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ABSTRACT
In recent years, the use of Genetic Algorithms in symmetric cryptography has increased, in particular

in the cryptanalysis of block ciphers. However, it is still necessary to continue the study and search

for better characteristics. In this sense, two methodologies of partition of the key space that connect

the Genetic Algorithms with the attack to block ciphers have been proposed in previous work. In

this paper, we propose a methodology for attacking, where it is possible to discard some classes,

reducing the total number that would be necessary to go over. In connection with this approach,

we obtain necessary conditions and formulas to estimate the parameters’s value that determines

a balance between the number of classes into which the key space is divided and the number of

elements of each one of them, solving the problem of optimal selection of the parameters.
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RESUMEN
En los últimos años, el empleo del Algoritmo Genético en la criptograf́ıa simétrica ha aumentado,

en particular en el criptoanálisis a cifrados en bloque. Sin embargo, aun es necesario continuar el

estudio y la búsqueda de mejores caracteŕısticas. En este sentido, dos metodoloǵıas de partición

del espacio de las claves han sido propuestas en trabajos previos las cuales conectan el Algoritmo

Genético con el ataque a cifrados a bloque. En este art́ıculo, se propone una metodoloǵıa de ataque,

donde es posible desechar algunas clases, reduciendo el número total que seŕıa necesario recorrer. En

conexión con esta propuesta, se obtienen condiciones necesarias y fórmulas para estimar los valores

de los parámetros que determinan un balance entre el número de clases en que se divide el espacio

de las claves y el número de elementos en cada una de ellas, resolviendo el problema de la elección

óptima de los parámetros.
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1. INTRODUCTION

There are several methods and tools that are used as optimization and prediction methods. Several

heuristic algorithms have been used in the context of Cryptography; in [8], the ACO (Ant Colony

Optimization) heuristic method is used, and a methodology was tested with the S-AES (Simplified

Advanced Encryption Standard) block cipher, studying two pairs of plain and encrypted texts. In [2],

a combination of Genetic Algorithm (GA) and ACO is used for cryptanalysis of stream ciphers. In

[5, 14, 19], the combination and design possibilities of these algorithms were shown, analyzed using

the machine learning and deep learning tools. In [13] the authors design and implement a symmetric

encryption algorithm whose internal structure is based on the Taboo Search Algorithm.

The Genetic Algorithm is an optimization method used in recent years in Cryptography for various

purposes, particularly in carrying out attacks and modeling various types of encryption. Some of the

research conducted in this direction is mentioned below.

In [15] cryptanalysis using GA is applied to obtain letters from plaintexts using affine ciphers. In [12]

the GA is used to attack encrypted images using chaotic maps (functions). These functions derive

from Chaos Theory and are based on nonlinear dynamical systems. In the proposed method, the image

encrypted with chaotic maps is used as a ciphertext, and the GA is used to decrypt the image. In [9]

a hybrid tool is developed that creates ciphertexts from the combination of the GA and the Particle

Swarm Algorithm. Shannon’s Entropy method was used as a fitness function in both algorithms.

The authors claim that the proposed application offers an alternative method of data encryption and

decryption that can be used to transmit messages.

In [18] an information security technique based on Elliptic Curve Cryptography and GA to protect

E-education system is proposed. In [1] a technique for the encryption of texts, based on the mutation

and crossing operations of the GA, is presented. The proposed encryption technique divides the

plaintext characters into parts and applies the crossover operation between them, followed by the

mutation operation to obtain the ciphertext. In [4] the authors discuss the comparison of traditional

cryptographic algorithms and GA-based cryptosystems. In [3] author discusses about comparison

of traditional cryptographic algorithms and genetic algorithm based cryptography methods. More

details on the use of GA in Cryptography can be seen, for example, in [22], [7], [10], [16] and [17].

Block cipher cryptanalysis is a complex problem with no certain route, no magic or precise recipes

that can solve the problem. Block ciphers such as AES, currently used in standard security protocols,

continue to guarantee their security due to their good properties. Hence, the different attempts to

build attack methodologies constitute new knowledge and tools in order to continue developing this

branch of Cryptography, which also contributes to evaluating the security of block ciphers and their

possible vulnerabilities.

As in all evolutionary algorithms, it is always a difficulty in GA that as the number of individuals

in the space of admissible solutions grows, in this case, the set of keys, it is necessary to carry out

a greater number of generations to obtain best results. In this sense, in the key space partition

methodologies proposed in [6] and [21], the problem of choosing the parameter that determines the

number of classes to traverse and the number of elements within each one: the more classes, the fewer

elements to traverse in each one; and fewer classes implies that each one will have more elements
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and therefore, the GA will take longer to go through it. It is clear that the greater the number of

generations, the algorithm consumes more time, so it is interesting to be able to estimate the time

that may be necessary to execute a certain desired number of generations.

In [6] and [21] authors analyze different parameters of the GA separately. In this sense, the contribution

of the present paper is the generalization of these results, obtaining formulas that combine all the

parameters at the same time. Additionally, we propose and describe an attack methodology that,

mainly, allows us to reduce the number of classes where the key will be searched.

In the present work, an attack methodology is proposed where some classes are discarded, reducing the

total number that would be necessary to go through: the Class Elimination Attack (CEA). Necessary

conditions and formulas are obtained to calculate the parameter’s value that determines the balance

between the number of classes and the number of elements in each of them, solving the problem of its

optimal choice. At the same time, these formulas can be used to estimate several parameters assuming

other known ones.

This paper is structured as follows. In Section 2. the results on the Probabilistic Membership Problem

are presented. Section 3. focuses on the fundamental contributions of the work: the Direct Attack

(Section 3.1.), the Class Elimination Attack (Section 3.2.), and the results on the choice of various

parameters involved in the GA and the key space partition methodologies (Section 3.3.).

2. PROBLEM OF MEMBERSHIP OF KEYS TO EQUIVALENCE CLASSES

We use two key space partition methodologies proposed, the BBM and the TBB ([6], [21]). This

methodologies allow the GA to work on a certain subset of the set of admissible solutions as if it were

the full set. The partition into equivalence classes allows it to use this algorithm in parallel, in several

classes simultaneously and independently.

Let Fk1
2 be the key space of length k1 ∈ Z>0, k2, kd ∈ Z>0, such that, 1 ≤ k2 < k1, kd = k1 − k2, and

Q = {0, 1, 2, . . . , 2kd − 1}. Then, in both methodologies the formulas to represent the elements of Fk1
2

are identical:

q 2k2 + r, q ∈ Q, r ∈ Z>0. (2.1)

This equation can be used to summarize the differences between the methodologies. Both consist of

keeping the GA running on a subset of the key space rather than the entire key space. In the case

of BBM, the subset is associated with the class of the keys that correspond to the same quotient (q).

The TBB methodology consists of working with the subset given by the keys with the same remainder

(r), the elements of each class are scattered throughout the set of keys. The parameters q, r, k2 and

kd have dual role in both methodologies. To avoid ambiguities in the notation, from now on, we will

refer to the parameters of the BBM methodology as q, r, k2 and kd. While q̂, r̂, k̂2 and k̂d will be to

refer to the same parameters in the TBB methodology. For more details about this methodologies,

see Section 2.2 of [21].

Let M be a plaintext, K a key, and C be the ciphertext of M with K (regardless of the encryption

used). Let J be the collection of the q intervals into which [0, 2k1 − 1] is divided by the BBM

methodology, taking the intervals as equivalence classes. In the classes of J , two elements are related

if they have the same quotient when divided by 2k2 . Given A,B ∈ [0, 2k1 − 1], the fact that A and B
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leave the same quotient is equivalent to,

A−A (mod 2k2)

2k2
=

B −B (mod 2k2)

2k2
. (2.2)

Let G
K

be the quotient group of keys in TBB methodology. Let ζ(n) ∈ G
K

∨ ζ(n) ∈ J be the

equivalence class of n ∈ Fk1
2 in G

K
or J . Let Pζ(n)(m) be the probability that m ∈ Fk1

2 belongs to

ζ(n) (note that m ∈ ζ(n) ⇔ ζ(m) = ζ(n)). Then, the Probabilistic Membership Problem (PMP) is:

Given M and C (one or several pairs), with C ∈ Fh
2 , h ∈ Z>0, such that, |Fh

2 | ≤ |Fk1
2 |. To calculate

Pζ(C)(K).

Regarding PMP, the following results are obtained in both key space partition methodologies (see

[20]).

Note that the fact that C and K belong to the same class is equivalent to their leaving the same

remainder r modulo 2k̂2 , by the definition of GK . The parameter r̂ has block length k̂2; and q̂ has

length k̂d, which are equivalent to the remaining components to reach the total k1. By (2.1), the

binary components of r̂ correspond to the last k̂2 of the complete binary block of K or C. Therefore,

taking into account the binary representation of C and K, ζ(C) = ζ(K) is equivalent to the last k̂2

components of C and K are the same. This proves the following theorem,

Theorem 2..1 (Equivalence of classes in TBB) Given k1, k̂2, h ∈ Z>0, C ∈ Fh
2 and K ∈ Fk1

2 ,

such that, |Fh
2 | ≤ |Fk1

2 |. The following three statements are equivalent in G
K
:

a) ζ(C) = ζ(K).

b) C ≡ K ≡ r (mod 2k̂2).

c) The last k̂2 components of C and K are the same.

From Theorem 2..1 we have the following corollary,

Corollary 2..1 (Membership probability in TBB) Given C and k̂2, the probability that K be-

longs to the same class of C is equal to 1

2k̂2
. That is,

Pζ(C)(K) =
1

2k̂2

. (2.3)

Proof. Since K ∈ ζ(C) ⇔ ζ(C) = ζ(K) in G
K
, then,

Pζ(C)(K) ⇔ P (ζ(C) = ζ(K)). (2.4)

Applying the 2..1 Theorem and the implication a) ⇒ c) on the right side of (2.4), we have that

P (ζ(C) = ζ(K)) is equal to the probability that the last k̂2 components of C and K are equal.

Therefore, to calculate Pζ(C)(K) it is necessary and sufficient to calculate the probability that the

last k̂2 components of K are equal to those of C. Since they are k̂2 components and each one has two

possibilities, 0 or 1, then there are 2k̂2 possible combinations for K, but only one of them matches C,

so applying the classical definition of probability we arrive at (2.3).

Similar results are obtained in the BBM methodology. Note that the fact that C and K belong to

the same class is equivalent to leaving the same quotient q when dividing by 2k2 . The parameter r
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has a block length of k2 and q has a length of kd, which is equivalent to the remaining components to

arrive at the total k1. The binary components of r correspond to the last k2 of the complete binary

block of K or C, which implies that the binary components of q correspond to the remaining first kd.

Therefore, ζ(C) = ζ(K) is equivalent to the first k2 components of C and K being equal. This proves

the following theorem,

Theorem 2..2 (Equivalence of classes in BBM) Given k1, k2, h ∈ Z>0, C ∈ [0, 2h − 1] and K ∈
[0, 2k1 − 1] such that, h ≤ k1. The following three statements are equivalent in J :

a) ζ(C) = ζ(K).

b) C−C (mod 2k2 )
2k2

= K−K (mod 2k2 )
2k2

.

c) The first kd components of C and K are the same.

Corollary 2..2 (Membership probability in BBM) Given C and kd, the probability that K be-

longs to the same class of C is equal to 1
2kd

. That is,

Pζ(C)(K) =
1

2kd
. (2.5)

The proof of Corollary 2..2 is similar to what was done in Corollary 2..1. Note that at point c), of

Theorems 2..1 and 2..2, C and K are referred to as binary blocks with the most significant bit on the

left. The application of Corollaries 2..1 and 2..2 is useful when in practice you have more than one

ciphertext. In this case, the most interesting result, as a consequence of the above, is the following.

Suppose we have w ciphertexts, then,

nw = wPζ(C)(K) =
w

2k̂2

, (2.6)

and,

nw = wPζ(C)(K) =
w

2kd
, (2.7)

where nw is the number of ciphertexts of the w initials, according to the probability of membership

in Corollaries 2..1 and 2..2, to whose class K belongs for a previously fixed value k̂2. This implies, in

particular, that for an attack, it is not necessary to search in all the classes of G
K

(or intervals of J)

for each one of the ciphertexts, but that choosing a good value for k̂2, just look at the same class as

the ciphertext. Since of the w, according to (2.6), it is probable that in at least nw texts, the key is

found in said nw corresponding classes (one class for each ciphertext that complies with (2.6), in case

the keys are different; it would be the same class for the nw ciphertexts in case it is the same key for

all). For this it is necessary that at least nw ≥ 1, which implies that w ≥ 2k̂2 .

The results on the PMP give a partial solution to the problem of choosing a value for k2. Limiting it

to the possibilities of the values that nw can take and to the knowledge of the last or first bits of the

key.

3. CLASS ELIMINATION ATTACK

In this section, we will work on the experiments with the TBB methodology and the HTC (Heys

Toy Cipher) cipher. The HTC is a Permutation Substitution Network type block cipher (see [11]).
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It works with 16-bit blocks for the plaintexts, ciphertexts and the key (the same in each round). It

consists of 4 rounds. Each round consists of an XOR addition with the key, a substitution, and a

permutation of the bit positions. On the other hand, see [21] for more details about the values of the

parameters and operators of the Genetic Algorithm that we use for the experiments.

We focus on a way to choose k̂2 using the results of the PMP, the Direct Attack, and we end with

a proposal of a Class Elimination Attack methodology that allows us to restrict, with a certain

probability, the number of classes to go through and to improve the Direct Attack. Remember that

an attack model is being applied through the GA to known plaintext.

3.1. DIRECT ATTACK

Suppose we have w pairs of plaintexts and their corresponding ciphertexts, and it is the only infor-

mation we have to search for the key, of which everything is unknown. The first thing is to choose k̂2,

which since the attack is in G
K
, then represents the number of classes in which the quotient group will

be divided. We know, according to the PMP, that there is a range to select k̂2, fulfilling that nw > 1,

according to (2.6) and depending on the computation capacity and time consumed. After choosing

k̂2 and calculating G
K
, a class must be chosen to search for the key, an issue resolved according to

PMP, with which the key will be searched for in the same class as which the corresponding ciphertext

belongs. Then, it would only be necessary to go through each plaintext and ciphertext pair and look

for the key in the same class of the ciphertext.

For the experiments, a PC with an Inter(R) Core(TM) i5-3340 CPU @3.10GHz (4 CPUs) and 4GB of

RAM was used. We start from w = 100 pairs of texts, therefore, a value of k̂2 between 1 and 6 (of the

16 possible) can be chosen, since if k̂2 = 7, then, nw = 100/27 = 100/128 < 1, with which it would

be unlikely to find a ciphertext whose class contains the key. But of the values from 1 to 6, the latter

is in a similar situation, since nw = 100/26 = 100/64 ≈ 1.6. Instead, there seem to be better results

for values from 1 to 5. This was tested for values of k̂2 from 2 to 10, performing the attack searching

through each of the w pairs until finding the key, what we have called Direct Attack. At each value

of k̂2 were done ten tests, generating the 100 pairs each time. The results can be seen in Table 1.

k̂2 No. of classes Time Generations Faults (%)

2 6.3 304.975 68.1 0

3 11.2 257.25 45.5 0

4 19 130.158 9.1 0

5 62.8 217.516 12.7 30

6 67.5 111.559 8.3 60

7 56.9 44.559 3.1 30

8 86.9 28.586 2.2 60

9 86.7 17.253 1.7 70

10 101 10,116 2 100

Table 1: HTC Direct Attack with w = 100

The second column is the number of classes necessary to go through on average to find the key in each
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test. The third and fourth columns show the time in seconds and the number of generations that the

GA took on average to find the key in each class. And the fifth column is the percent of the number of

trials where the key was not found. In table, one can see how the time decreases as k̂2 increases, which

is clear because, with the increase of k̂2, the number of classes also increases. Therefore, it decreases

the number of elements inside them, making the GA finish faster. It is interesting to note that failures

start to appear from k̂2 = 5 and gradually increase as k̂2 increases. In other words, although there

is a range to choose from 1 to 16, the best values are up to 4 and a maximum of 5 concerning the

100 ciphertexts that are being used. This point corroborates the idea of a solution to the problem of

choosing k̂2.

One drawback of doing the attack this way is that more classes are typically traversed than the

partition has. For example, despite we could choose one of the best choice k̂2 = 4, it is expected on

average that it traverses 19 classes (pairs of plain and encrypted texts) until it finds the key, according

to Table 1. But G
K

would only have 2k̂2 = 24 = 16 classes, and more are being traversed. What

happens is, on the one hand, that there are several ciphertexts that belong to the same class where

the key is not so that the GA will go through that class several times; and on the other hand, that the

GA, with the aptitude function that is being used many times, is not able to find the key by looking

in the correct class, so it keeps looking for the next ciphertext until it finds it, and some classes are

repeated. Another point of view is to check if the way of traversing the ciphertexts can be improved.

The latter will be seen in the next section.

3.2. CLASS ELIMINATION ATTACK

Suppose given w ciphertexts and k̂2, such that nw ≥ 1, that is, w ≥ 2k̂2 . There are 2k̂2 equivalence

classes, and the w texts can be grouped into those classes. To know the probability for w such that,

w1 belong to the class X1, w2 to the X2, · · · , w2k̂2
to the X

2k̂2
, the Multinomial Distribution can be

used,

P (X1 = w1, · · · , Xk̂2
= wk̂2

) =
w!

w1!w2! · · ·w2k̂2
!
pw1
1 · · · p

wk̂2

k̂2
, (3.1)

where
2k̂2∑
i=1

wi = w.

All classes have equal probability p = 1

2k̂2
of being chosen, therefore, (3.1) reduces to,

P (X1 = w1, · · · , Xk̂2
= wk̂2

) =
w!

w1!w2! · · ·w2k̂2
!
pw. (3.2)

The expected value of X is,

E(X) = wp = w
1

2k̂2

, (3.3)

which is equivalent to nw. This implies that most likely, by organizing the w ciphertexts into the

2k̂2 classes, the classes are expected to have, on average nw elements, and around this number be the

highest concentration. The probability that there are many more elements in each class, or very few,

decreases as one moves away from the mean nw. If so, the key should appear more often if looking

at classes that have elements close to nw, after the w ciphertexts are grouped into classes. This fact
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does not means a weakness in the ciphers but is favored by their stochastic structure, and in any case,

the more random encryption is attempted, the better it will approach (3.3).

To check this, k̂2 = 4 was taken, and 19 200 ciphertexts were generated, grouped into 200 tests of

96 texts each. The idea is, in each test, to group the 96 texts into the 24 = 16 classes and check

how many elements the class to which the key belongs has. A Laptop PC was used with a processor:

Intel(R) Celeron(R) CPU N3050 @1.60GHz (2 CPUs), ∼1.6GHz and 4GB of RAM. In these 200 tests,

the results are shown in Table 2. The first and third columns indicate the number of elements of the

Num. Elem. Num. Appearance Num. Elem. Num. Appearance

0 2 9 16

1 3 10 5

2 8 11 4

3 21 12 5

4 25 13 0

5 32 14 0

6 25 15 0

7 31 16+ 0

8 23 – –

Table 2: Times the key appears around nw

class, and the second and fourth the number of times the key was found. As can be seen, the largest

number of keys is concentrated around 6 (since nw = 96/16 = 6). For example, in the range of classes

with 3 to 9 elements, there are 173 keys, 86.5% of the 200 total.

In this sense, the idea of the Class Elimination Attack (CEA) is to group the w ciphertexts into

equivalence classes, then choose an interval,

[a, b] ⊂ N, (3.4)

where a and b represent the amount of ciphertexts in the classes, after being grouped, in a neighborhood

of nw, with a ≤ nw ≤ b. Such that the length of the interval is less than the number of classes at least

once,

η(b− a+ 1) < 2k̂2 , η ∈ N, η ̸= 0. (3.5)

With (3.5) an elimination condition is guaranteed, since it is giving the possibility of traversing η

times the b−a+1 classes contained in the interval [a, b] as ideal case, without even reaching the total

2k̂2 in the worst case, and it is the starting point. Note that in the interval [a, b] are the classes with

the highest probability of containing the key, hence the idea of traversing those classes η times. Let

G be the set containing the classes of the ciphertexts after grouping, and,

C[a,b] = {ζ ∈ G|#ζ ∈ [a, b]}, (3.6)

we refer to ideal case when,

#C[a,b] = b− a+ 1. (3.7)

256



It’s clear that,

1 ≤ #C[a,b] ≤ 2k̂2 , (3.8)

and the fact that #C[a,b] approaches 1, or 2
k̂2 , are unwanted cases, the former because it restricts too

much the number of classes selected for traverse, being more likely that the key is not found in these.

The problem of the second case is that almost all the classes would be selected, being necessary to

traverse practically the entire space of the keys. That (3.7) holds is what is desired and the assumption

on which the CEA is based.

After choosing the interval, the main idea is to look for the key in the #C[a,b] classes that are in C[a,b].

This search is repeated η times in the interval as long as the key is not found. The search in this

interval is done prioritizing from the center nw inside towards the ends. The stages of the CEA are

summarized in the Algorithm 1:

Algorithm 1 Class Elimination Attack

Input: w plaintext and ciphertext pairs.

Output: The individual with the highest fitness function as the best solution.

1: Choose k̂2 and calculate nw.

2: Group the w pairs into equivalence classes.

3: Choose η and [a, b] satisfying (3.5).

4: while the key is not found or the η iterations are not reached do

5: Find the key with the GA in the classes of C[a,b].

6: end while

In the following Definition 3..1 a methodology of how to choose the interval [a, b] is proposed. In the

same way, other criteria could be taken for the choice of a and b.

Definition 3..1 Given k̂2, kd, nw, k1, η ∈ N, k̂2, kd ≤ k1; P ∈ R∗
+, such that, 0 < P ≤ 100. Let’s

suppose that in the CEA we want to traverse the P percent of the total classes as an ideal case. Then,

the extremes a and b, and therefore the interval [a, b] ⊂ N, are defined as follows,

[a, b] = [⌊nw − r⌋ , ⌈nw + r⌉], (3.9)

where,

r =

P2k̂2

100η − 1

2
, (3.10)

or,

r =

P2kd

100η − 1

2
, (3.11)

and, if a < 0, then a = 0, since a ∈ N.

Experiments were performed applying the CEA to the HTC on the same PC Laptop for the results

of the Table 2 and the data that has been treated: w = 100, k̂2 = 4, 2k̂2 = 16 classes, η = 2 and the

interval [3, 9] was chosen, such that 2 ∗ (9 − 3 + 1) = 14 < 24 = 16. The choice of the interval, and

therefore, of a and b, was made assuming that we wanted to cover a certain percentage of the total
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classes as an ideal case: 85% of the total classes 2k̂2 =16, which is 13.6; dividing by η = 2 we have an

approximate value for b− a+ 1 = 6.8, from which we have b− a = 5.8, but b− a is the length of the

interval [a, b], in the center of which should be nw = 6, and taking as radius r = b−a
2 = 2.9, then, we

have,

a = ⌊nw − r⌋ = 3, (3.12)

and,

b = ⌈nw + r⌉ = 9. (3.13)

The fitness function F was used. For which 40 runs were made, giving a total of 4000 pairs of plain

and encrypted texts. The results are as follows: the key was found on average in 60 % of the pairs,

in approximately 114.26 seconds and 18.999 generations, going through 8.83 classes of the 16 total.

Notice how the number of classes needed to find the key is reduced on average. Only half of the classes

needed to be traversed on average, 8.83 out of 16. Some classes had to be traversed more than once,

since,

b− a+ 1 = 9− 3 + 1 = 7.

3.3. ABOUT THE CEA AND THE CHOICE OF PARAMETERS

It is know that the estimated time, te, that the GA should take in ng generations, is:

te = tmng. (3.14)

where tm is the average time obtained in experiments for a generation (see [21]). At this point,

regarding the estimation of time, k̂2 (k̂d) and the CEA with the TBB methodology, we have the

following definition:

Definition 3..2 (Reference Identity in TBB) Let k1, k̂2, k̂d ∈ N∗ be given, such that, k̂2 ≤ k1,

and, k̂d = k1 − k̂2; η, a, b ∈ N, such that the elimination condition (3.5) is satisfied; tm, te ∈ R∗
+

the average time that the GA takes to perform a generation (iteration) and the estimated time for a

certain number of generations, respectively; and, m the number of individuals in the population in the

GA. So, the Reference Identity (RI) in the TBB methodology is defined as,

tmη(b− a+ 1)2k̂d

mte

def
= 1. (3.15)

In an equivalent way, the RI is defined for the BBM methodology, it is only necessary to take into

account the dual function of the parameters in both partitions and change k̂d by k2:

Definition 3..3 (Reference Identity in BBM) Let k1, k2 ∈ N∗ be given, such that, k2 ≤ k1;

η, a, b ∈ N, such that the elimination condition (3.5) is satisfied; tm, te ∈ R∗
+ the average time that the

GA takes to perform a generation (iteration) and the estimated time for a certain number of genera-

tions, respectively; and, m the number of individuals in the population in the GA. So, the Reference

Identity in the BBM methodology is defined as,

tmη(b− a+ 1)2k2

mte

def
= 1. (3.16)
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The relation (3.15) can be used to estimate the different parameters depending on the desired purpose

and computational capacity. In particular, an approximate value for k̂d (and thus for k̂2) can be

calculated. Clearing k̂d from (3.15), and taking into account that it must be an integer value, we

have,

k̂d ≈
⌊
log2

mte
tmη(b− a+ 1)

⌋
, (3.17)

where te would be chosen based on a desired time. The relation (3.15) can be obtained from (3.14).

The GA has two stopping conditions, if it finds the key, or otherwise, if it performs a certain number

of generations, which depends on the number of elements of the class to traverse, 2k̂d , and the number

of individuals in the population, m, being equal to,

2k̂d

m
, (3.18)

but on average, in the CEA it is expected to traverse η(b − a + 1) classes, so the total number of

generations to traverse would be,

ng =
η(b− a+ 1)2k̂d

m
, (3.19)

Now assuming that tm is the average time that the GA takes to go through one generation, then,

substituting (3.14), we have that the estimated total time that it will take to go through all the classes

is,

te = tmng = tm
η(b− a+ 1)2k̂d

m
, (3.20)

from where, we arrive at (3.15).

Note that the RI is useful to calculate an approximate value of te, when it is desired to estimate the

time that the GA in the CEA will take to go through the b−a+1 classes that are expected on average.

It is a general formula for when the ciphertexts are unknown, and the calculations are done assuming

that you have a certain amount w, from which you get a, b, and k̂d. It is a way of making in advances

estimates for decision making. However, if the w pairs of plaintext and ciphertext are known, then G
and C[a,b] are computed. And it is known that in the CEA the #C[a,b] classes that are in C[a,b] will

be traversed. Therefore, in this case, a more precise relation to estimate te would be,

te = tm
η2k̂d#C[a,b]

m
. (3.21)

Note that the equation (3.21) is not a general case of (3.15). The main difference is that with (3.15)

the value of several parameters can be estimated assuming other known values; however, (3.21) only

serves to estimate the time more precisely, since knowledge of the w ciphertexts fixes the values for

a, b and k̂d, in the very fact of calculating #C[a,b], which in practice, can be different from b− a+ 1.

Finally, we have the following theorem,

Theorem 3..1 Let w, nw, m, te, tm, η, a, b and k1, as previously defined, then, we have the following

General Reference Identity (GRI),

wmte
nwtmη(b− a+ 1)2k1

= 1, (3.22)

furthermore, the GRI is independent of the key space partition methodology (BBM or TBB).
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Proof. It is known that,

k1 = k̂2 + k̂d, (3.23)

solving k̂2 = log2
w
nw

from (2.6), k̂d from (3.15) in RI, and substituting both values in (3.23), we have,

k1 = log2
w

nw
+ log2

mte
tmη(b− a+ 1)

, (3.24)

i. e.,

k1 = log2
wmte

nwtmη(b− a+ 1)
, (3.25)

where we arrive at (3.22). In the case of the BBM methodology, it starts from,

k1 = k2 + kd, (3.26)

where, clearing k2 from (3.16) in the Definition 3..3, kd from (2.7) and substituting in (3.26), with

the same procedure, (3.22) is arrived at in the same way, reflecting the independence of the space

partition methodology.

In general, the RI and the GRI provide a way to make estimates of each of the parameters involved in

the attack on block ciphers through the GA, depending on the information available. An interesting

note in this part is that the problem of choosing k2 (in both methodologies) is solved. In summary,

choosing k2 is not a uniqueness problem, but rather depends on various factors such as the time

available for carry out the attack, the calculation capacity, the information that is known about the

encrypted texts, etc. In other words, the optimal value of k2 is chosen based on what is known and

what is wanted to be done. These results make it possible to have better criteria for making decisions

in advances depending on the calculation capacity and the time available for the attack.

3.4. TIME ESTIMATION IN THE HTC CIPHER USING THE CEA

This section presents an example of how to use RI to estimate the time, te, in HTC encryption,

assuming different values of the number of ciphertexts, w. The goal is to get an idea of how long it

will take for the GA to perform the attack using the CEA.

We will assume the parameters η = 2 to be fixed, the percentage of the total number of keys to be

traversed is P = 85, with experiments carried out on HTC encryption and using the function F the

average time in a generation in minutes it is tm = 0.00582 approximately. Two values will be taken

for nw, 6 and 20.

With the above data, k̂2 will be calculated from (2.6), taking into account that it must be an integer

value, therefore,

k̂2 ≈
⌊
log2

w

nw

⌋
. (3.27)

We will work on the TBB methodology, so in the tables, 2k̂2 represents the total number of equivalence

classes for that value of k̂2. Similarly, a and b are obtained from the definition 3..1. The results are

presented in Tables 3 and 4. The times, te, of the tables are in seconds. Note that the values of k̂2,

a and b from Table 4 for w = 100, coincide with those obtained in Section 3.2.. On the other hand,

it seems that te = 200.25 does not offer a good estimation of the time. However, in Tables 3 and 4 te
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w k̂2 a b te

100 2 19 21 343.28

1000 5 13 27 214.55

10000 8 0 74 134.09

100000 12 0 890 99.56

Table 3: Calculation of te with nw = 20

w k̂2 a b te

100 4 3 9 200.25

1000 7 0 33 121.58

10000 10 0 224 100.57

100000 14 0 3488 97.47

Table 4: Calculation of te with nw = 6

is estimated assuming that the η(b− a+ 1) classes contained in the interval will be traversed [a, b] as

an ideal case. While in the results of Section 3.2., an average of 8.83 classes of the 14 expected were

covered. The interesting thing is that if η(b− a+ 1) is replaced by 8.83 in the Reference Identity, the

estimated time is te = 126.298, which is a better approximation to the actual time 114.26.

In both tables, the time decreases as the number of known ciphertexts increases, even though the

number of classes and the size of the interval [a, b] increases. Instead, k̂2 is increasing as well, and

therefore each class will have fewer elements to traverse. This corroborates the fact that the CEA will

be more successful as more ciphertexts are known.

4. CONCLUSIONS

A class elimination methodology was designed to attack block ciphers using the GA in the present

work. An attack methodology is proposed where some classes are discarded, reducing the total number

that would be necessary to go through the Class Elimination Attack (CEA). Regarding the GA and

the CEA algorithm, it is defined: a way to choose the interval [a, b]; the Reference Identity (RI) for

both space partition methodologies and a necessary condition where the General Reference Identity

(GRI) is obtained. In general, the RI and the GRI provide a way to make estimates of each of the

parameters involved in the attack based on the information available. An interesting note is that the

problem of choosing the parameter that determines the balance between the number of classes in which

the space is divided, and the number of elements within each one of them is solved. Consequently,

choosing this parameter is not a problem of uniqueness, but rather, it depends on several factors such

as the time available to carry out the attack, the calculation capacity, the information that is known

about the encrypted texts, etc. These results make it possible to have better criteria for making

decisions in advance. Future research will work on applying the results obtained to other families of

block ciphers.
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