values of the points generated by the
subdivision scheme using an inversion formula, and these values are substituted in the calculation of the
curvature values of those points, which results in a computationally expensive method.
In other nearby works, the problem is also attacked from similar points of view. In [14] it is considered energy
minimization for quadratic Bézier polynomial curves, but not for rational curves. In [5], the minimization
of the bending energy for rational Bézier curves is modified, imposing the calculation of the values of the
weights wi such that the sum of the values of the local bending energy at the ends of the spline sections
is minimized, however this approach does not take into account the behavior in the interior of the curve
sections. In [6] cubic curves are used, but the functional only uses the second derivative, the curvatures are
not calculated. In [16], another simplifications of energies are discussed.
The present work may be included in a recent trend for curve and surface subdivision schemes, that consists
in taking advantage of the hierarchical nature of subdivision schemes to provide algorithms for the efficient
computation of energy functionals, see for instance [1],[9] and [10].

1.2. Our contribution

The main objective of this research is to propose and implement an efficient algorithm to compute a fair
Hermite interpolation scheme based on quadratic A-spline elastica. Exploiting the self-similarity of the
geometric information encapsulated in the subdivision scheme of [7, 13], which allows generating increasingly
dense samples of points on the limit spline curve and based on the fact that for uniform sampling of regular
smooth curves, Richardson extrapolation can be applied repeatedly giving a sequence of derivative free arc
length estimates of arbitrarily high orders of accuracy [11], we show that it is possible to compute efficiently
quadratic A-spline elastica, that interpolate given assigned points and tangent directions.

2. SUBDIVISION SCHEME

Subdivision schemes have become an efficient method for generating curves and surfaces in the Computer
Aided Geometric Design (CAGD) environment. An univariate subdivision process defines a curve as the limit
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of a sequence of polygons that are refinements of an initial polygon. This schemes are important because
they allow control of the shape of the limit curve and reproduce a wide family of curves used in Computer
Graphics, such as conic sections and polynomial curves. In addition, they provide valuable information
about the limit curve, without the need to use its analytical expression.
In [8], a Hermite subdivision interpolation scheme for rational quadratic Bézier curves with local tension
parameter ω is proposed. The subdivision rule consists, essentially, in inserting between each pair of consec-
utive points of the scheme the shoulder point corresponding to that subsection. Choosing this point avoids
the need to assign it a tangent direction and, moreover, it is easy to calculate with little numerical error.
When performing the first refinement, the control triangle associated with each conic segment is split into
two new control triangles and the conic section is split into two consecutive conic sections, and although
these two new conic sections are arcs of the previous conic, it is necessary to find the new tension parameters
that identify them in their Bernstein-Bézier form with respect to the new triangles. In [7], it is shown that
the parameter ωj

i associated with the conic that interpolates the i-th edge of the A-spline in the j-th step
can be calculted with the recursion formula:

ωj+1
2i−1 = ωj+1

2i =

√
1 + ωj

i

2

In this way, giving an initial points and tangent directions, we can define a recursion, adding in each step
the shoulder point corresponding to each new section as follows:

P j+1
2i−1 = P j

i

P j+1
2i =

P j
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where P j+1
2i−1 and P j+1

2i+3 are the extreme points of the section, and P j+1
2i+1 is the corresponding shoulder point,

for a better idea of the scheme see Fig 1.

Figure 1: Refinement of an edge. Taken from [12]

This subdivision scheme manages to reproduce conic sections with any non-uniform distribution of the data.
In addition, it satisfies many of the main current requirements of CAGD applications, since it interpolates
not only points, but also the tangents associated with them, and the limit curve to which it converges is
smooth. The existence of tension parameters allows local control of the geometry of the curve. The scheme
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also provides the ability to accurately reproduce arcs of conics, is invariant under affine transformations and
it is relatively simple to implement computationally.

3. FAIRNESS FUNCTIONAL

There are different functions that provide ways to quantify the fairness of a curve. One of the most commonly
used in literature is a linear combination of the bending energy E and stretching energy S, (see [3], [13]):

Fλ = E + λS

=

∫ 1

0

(
x′y′′ − y′x′′

((x′)2 + (y′)2)3/2

)2
ds

dt
dt+ λ

∫ 1

0

√
(x′)2 + (y′)2dt.

where (x(t), y(t)) is a parametrization of the curve, with t ∈ [0, 1], ds =
√
(x′)2 + (y′)2dt and ′ is the

derivative with respect to t.
Due to the complexity of the calculations of these integrals, and the fact that the previously explained
subdivision rule offers a sample of points on the curve as dense as desired, then we can approximate these
integrals using numerical methods, such as the method of the trapezoids.

Given j > 0, the 2j chords P j
2iP

j
2i+2, with i = 0, 1, ..., 2j − 1, have their ends on the conic section. Hence,

the corresponding chord length of the conic section is:

∆j
is :=

∣∣∣∣∣∣P j
2i − P j

2i+2

∣∣∣∣∣∣ , i = 0, 1, ..., 2j − 1

Then, the length of the curve section can be approximated by the sum:

Sj :=

2j−1∑
i=0

∆j
is

Let k(s) be the curvature of a rational quadratic Bézier spline section, parameterized by arc length, then
the bending energy of this section is defined as ∫ l

0

k2(s)ds

where s is the arc length and l is the arc length of the section. Let kji be the curvature of c(t) at P j
2i,

with i = 0, 1, ..., 2j − 1. Then, using the trapezoid rule for non-uniform spacing, the bending energy can be
approximated by the sum:

Ej :=
1

2

2j−1∑
i=0

(
(kji )

2 + (kji+1)
2
)
∆j

is

In [13] is introduced a expression to calculate curvature corresponding to shoulder points in rational quadratic
Bézier curves

ksp =
8ωAT

||P2 − P1||3

where AT is the area of the control triangle.
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4. ALGORITHM AND NUMERICAL EXAMPLES

The subdivision rule and the algorithms to calculate the energies and to minimize the fairness functional is
implemented using Flutter framework, creating an iterative algorithm that receives the points, the tangent
vectors and the initial values of the tension parameters ω corresponding to each section of the spline curve,
and returns a list of points on the fair subdivision curve, as well as the value of the elastic energy and the
value of the tension parameter ω that minimizes the functional.
The algorithms used in the program are shown in pseudocode below. Due the local nature of the problem,
the numerical examples are shown for only one section of the spline curve, but in the software they are
implemented for splines with several sections.

4.1. Subdivision algorithm

The following is a pseudocode for the implementation of the subdivision scheme. The initial conditions
(j = 0) are:

� P 0 = {P 0
i , i = 0, 1, 2} starting points,

� w0 tension parameter,

� A0 area of the triangle formed by the P 0 points.

1: Procedure AlgSub(j, P j , ωj , Aj
0)

2: ωj+1 =
√

1+ωj

2 , Aj+1 = 1
2

ωjAj

(1+ωj)2 , P
j+1
2j+2 = P j

2j+1

3: for i = 1 to 2j − 1 do
4: P j+1

4i+1 = P j
2i

5: P j+1
4i =

P j
2i+ωjP j

2i+1

1+ωj

6: P j+1
4i+2 =

P j
2i+2+ωjP j

2i+1

1+ωj

7: P j+1
4i+3 =

P j+1
4i+1+P j+1

4i+3

2
8: end for
9: output:P j+1, ωj+1, Aj+1

4.2. Energy approximation algorithm

Algorithm to approximate the fairness functional. The initial conditions are:

� P 0 = {P 0
i , i = 0, 1, 2}, starting points,

� w0, tension parameter,

� A0, area of the triangle formed by the P 0 points,

� K0 = {k00, k01}

� ∆0 = {∆0
0s}

� j∗

1: Procedure AlgEn(j, P j , ωj , Aj ,Kj ,∆j , λ)
2: {P j+1, ωj+1, Aj+1} = AlgSub(P j , ωj , Aj)
3: for i = 1 to j ∗ −1 do

4: ∆j+1
i s =

∣∣∣∣∣∣P j+1
2i+3 − P j+1

2i+1

∣∣∣∣∣∣
5: kj+1

2i = kji

6: kj+1
2i+1 =

8ωjAj
0

(∆j
is)

3
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7: Sj+1 =
∑2j−1

i=0 ∆j+1
i s

8: Ej+1 =
1

2

∑2j−1
i=0

(
(kj+1

i )2 + (kj+1
i+1 )

2
)∑(i+1)2j∗−i−1

r=i2j∗−i ∆j
rs

9: end for
10: S = RichardsonExtrapolation{S1, S2, ..., Sj∗}
11: E = RichardsonExtrapolation{E1, E2, ..., Ej∗}
12: output:{S,E}

4.3. Numerical examples

With the previous algorithms, for a given tension parameter ω we can efficiently approximate both energies
from the fairness functional. Using these energy approximations, we can compute the tension parameter ω
that minimizes the fairness functional with a derivative free a numerical method, such as Golden Section.
In Fig 2 we can observe an example developed in [12], and in Fig 3 we can observe the numerical results of
the example for the approximation of the energies S, E and F .
It becomes apparent that our results improve the previous related works. Furthermore, we see that with few
iterations (5), very good approximations are obtained with a computational cost in time that is acceptable
for free design CAGD applications.

Figure 2: Numerical example. Taken from [4]

Figure 3: Numerical results [4]
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4.4. Some images

We show some images obtained by our software implementation

Figure 4: Examples of the software. Upper row: a single one-section subdivision example with 3 and 5 steps.
Middle row: subdivision of a circle with 3 and 5 steps. Bottom row: another two simple outputs from the
software with 11 subdivision steps.

5. CONCLUSIONS

A subdivision scheme to compute a dense sample of points of rational quadratic Bézier splines (i.e., quadratic
A-splines) with local tension parameters is presented. Exploiting the self-similarity of the geometric infor-
mation encapsulated in the subdivision scheme, it is proposed an efficient algorithm to determine the arc
lengths of the spline sections, as well as their elastic energy, without using evaluations of the functions or
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their first and second derivatives, obtaining as a result, a computationally cheap and derivative free method
to compute the tension parameters that minimize the fairness functional.
The proposed algorithms and implementation of our method may be extended to those curve subdivision
schemes with known formulae for the position of the limit points, their tangent vectors and curvatures,
enabling the implementation of a multiscale optimization strategy, where the energy (fairness) functional is
optimized in a coarse-to-fine fashion.
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local basad en spline cónico. Bachelor Thesis, Havana.
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