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ABSTRACT 
In this paper we demonstrate the importance of restricted CUR matrix decomposition the selection of genes subset for the 

problem of classification of cancer tumors. We propose an algorithm that selects a genes subset of an unconventional way 

to the methods of selection features subset by filters. It tries to minimize the normalized Frobenius norm error by 
approximating the data matrix by a low rank matrix.  

We demonstrate that normalized Frobenius norm error is a decreasing and bound succession, and converges to zero. We 

apply the proposed algorithm to a gene expression DNA microarray dataset in Colon cancer, setting the rank parameter 𝑘 

for the values 5, 7, 10, 13 and 20. Finally, we apply Principal Component Analysis to the subsets selected by the proposed 

algorithm for 𝑘 = 5 in order to confirm the two classes of dataset: the sick class consisting of 40 patients and the healthy 

class consisting of 22 patients. 
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RESUMEN 

En este artículo demostramos la importancia de la descomposición matricial CUR restringida en la selección de 
subconjuntos de genes para el problema de clasificación de tumores cancerígenos. Con este fin, proponemos un algoritmo 

que selecciona un subconjunto de genes de una manera no convencional a los métodos por filtros. Este algoritmo intenta 

minimizar el error de la norma de Frobenius normalizado aproximando la matriz de datos mediante una matriz de bajo 
rango. Demostramos que el error de la  norma de Frobenius normalizado es una sucesión decreciente y acotada, y converge 

a cero. Aplicamos el algoritmo propuesto a un conjunto de datos de microarreglos de ADN de expresión genética en cáncer 

de Colon. Para ello, se establecieron diferentes valores del parámetro de rango k: 5, 7, 10, 13 y 20. Finalmente, aplicamos 
el Análisis de Componentes Principales en los subconjuntos seleccionados por el algoritmo propuesto para k = 5. Los 

resultados del Análisis de Componentes Principales arrojaron la confirmación de las dos clases del conjunto de datos: la 

clase enferma que consta de 40 pacientes y la clase sana que consta de 22 pacientes. 
 

PALABRAS CLAVES: descomposición matricial CUR restringida, selección de subconjunto de genes, conjunto de 

microarreglos de ADN, cáncer de Colon, análisis de componentes principales. 

 
1. INTRODUCTION 
 

The primary structure of the chromosome DNA chains containing all the genes of an organism, as well as 

all the components intervening in their regulation are revealed with the complete sequencing of genomes 

(Wheeler, D. A. et al., 2008.) This has allowed the development of technologies capable of analyzing all 

the identified elements of a genome in a single experiment (Miranda, J. and Bringas, R., 2008). One of 

these technologies is DNA microarrays: collections of DNA segments that are attached to a solid surface 

to be used in quantifying RNA or DNA levels in biological samples (Heller, M. J., 2002). 
Applications of DNA microarray technology include gene discovery, disease diagnosis, drug discovery, 

and toxicology investigations. In disease diagnosis, this technology allows researchers to learn more 

about heart disease, mental illness, infectious diseases, and especially oncological diseases (Bednár, M., 

2000). 

In the case of the study of cancer, DNA microarrays allow us to distinguish between cancerous and non-

cancerous samples, classify different types of cancer and identify subtypes of cancer that can progress 

aggressively (Hira, Z. and Gillies, D., 2015). In order to work with DNA microarrays, the genetic 

information obtained by this technology is processed and brought to an 𝑛 × 𝑝 matrix, where 𝑛 is the 

number of patients and 𝑝 is the number of genes studied. This matrix is called a DNA microarray dataset 

and, depending on the cancer study carried out, it is classified as a binary or multiclass DNA microarray 

dataset (Bolón-Canedo, V. et al., 2014). 
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A very common characteristic in DNA microarray data for cancer is its high dimensionality due to the 

number of genes studied, which ranges from thousands to tens of thousands of genes (Fan, J. and Li, R. 

2006; Bolón-Canedo, V. et al., 2014). This high-dimensional classification problem is known as the 

“greater 𝑝 smaller 𝑛” problem (Johnstone, I. and Titterington, D., 2009) and it includes other 

complexities such as the curse of dimensionality (Bellman, R. E., 1957) and the obtention of overfitted 

models (Everitt, B. S. and Skrondal, A., 2010); these complexities make classification an even bigger 

task. Imbalance and overlap among classes as well as the presence of missing, shifted and outlier data 

(Hambali, M. A., Oladele, T. O. and Adewole, K. S., 2020), are other problems that often appear in DNA 

microarray data for the Cancer. When faced with such challenges, the application of traditional methods 

in the search for a solution is difficult or impossible in some cases (Wang, N. N., 2009). Hence, it is 

necessary to look for other alternatives to deal with them. 

Dimension reduction in DNA microarray data in cancer is an alternative to solve the high-dimensional 

classification problem presented by these data (Boulesteix, A., 2004). In order to solve this problem, the 

dimension reduction methods deal with transforming the data from a high-dimensional space to a low-

dimensional space, so that this representation retains as much information as possible about them (Van 

Der Maaten, L., Postma, E. and Van den Herik, J., 2009). Such transformation is possible through 

features subset selection methods, which work by eliminating features that are irrelevant and redundant 

(Saeys, Y., Inza, I. and Larrañaga, P., 2007). 

One of the simplest and fastest ways to select a subset of features are filter methods (Sánchez-Maroño, 

N., Alonso-Betanzos, A. and Tombilla-Sanromán, M., 2007), characterized by selecting the features of 

the data without involving any type of classification technique (Bolón-Canedo, V. et al., 2014). The 

selection process of these methods consists of evaluating only the intrinsic properties of the data through 

statistical measures that include distance, information, dependency and consistency (Lavanya, C., 

Nandihini, M., Niranjana, R. and Gunavathi, C., 2014). Based on the intrinsic evaluation of the data, these 

methods are divided into univariate and multivariate.  

Univariate filter methods are characterized by considering each feature separately (Hira, Z. and Gillies, 

D., 2015), among which are the formation of random subsets by random sampling (Parmigiani, G. et al., 

2003), the t-statistic test (Dai, J., Lieu, L. and Rocke, D., 2006) and Information Gain (IG) (Hall, M. and 

Smith, L., 1998). On the other hand, multivariate filter methods are capable of finding relationships 

between features (Hira, Z. and Gillies, D., 2015), the most widely used being Correlation Feature 

Selection (CFS) (Hall, M., 1999), the Fast Correlation-Based Filter (FCBF) (Yu, L. and Liu, H., 2003), 

ReliefF (Kononenko, I., 1994) and the minimum Relevance Maximum Redundancy (mRMR) (Peng, H., 

Long, F. and Ding, C., 2005). 

In recent years, randomized algorithms have received much attention for the dimension reduction in large 

matrix problems. These algorithms refer to a class of random projection and random sampling algorithms 

recently developed to solve the least squares approximation and low rank matrix approximation problems, 

respectively (Mahoney, M. W., 2011; Kishore Kumar, N. and Schneider, J., 2016; Benjamin Erichson, N. 

et al., 2018). Among the random sampling algorithms are those that deal with the Column Subset 

Selection Problem, a highly topical area of research and theoretical and practical importance (Boutsidis, 

C., 2011). An example is the restricted CUR matrix decomposition or CX decomposition (Mahoney, M. 

W. and Drineas, P., 2009), a decomposition that has proven its usefulness as a dimension reduction 

technique. 

In this paper we demonstrate the importance of restricted CUR matrix decomposition in the selection of 

genes subset for the problem of classification of cancer tumors. We propose an algorithm that selects a 

genes subset of an unconventional way to the methods of selection features subset by filters. It tries to 

minimize the normalized Frobenius norm error by approximating the data matrix by a low rank matrix. 

We demonstrate that normalized Frobenius norm error is a decreasing and bound succession, and 

converges to zero. We apply the proposed algorithm to a gene expression DNA microarray dataset in 

Colon cancer, setting the rank parameter 𝑘 for the values 5, 7, 10, 13 and 20 corresponding to 70%, 75%, 

80%, 85% and 90% of the variance explained by the principal components, respectively. For each of the 

five previous cases, the exact.num.random, top.scores, ortho.top.scores and highest.ranks methods 

derived from the restricted CUR matrix decomposition proposed by Mahoney, M. W. and Drineas, P. 

(2009) were applied. Finally, we apply the Principal Component Analysis to the subsets selected by the 

algorithm proposed for 𝑘 = 5 in order to confirm the two classes of these dataset: the “sick class” 

consisting of 40 patients and the “healthy class” consisting of 22 patients. 

The document is organized as follows: Section 2 describes the restricted CUR matrix decomposition and 

the ColumnSelect algorithm. Section 3 defines the normalized Frobenius norm error and details the 

RCURd proposed algorithm. Section 4 presents the DNA microarray dataset to be used. Sections 5 and 6 

show the results and the discussion of the work, respectively. Finally, Section 7 presents the conclusions 

of the document. 
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2. METHODS 

 

2.1. Restricted Cur Decomposition Matrix 
 

Random sampling algorithms are a class of random algorithms that began to appear in the first decade of 

the 21st century to deal with very large matrix problems ranging from astronomy to genetics (Mahoney, 

M. W., 2011; Kishore Kumar, N. and Schneider, J., 2016; Benjamin Erichson, N. et al., 2018). An 

example of this is the Low Rank Matrix Approximation Problem, which consists of looking for a good 

approximation of an 𝑚 × 𝑛 data matrix 𝐴 by a 𝑘 low-rank matrix with 𝑘 ≪ 𝑚𝑖𝑛(𝑚, 𝑛) (Mahoney, M. 

W., 2011). 

One of the low rank matrix approximation problems is the so-called Column Subset Selection Problem, 

which is defined as the selection of 𝑘 columns from an 𝑚 × 𝑛 matrix 𝐴 to form an 𝑚 × 𝑘 matrix 𝐶 such 

that the residual ‖𝐴 − 𝑃𝐶𝐴‖𝐹 is minimal for all possible choices (
𝑛
𝑘

) of matrix 𝐶; where 𝑃𝐶 = CC+ 

denotes the projection onto the generated 𝑘-dimensional space by the columns of 𝐶 and ‖∙‖𝐹 denotes the 

Frobenius norm (Drineas, P., Mahoney, M. W. and Muthukrishnan, S., 2006). 

Among the low-rank matrix approximation random sampling algorithms that deal with the Column 

Subset Selection Problem is the restricted CUR matrix decomposition or CX decomposition (Mahoney, 

M. W. and Drineas, P., 2009), that allows the approximation of  an input matrix 𝐴 through the product of 

two matrices 𝐶 and 𝑋 , where 𝐶 contains some columns of matrix 𝐴 and 𝑋 is a matrix that guarantees 

aforementioned approximation (Drineas, P., Mahoney, M. W. and Muthukrishnan, S., 2006a; Drineas, P., 

Mahoney, M. W. and Muthukrishnan, S., 2006b; Boutsidis, C., Mahoney, M. W. and Drineas, P., 2008; 

Drineas, P., Mahoney, M. W. and Muthukrishnan, S. , 2008; Boutsidis, C., Mahoney, M. W. and Drineas, 

P., 2009; Mahoney, M. W. and Drineas, P., 2009; Boutsidis, C., 2011; Papailiopoulos, D., Kyrillidis, A. 

and Boutsidis, C ., 2014.) 

 
2.2. ColumnSelect ALGORITHM  

 

In 2009, Mahoney and Drineas proposed a restricted CUR matrix decomposition, whose criterion for 

choosing the columns that form the matrix 𝐶 consists of an importance factor defined by  𝜋𝑗 =
1

𝑘
∑ (𝑣𝑗

𝑖)
2

, ∀𝑗 = 1, . . . , 𝑛𝑘
𝑖=1  where 𝑣𝑗

𝑖  is the 𝑗-th component of the 𝑖-th right singular vector of 𝐴. To build 

matrix 𝐶 the authors created the ColumnSelect algorithm that takes as input any 𝑚 × 𝑛 matrix 𝐴, a rank 

parameter 𝑘 and an error parameter 𝜖.  

The selection process of the 𝑐 columns that form the matrix 𝐶 in the ColumnSelect algorithm (table 1) 

begins with the computation of the largest 𝑘 right singular vectors of 𝐴 (line 1). Then, the j-th normalized 

importance factor is computed, 𝜋𝑗, for each of the columns (line 2). Subsequently, the j-th selection 

probability of each column is computed as  𝑝𝑗, the minimum between 1 and 𝑐𝜋𝑗. Select the j-th column 

when its selection probability 𝑝𝑗 is greater than or equal to the probability obtained by a uniform 

distribution with parameter 𝑛 (line 3). The algorithm stops when it reaches the number of 𝑐 selected 

columns, even if there are more 𝑝𝑗 greater than or equal to the uniform probability (line 4). 

Table 1: Description of the ColumnSelect algorithm. 

Input: Data matrix 𝐴𝑚×𝑛, rank parameter 𝑘 and error parameter 𝜖. 

Output: Matrix with a few columns of 𝐴𝑚×𝑛: 𝐶𝑚×𝑐 with 𝑐 ≪ 𝑛. 

1: Compute 𝑣1, 𝑣2, … , 𝑣𝑘.  

2: Compute the normalized importance factors according to 𝜋𝑗. 

3: Keep the jth column of 𝐴 with probability 𝑝𝑗 = 𝑚𝑖𝑛(1, 𝑐𝜋𝑗) , for all 𝑗 = 1, … , 𝑛 where  

     𝑐 = 𝑂 (𝑘
log 𝑘

𝜀2 ). 

4: Return the matrix 𝐶 consisting of the selected columns of 𝐴. 

 

An implementation of the ColumnSelect algorithm is found in the rCUR package (Bodor, A., Csabai, I, 

Mahoney, M. W. and Solymosi, N., 2012) of the R software implemented by Bodor, A. and Solymosi, N. 

(2011). The methods random, exact.num.random, top.scores, ortho.top.scores, and highest.ranks appear in 

this package and provide the same precision as the ColumSelect algorithm. 

The most important theoretical result supporting the ColumnSelect algorithm states that this selection of 

columns satisfies the inequality ‖𝐴 − 𝑃𝐶𝐴‖𝐹 ⩽ (1 +
𝜖

2
) ‖𝐴 − 𝐴𝑘‖𝐹 with a probability of 99% at least, 

where 𝑃𝐶 𝐴 denotes the projection matrix on the column space generated by 𝐶 and 𝐴𝑘 is the matrix of rank 
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𝑘 closest to 𝐴 in Frobenius norm (Drinea, P., Mahoney, M. W. and Muthukrishnan, S., 2008). This way 

the result guarantees that if 𝐴 is a matrix close to another of rank 𝑘, then the subspace generated by the 

columns of 𝐴 is close to the subspace generated by the columns of  𝐶, with high probability.  

 

3. PROPOSED ALGORITHM  

 

3.1. Normalized Frobenius Norm Error  

 

The normalized Frobenius norm error 
‖𝐴−𝑃𝐶𝐴‖𝐹

‖𝐴−𝐴𝑘‖𝐹
 can be considered as a function of the number of selected 

columns 𝑐, this is: 𝜃(𝑐) =
‖𝐴−𝑃𝐶(𝑐)𝐴‖

𝐹

‖𝐴−𝐴𝑘‖𝐹
, whose domain is the set of natural numbers 1, 2, … , 𝑝 and whose 

image is the set of positive real numbers. Therefore, this error is a succession {𝜃(𝑐)}𝑐=1
𝑝

 and it can be 

shown that it converges to zero. In order to prove this we will use a result from the theory of numerical 

successions: Every decreasing and bounded succession converges towards its lower end.  

In order to prove that the succession is decreasing, let us consider, without loss of generality, the matrices 

𝐶(𝑐) and 𝐶(𝑐 + 1) formed by the 𝑐 and  (𝑐 + 1) columns with higher importance factors of matrix 𝐴, 

respectively. Let us denote the matrices: (i) 𝐶(𝑐) by (𝑎𝑖𝑗)
𝑚×𝑐

 and 𝐶(𝑐 + 1) by (𝑎𝑖𝑗)
𝑚×(𝑐+1)

; (ii) 𝐶+(𝑐) 

by (𝑏𝑖𝑗)
𝑐×𝑚

 and 𝐶+(𝑐 + 1) by (𝑏𝑖𝑗)
(𝑐+1)×𝑚

; (iii) 𝐶(𝑐) ∙ 𝐶+(𝑐) by (∑ 𝑎𝑖𝑘
𝑐
𝑘=1 ∙ 𝑏𝑘𝑗)

𝑚×𝑚
 and 𝐶(𝑐 + 1) ∙

𝐶+(𝑐 + 1) by (∑ 𝑎𝑖𝑘
𝑐+1
𝑘=1 ∙ 𝑏𝑘𝑗)

𝑚×𝑚
. 

Let's show that  𝜃(𝑐) > 𝜃(𝑐 + 1) ∀𝑐 ≥ 1. 
0 = ‖𝐴‖𝐹

2 − ‖𝐴‖𝐹
2  (Nonnegative Frobenius norm) 

    = ‖𝐴 − 𝑃𝐶(𝑐)𝐴 + 𝑃𝐶(𝑐)𝐴‖
𝐹

2
− ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴 + 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
 (Addition and substraction of 𝑃𝐶(𝑐)𝐴 and 𝑃𝐶(𝑐+1)𝐴) 

    ≤ ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
+ ‖𝑃𝐶(𝑐)𝐴‖

𝐹

2
− (‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
+ ‖𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
) (Triangle inequality) 

    = ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
+ ‖𝐶(𝑐)𝐶+(𝑐)𝐴‖𝐹

2 − ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖
𝐹

2
− ‖𝐶(𝑐 + 1)𝐶+(𝑐 + 1)𝐴‖𝐹

2  (Definition of 𝑃𝐶(𝑐)𝐴) 

    ≤ ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
+ ‖𝐶(𝑐)𝐶+(𝑐)‖𝐹

2 ∙ ‖𝐴‖𝐹
2 − ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
− ‖𝐶(𝑐 + 1)𝐶+(𝑐 + 1)‖𝐹

2 ∙ ‖𝐴‖𝐹
2                        (1) 

    = ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
+ ‖𝐶(𝑐)𝐶+(𝑐)‖𝐹

2 ∙ ‖𝐴‖𝐹
2 − ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
− [‖𝐶(𝑐)𝐶+(𝑐)‖𝐹

2 + 𝒦] ∙ ‖𝐴‖𝐹
2                           (2) 

    = ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
+ ‖𝐶(𝑐)𝐶+(𝑐)‖𝐹

2 ∙ ‖𝐴‖𝐹
2 − ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
− ‖𝐶(𝑐)𝐶+(𝑐)‖𝐹

2 ∙ ‖𝐴‖𝐹
2 − 𝒦 ∙ ‖𝐴‖𝐹

2                  (3) 

    = ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
− ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
− 𝒦 ∙ ‖𝐴‖𝐹

2  (Reducing similar terms)  

Inequality (1) is obtained by the Cauchy-Schwarz inequality while equalities (2) and (3) are obtained by 

expanding  𝑃𝐶(𝑐+1)𝐴 as a function of 𝑃𝐶(𝑐)𝐴 and the distributive property, respectively.  

Then, 0 < ‖𝐴 − 𝑃𝐶(𝑐)𝐴‖
𝐹

2
− ‖𝐴 − 𝑃𝐶(𝑐+1)𝐴‖

𝐹

2
− 𝒦 ∙ ‖𝐴‖𝐹

2  and multiplying both members of the 

inequality by  
1

‖𝐴−𝐴𝑘‖𝐹
2  we get 0 < 𝜃2(𝑐) − 𝜃2(𝑐 + 1) −

𝒦‖𝐴‖𝐹
2

‖𝐴−𝐴𝑘‖𝐹
2 . 

Therefore,  0 <
𝒦∙‖𝐴‖𝐹

2  

‖𝐴−𝐴𝑘‖𝐹
2 < 𝜃2(𝑐) − 𝜃2(𝑐 + 1)  where 𝒦 = ∑ ∑ (𝑎𝑖(𝑐+1) ∙ 𝑏(𝑐+1)𝑗)

2𝑚
𝑗=1

𝑚
𝑖=1 + 

∑ ∑ 2𝑎𝑖(𝑐+1) ∙ 𝑏(𝑐+1)𝑗 ∙ (∑ 𝑎𝑖𝑘
𝑐
𝑘=1 ∙ 𝑏𝑘𝑗)𝑚

𝑗=1
𝑚
𝑖=1 .  

Finally, 𝜃2(𝑐) > 𝜃2(𝑐 + 1) ∀𝑐 ≥ 1 therefore, 𝜃(𝑐) > 𝜃(𝑐 + 1) ∀𝑐 ≥ 1. 

In order to show that the succession is bounded, we start with the inequality ‖𝐴 − 𝑃𝐶𝐴‖𝐹 ⩽

(1 +
𝜖

2
) ‖𝐴 − 𝐴𝑘‖𝐹. Solving ‖𝐴 − 𝐴𝑘‖𝐹 on the left side of the inequality, we get an upper bound for the 

normalized Frobenius norm error 
‖𝐴−𝑃𝐶𝐴‖𝐹

‖𝐴−𝐴𝑘‖𝐹
 depending on the error parameter 1 +

𝜖

2
. On the other hand,  

‖𝐴−𝑃𝐶𝐴‖𝐹

‖𝐴−𝐴𝑘‖𝐹
≥ 0 since the Frobenius norm for a matrix 𝐴 is defined by ‖𝐴‖𝐹 = √∑ ∑ (𝑎𝑖𝑗)

2𝑝
𝑗=1

𝑛
𝑖=1 . 

Therefore, the succession {𝜃(𝑐)}𝑐=1
𝑝

 is upper bounded by zero and lower bounded by 1 +
𝜖

2
.  

Finally, the succession {𝜃(𝑐)}𝑐=1
𝑝

 is decreasing and bounded, and converges towards its lower end, that is, 

lim
𝑐→𝑝

𝜃(𝑐) = 0.  

 
3.2. RCURd Algorithm  
 

Restricted CUR decomposition (RCURd) seeks to select a subset of genes in a manner not conventional 

to filter feature subset selection methods by minimizing the normalized Frobenius norm error by 

approximating the data matrix 𝐴 by a low rank matrix 𝐶. This gene subset selection differs from the 

selection process by filter methods, which select gene subsets by observing only the intrinsic features of 
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the data by statistical measures. Despite the differences between both methods, the two share one thing in 

common, neither involves the use of sorting techniques in the gene subset selection process. 

The gene subset selection process in the RCURd algorithm (Figure 1), begins with the computation of the 

best approximation matrix of rank 𝑘 by the Singular Value Decomposition (Golub, G. H. and Van Loan, 

C. F., 1996) (step 1). Then, the c-th terms are computed: 𝜃(𝑐) =
‖𝐴−𝑃𝐶(𝑐)𝐴‖

𝐹

‖𝐴−𝐴𝑘‖𝐹
 of succession {𝜃(𝑐)}𝑐=1

𝑝
 (step 

2). Subsequently, the behavior of the succession is analyzed {𝜃(𝑐)}𝑐=1
𝑝

 when 𝑐 grows to 𝑝 looking for 

stability at zero value (step 3). The subset of genes selected by RCURd is 𝐶 = min
1≤𝑐≤𝑝

{𝐶(𝑐): 𝜃(𝑐) = 0} (step 

4). Table 2 shows the description of the RCURd algorithm. 

  

 

 
Figure 1: Description of the RCURd algorithm steps. 

Table 2: Description of the RCURd algorithm. 

Input: DNA microarray dataset 𝐴𝑛×𝑝 with 𝑛 ≪ 𝑝. 

Output: Subset of genes selected 𝐶𝑛×𝑐 with 𝑐 ≪ 𝑝. 

1: Compute the matrix 𝐴𝑘 by the Singular Value Decomposition 

2: for c = 1 to p do 

3:    Compute the matrix 𝐶(c) by the ColumnSelect algorithm 

4:    Compute the pseudo-inverse of matrix 𝐶(c), denoted by  𝐶+(c)  

5:    Compute the matrix 𝑋 by the matrix product between 𝐶+(c) and 𝐴 

6:    Compute the normalized Frobenius norm error 𝜃(c) =
‖𝐴−𝐶(c)∙𝑋‖𝐹

‖𝐴−𝐴𝑘‖𝐹
 

7:    if c ≥ h then { 

8:       if 
∑ 𝜃(i)ℎ

𝑖=𝑐−ℎ

ℎ
= 0 then { 

9:           break 

10:     } 

11:     Select the gene subset of  𝐴 by the matrix 𝐶 = 𝐶(c − h) 

12:  } 

13: end 

 



  

 
 

286 

4. DATASET 
 

We worked with the gene expression DNA microarray dataset in Colon cancer (Alon, U. et al., 1999) 

available in the public international repository (Bio-Medical Dataset, 2017). This dataset contains the 

expression levels of 2,000 genes for 62 patients divided into two classes; the sick class, made up of 40 

patients with colon cancer and the healthy class, made up of 22 patients. When analyzing the dimension 

of this set and the sample sizes of the two classes, it can be concluded that the data set presents the 

problem "greater 𝑝 smaller 𝑛" and the imbalance between the classes with an imbalance rate of 1.82. 

 

5. RESULTS  

 

The research results were obtained using the R-3.4.3 software (R Core Team, 2017) on a computer 

running Windows 10 Pro 64-bit, 8 GB RAM, an Inter(R) processor Core(TM) i3-6100 and 1000GB 

capacity. In addition, we worked with the RStudio integrated development environment to implement the 

DCURr algorithm using the Matrix (Bates, D. and Maechler, M., 2017), MASS (Venables, W. N. and 

Ripley, B. D., 2002) and rCUR packages. 

In order to study the convergence of the RCURd algorithm, the range parameter 𝑘 was set for the values 

5, 7, 10, 13 and 20 corresponding to 70%, 75%, 80%, 85% and 90% of the variance explained by the 

principal components, respectively. For each of the previous cases, the exact.num.random, top.scores, 

highest.ranks and ortho.top.scores methods were used. The results showed that the number of genes 𝑐 in 

the subset selected by the RCURd algorithm turned out to be the number of samples in the colon cancer 

set, n = 62, since from this number the normalized Frobenius norm error starts to stabilize equal to zero. 

Figure 2 to Figure 6 show these results. 

 

 
Figure 2: Convergence results of the RCURd algorithm for the range parameter k = 5. 

 

 
Figure 3: Convergence results of the RCURd algorithm for the range parameter k = 7. 
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Figure 4: Convergence results of the RCURd algorithm for the range parameter k = 10. 

 

 

 
Figure 5: Convergence results of the RCURd algorithm for the range parameter k = 13. 

 

 

 
Figure 6: Convergence results of the RCURd algorithm for the range parameter k = 20. 

 

6. DISCUSSION 
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Taking into account the results of the convergence of the RCURd algorithm, it was decided to determine 

the presence of genes that the selected subsets have in common. For this, a Venn diagram was made in 

each of the studies (k = 5, k = 7, k = 10, k = 13 and k = 20) whose results are shown in Figure 7 to Figure 

11. After analyzing these figures, it was concluded that similar results were obtained in the five studies, 

resulting in the subsets selected by RCURd with top.scores and RCURd with highest.ranks having the 

highest presence of genes in common. To make the Venn diagram, the VennDiagram package (Hanbo, 

C., 2018) of the R software was used. 

 

                              
      Figure 7: Venn diagram for                                         Figure 8: Venn diagram for  

      the range parameter k = 5.                                            the range parameter k = 7. 

 

                              
      Figure 9: Venn diagram for                                         Figure 10: Venn diagram for  

      the range parameter k = 10.                                          the range parameter k = 13. 

  

 
Figure 11: Venn diagram for the range parameter k = 20. 

 

It is known that the dataset under study contains the expression levels of 2000 genes for 62 patients 

divided into two classes (sick and healthy); Principal Component Analysis was applied to the subsets of 

genes selected by RCURd algorithm seeking to confirm these two classes. For this, the stats package (R 

Core Team, 2017) of the R software was used to obtain the results. Given that the Venn diagrams were 
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similar for the five studies, it was decided to work with the subsets selected by RCURd for the range 

parameter k = 5. 

Figures 12 to 15 show the scatterplot scores and the scatterplot loadings of the principal components for 

the gene subsets selected by the RCURd algorithm with the exact.num.random, highest.ranks, 

ortho.top.scores and top.scores methods, respectively. The results of the principal components showed 

that in Figure 12 it was not possible to confirm the sick and healthy classes in the subset of genes selected 

by RCURd with exact.num.random, despite the fact that the first two components explained 57.63% of 

the variance. This is mainly due to the presence of the imbalance between the classes manifested by this 

set. The same thing happened in figure 13 with the subset of genes selected by RCURd using 

highest.ranks whose first two components explained 67.25% of the variance. Notwithstanding this, it was 

possible to agglomerate the 62 selected genes into three groups of genes. On the other hand, in figure 14, 

an attempt to separate the classes in the subset of genes selected by RCURd with ortho.top.scores was 

observed despite the fact that the first two components explained less than 30% of the variance. Finally, 

in figure 15, it was observed how the subset of genes selected by RCURd with top.scores was able to 

confirm the two classes and group the 62 selected genes into two groups of genes (see Appendix I). 

Classifying a total of 40 patients with colon cancer 36 patients for 90% and a total of 22 healthy patients 

10 patients for 45.45%, respectively. 

 

 
Figure 12: Results of the principal components in the subset of genes selected by RCURd  

with exact.num.random for the range parameter k = 5. 

 

 

 
Figure 13: Results of the principal components in the subset of genes selected by RCURd 

with highest.ranks for the range parameter k = 5. 
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Figure 14: Results of the principal components in the subset of genes selected by RCURd 

with ortho.top.scores for the range parameter k = 5. 

 

 
Figure 15: Results of the principal components in the subset of genes selected by RCURd 

  with top.scores for the range parameter k = 5. 

 

7. CONCLUSIONS 

 

In this work, a novel algorithm, called RCURd, was proposed for gene subset selection in cancer tumor 

classification problems. This algorithm selects a subset of genes in a non-conventional way to features 

subset selection filter methods. It tries to minimize the normalized Frobenius norm error by 

approximating the data matrix by a low rank matrix. The error was considered as a succession depending 

on the number of genes and it was shown that it is decreasing and bounded, and converges to zero.  

In order to study the convergence of the RCURd algorithm, the Colon cancer DNA microarray dataset 

containing the expression levels of 2000 genes for 62 patients divided into two classes (sick and healthy) 

was used. To do this, the range parameter k was set equal to 5, 7, 10, 13 and 20; using on each of these 

values the methods exact.num.random, top.scores, ortho.top.scores and highest.ranks derived from the 

ColumnSelect algorithm. The results of the convergence of the RCURd algorithm showed that the 

number of samples in the selected subset turned out to be 62, since from this number the Frobenius norm 

error normalized equal to zero began to stabilize. Finally, Principal Component Analysis was applied to 

the subsets selected by the RCURd algorithm with the exact.num.random, top.scores, ortho.top.scores, 

and highest.ranks methods for the rank parameter k = 5. The results of the principal components showed 

that in the subset of genes selected by the RCURd algorithm with the top.scores method, it was possible 

to confirm the two classes with the first two components and to group the selected genes into two groups. 
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APPENDIX I: Results of the loadings vectors for the first two principal components. 

 

Groups Genes Component 1 Component 2 Groups Genes Component 1 Component 2 

1 197 -0.1631 -0.0542 2 256 -0.1931 0.0145 

1 857 -0.1873 -0.0546 2 1967 -0.0092 0.2236 

1 498 -0.1747 -0.0467 1 476 -0.1208 -0.0684 

1 486 -0.1900 -0.0272 2 1854 -0.1796 0.0366 

1 1638 -0.1796 -0.0214 1 549 -0.0933 -0.0378 

1 1496 -0.1667 -0.0328 1 1844 -0.1803 -0.0341 

1 479 -0.1817 -0.0047 1 1157 -0.1190 -0.0548 

2 897 -0.0129 0.2424 1 1463 -0.1285 -0.0142 

https://www.r-project.org/
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2 1793 -0.1827 0.0105 1 1153 -0.0595 -0.0498 

1 854 -0.1177 -0.0950 2 822 -0.0165 0.2420 

1 1036 -0.1797 -0.0520 2 824 -0.0397 0.2165 

1 530 -0.1799 -0.0218 2 36 -0.0945 0.0163 

1 1397 -0.1906 -0.0042 1 75 -0.1382 -0.0706 

2 1635 -0.052-6 0.2334 1 1094 -0.1606 -0.0119 

1 1685 -0.1789 -0.0297 2 415 -0.0307 0.2215 

1 625 -0.0860 -0.0503 1 258 -0.0561 -0.0482 

1 1299 -0.1775 -0.0073 1 1461 -0.1815 -0.0163 

1 1829 -0.1907 -0.0025 1 235 -0.0833 -0.0248 

1 992 -0.0769 -0.0580 1 3 -0.0891 -0.0117 

1 1974 -0.0243 0.2384 1 33 -0.0644 -0.0015 

2 1274 -0.1733 0.0103 2 1387 -0.0763 0.1992 

2 1494 -0.0428 0.2459 2 1421 -0.0546 0.2356 

1 1972 -0.0621 -0.0200 2 323 -0.0601 0.2017 

1 1478 -0.1779 -0.0406 2 929 -0.0200 0.2232 

2 1247 -0.0464 0.2368 1 713 -0.0924 -0.0368 

1 921 -0.1872 -0.0126 1 1077 -0.1318 -0.0847 

1 443 -0.1927 -0.0023 2 249 -0.0231 0.2090 

2 1843 -0.0540 0.2281 2 737 -0.0386 0.2288 

2 806 -0.0227 0.2384 1 733 -0.0664 -0.0349 

1 1384 -0.1761 -0.0004 1 295 -0.1051 -0.0287 

2 993 -0.0456 0.2294 1 38 -0.0898 -0.0065 

 


