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ABSTRACT

Due to the complex disjunctive structure of mathematical programs with complementarity con-
straints (MPCC), parametric approaches are used to overcome this difficulty. The underlying idea is
to solve a program depending on the real parameter 7 > 0, where 7 = 0 corresponds to the original
MPCC program. The paper considers seven approaches: two based on smoothing the complemen-
tarity constraints and the other five, on their regularisation. We consider the point-to-set functions
that, for each value of the parameter 7, define the set of feasible solutions and the set of optimal
solution of the parametric problems they define. We study the distance between the feasible sets

and the set of minimisers of the parametric program for 7 going to zero.
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RESUMEN
Los problemas de de progaramacién matemadtica con restricciones de complementariedad (MPCC,

por sus siglas en inglés) tienen una estructura disjuntiva. Es por eso que se han usado enfoques
paramétricos para su resolucién. Para ello se considera un problema que depende de un pardametro
7 > 0, tal que para 7 = 0 el modelo es equivalente al MPCC original. En este articulo de con-
sideran los siete enfoques paramétricos fundamentales: dos basados en suavizar las restricciones de
complementariedad y cinco que la regularizan. Consideramos las funciones conjunto-evaluadas que
para cada valor del pardmetro definen el conjunto de soluciones factibles y el conjunto de soluciones
optimas del problema paramétrico. En este trabajo se estudia la distancia entre dichos conjuntos

cuando 7 — 0.

PALABRAS CLAVE: programacion matemética con restricciones de complementariedad, es-

quema de suavizacién, esquema de regularizacién, orden de convergencia estacionariedad
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1. INTRODUCTION

A Mathematical Program with Complementarity Constraints (MPCC for short) can be written as:

gj(x)gov jzla"'7Qu
(P): minf(z) st. zeM=LzeR" | r(x),s(x) >0, i=1,...,m, (1.1)
ri(z)si(x) =0, i=1,...,m,
with functions f,g1,...,9¢:71,---,"m,S1,---,8m : R® — R. The conditions 7;(x)s;(z) = 0, i =
1,...,m, are called complementarity constraints. Due to the combinatorial nature of these comple-

mentarity conditions, approaches which override this difficulty are of high interest. In the past, several
solutions approaches have been investigated, see for example, [4], [10],[8],[6], [13] and [12]. The main
idea of these methods is to replace the complementarity conditions by equality or inequality con-
straints depending on a parameter 7 > 0 such that, at 7 = 0, the original MPCC is obtained. Then,
for a sequence 7% | 0, the solutions of the parametric program are computed. It is expected that these
solutions converge to a solution of the original program P.

The present paper considers seven of these approaches. In two of them the complementarity constraints

are substituted by equality constraints, leading to the following parametric problems:

g]($)§07 j:]-v“'vqy
(Q,): minf(x) st. zeM2 =LzeR"| ri(z),s(x) >0, i=1,...,m, (1.2)
ri(z)si(x) =7, i=1,...,m,
and
g]($>§07 j: 7""Q7
(P): minf(x) st. zeM’, =L eR" | rix),si(x)>0, i=1,...,m, (1.3)

rT(x)s(x) = T.

The other five approaches are the regularisation methods proposed in [10], [8], [6], [13] and [12]. They
are given, respectively, by the parametric problems

(RS) : min (x)

st. x€MS (1.4)
gi(z) <0, i=1,...,q,
MS=SzeR ri(x),s;(x) >0, i=1,...,m,
ri(x)s;(x) <7, i=1,...,m
(REF) - minf(z)
st. xe MES (1.5)
gl(m) S 07 1= la , 4,
Mf}—: $€§Rn ,rz(x)sl(x _TQSO, ’L_17 .m,
(ri(x) +T)(si(x) +7)—72>0, i=1,...,m
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s tT ze MK (1.6)
gz(‘x) § 07 [ ]-7 45
ME=Lzecprn ri(x), si(x) > —, i=1,...,m,
(ri(x) = 7)(si(x) —7) <0, i=1,...,m
(RSY) : minf(z)
st. zeME L7
gl(m)§07 i:17"'7Qa
M =L eR ri(e), six) > 0, i=1L...,m
T?(‘T) + S?(‘T) - ¢SU(T7(’I) - 57(1'),7') < Oa 1= 17 , M

(RS - minf(x)

st. xe MSK 18)
gz(x) SO’ 1/:17 7q7

MEK ={LzeRrn ri(z),si(x) >0, i=1,...,m,
%K (x,7) <0, i=1,....m
Here
if |a] >
(ZSSU(CLT) _ ‘a|7 1 |a‘ —-Tv
70(a/7), otherwise
and
T T R O e N O EEE
’ — [(ri(z) = 1) + (si(x) — 7)?] /2, otherwise. ’

where 6 is a C2-function regularising function, i.e. (1) =0(-1) =1, 0'(1) = —0'(-1) =1, §"(-1) =
6(1) =0 and 08”(x) > 0, for all z € (—1,1).

Problems (1.2), (1.4), (1.5), (1.6), (1.7) and (1.8) have been studied in papers as [2, 9, 5, 12, 7],
respectively. With these parametrizations, the singularity at points such that r;(z) = s;(z) = 0
can be treated with known algorithms. However, all properties have not been studied for all the
approaches. So, a comparison among these approaches is not complete. The goal of this paper is to
start to fill these gaps. For each case, we will obtain which properties are satisfied. In this part, using
tools from Parametric Optimization, we will analyse the distance between the sets of feasible solutions
of the parametric problems and M. Similar properties will be studied for the set of optimal solutions.
We emphasize that most of the properties of Q, have been studied in [2]. So, we are mainly interested
in analising the other approaches. Often we will simply refer to [2] and only sketch proofs if arguments
or techniques are similar to those used in this reference.

For simplicity we consider only inequality constraints, but under standard extensions of the linear
independence constraint qualification (LICQ) and the Mangasarian Fromovitz constraint qualification
(MFCQ), all results of this paper can be extended to the case of MPCC problems with additional

equality constraints.
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The paper is organized as follows. In Section 2, we review some preliminary material on MPCC
programs and parametric optimisation problems needed in the subsequent sections. Section 3 studies
the local stability of the sets of feasible solutions of the parametric models with respect to MP.
Bounds (depending on 7) for the Hausdorff distance between the sets will be given. The results are
compared with those obtained in [2] for model Q,. In Section 4, similar results are proven for the set
of solutions. Finally, we summarize the contributions of the paper.

We end this section with some basic notation that will be used throughout the text. The canonical
vectors in R™ will be denoted by e;. The open ball centered at £ € R™ with radius ¢ > 0 will be
B (z) = {z | ||x — Z|| < €}, where ||z|| is the Euclidean norm. The distance from a point x to the set
Ais d(z, A) = inf{||lx — y|| | y € A}. The Hausdorf distance between the sets A and B is defined as

d(A, B) = max {max{d(z, B) | z € A}, maz{d(z, A) | z € B}}.

2. PRELIMINARIES

We start with some basic concepts and results from MPCC theory and parametric optimisation that

will be needed later on.

2.1. MPCC theory

When dealing with MPCC problems P, the following active index sets play an important role:

Ig({L‘) = {.7 € {17"‘7(]} | gj(‘r) :0}7

n(x) = 0’}7_[3(.%)_{1.6{17""7%}

si(z) > 0

I.(z) = {ie {1,...,m}

ILs(x)y={ie{1l,...,m} | ri(x) = 0,s;(x) =0},

Definition 2.1. (Strict Complementarity (SC) for P) Let & € M. We say that SC holds for P
at T if I.4(%) = 0.

The regularity conditions for MPCC constitute adaptations from their nonlinear programming coun-

terpart, see [1]. Here we present some that will be used later.

Definition 2.2. Let z € M. We say that MPCC-LICQ holds at T, if the set of vectors
{Vg;(@)]j € Iy(2)} U{Vri(Z)|i € 1,(T) U Ls(2)} U{Vsi(Z)|i € Ls(7) U Is(7)}
is linearly independent. MPCC-MFCQ is said to hold at T if the system
{Vri(@)|i € L(Z) U ILs(Z)} U{Vs;(Z)|i € I,(Z) UI5(Z)}
is linearly independent and there exists some d € R™ such that
Vg;(2)Td <0, Vijel,(z),

Vri(@)Td=0, Viel(z)UI), Vsi(2)Td =0, Viel(z)UlIT).
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It is clear MPCC-LICQ and MPCC-MFCQ lead to the classical LICQ and MFCQ if m = 0.
As a consequence of Farkas’s Lemma, an alternative characterization of MPCC-MFCQ can be ob-

tained.

Lemma 2.1. (cf. [1]) Let z € M. Then MPCC-MFCQ holds at T if and only if the relation
0= > wVeg@ - > V@ - Y. oiVsi(a),
J€EI4() i€l (2)UIrs (Z) i€, (Z)UIrs (T)

for u >0 and (free) real vectors p,o implies (u, p,0) = 0.

For & € M, we introduce the Lagrangean function (near ),

L(z,pmpo)=fl@)+ > pmgil@)— > pmi()— Y, esix).  (21)

Jj€I4(T) 1€l (T)UI,s(T) i€l (Z)UI,5(T)

Now, we present main stationarity concepts:

Definition 2.3. (Stationarity Concepts) Let & € M. Then, T is called weakly stationary (W-
stationary) if there are multipliers (u, p, o) € RIs@IHI@HIL @ with 1 > 0 such that

0=Vf@+ > wVg@ - > V@ - > 0iVsi(a)

jEIH(7) i€L(2)UI,.o (T) i€1(2)Ul, s (T)
A W-stationary point T with corresponding multipliers (u, p, o) is:
(a) Clarke stationary (C-stationary) if pio; > 0, for all i € I,.4(T).

(b) Mordukhovich stationary (M-stationary) if either p;o; =0 or p;,0; > 0 holds, for all i € I,.5(Z).

(¢) Strongly stationary (S-stationary) if p;,0; > 0 for all i € I.5(T).
Clearly
S-stationarity = M-stationarity = C-stationarity = W-stationarity.

It is worth to point out that the S-stationarity condition is equivalent to the standard KKT condition
applied directly to problem (1.1).

The following necessary condition holds:

Theorem 2.1. (First order necessary condition, cf. [3]) Let T be a local minimiser at which
MPCC-LICQ is satisfied. Then T is an S-stationary point.

3. THE SET OF FEASIBLE POINTS OF THE SCHEMES.

In this section we will analyse the properties of the sets defined by the approaches. Roughly speaking,
for each approach we perform a local analysis. We will study if, locally around a feasible solution in
which MPCC-LICQ holds, we can expect that LICQ holds at the parametric problem defined by the

approaches. Moreover, we will find a bound of the Hausdorff distance of the parametric problem and

210



the set of feasible solutions. We will obtain properties Most of the latter was studied earlier for Q, in
[2] and, as mentioned before, we will often refer to arguments and techniques used in this article.
We assume from now on that g, r,s are C' or C? functions.

If I,(Z) has go elements, by exchanging indices we can assume that the active constraints are the first
¢o. In the case of the complementarity constraints there are some indices such that r;(Z) = s;(Z) = 0.
Suppose |Ipo(Z)| = p. Again, after some possible exchange of the indices of the functions we can
assume that 7;(Z) = s;(z) =0, for i = 1,...,p and r?(Z) + s3(z) > 0, for i = p+1,...,m. For those
indices, 4, i > p such that 0 = s;(Z) < r;(Z), we exchange the roles of r; and s;. So, without loss of

generality (w.l.o.g.), in the sequel we assume
L@ ={1,....q}, Ls@)={1,...,p}, L@ ={p+1,....,m}, I,(z)=0. (3.1)
We assume T = 0. As in [2], recall that the MPCC-LICQ condition is satisfied at Z, we suppose that
Tank(Va,  apipign (T1(Z)s o Tm(T), 51(T), - .- 5p(T), 91(T), - - - G40 (T)) = m + P + qo.
So, we can define a local diffeomorphism T : B.(Z) — Bs(0), as
T(z) = (ri(z),...rm(x), s1(2), ... 5p(x), g1(2), - .. 940 (T), Tmtptqos - - - Tn)-

T'(z) canonically transforms the feasible sets of the parametric problems for small 7 > 0. Hence,

locally around Z we can assume that

ri(@)=x;, i=1,...,m,
Si(x) = Tm+i, 1= 17 Ry 2 (32)
9i(*) = Tiptjs =1, ., 0.
and ~ ~
si(x) > # >0, i=p+1,...m, g2)< @ <0, j ¢ ,(2). (3.3)

We refer to [2] for details. Now, we particularise these results for the different approaches.

3.1. Case P,

Theorem 3.1. Suppose that MPCC-LICQ is satisfied at T, feasible point of P, then there exists T
and a neighborhood V of T such that for all T € (0,7) all v, € VN MP ., the LICQ holds.

Proof: As the MPCC-LICQ is fulfilled at Z, we can use (3.2). Then, locally, the set of constraints
is described by

{xizoaizlu"wﬂ% x’m+i20>7;:17"'7p7 x’m+P+i§0ai:17“‘7q07 (34)

it TiTmai D, g Tisi(T) =T
By the continuity of the involved functions there exists a neighborhood V such that if z, € MP_,
I (x7) C Iy(z), {i : & = 0}, C I(£)UI,(Z). On the other hand, as Y7, TiTmpit ey Tisi(2) =T,
at least one of the terms of the previous sum is non-zero. We consider two cases. If p+ 1 < i* < m,

ziy #£0, wlo.g i* =m,and x; =0, i =p+1,...,m, The respective gradients are
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Il 0 0 0 ’ orr o o0 o)
0 0 ' 0 0 0o I' 0 0
0 0 0 1 0 0 0 I 0
® smtLiplizes © © ® Tma00 ® ® ©

Noting that in the first case as z; — 0, we get s, + ZZZPH xi% # 0 and that in the second case
Zle Ty = 7. implies that at least one term is non-zero, it follows that in both cases the gradients
are linearly independent, for 7 small enough. [

For the analysis of MP . apart from the SC-assumption the following condition will play a role.

Definition 3.1. We say that the point T is a complementarity non-degenerate point, or that CND
holds at z, if I.s(z) # {1,...,m},  or equivalently p < m. This condition says that at least for
one ig it holds i, (Z) + $4,(Z) > 0.

Now we prove the (Holder) stability of the feasible set M7, near z € M.

Theorem 3.2. Assume that MPCC-LICQ holds at & € M. Then there exist £, 19, a, 8 > 0, such that
for all T € [0,79) the following is true: there exists v, € MP . N Bo(Z) satisfying ||z, — Z| < ay/T,
and for any , € MP . N B.(Z) there exists &, € M N B(Z) such that ||Z, — .|| < Bv/T.

If in addition CND holds at T, then a\/T can be replaced by at and if SC is satisfied then, we can
take Bt instead of B+\/T.

Proof: According to the arguments given above, without loss of generality, we can assume Z = 0 and
that in B.(0), for small 7 > 0, the feasibility condition for M. is given by (3.4). In case that CND

does not hold, we can choose the element x,. with components
[xT]i = Oa"'vm_ 17m+17"'72m_ 17 [‘rT]’m = [xT]Z’"L = \/;7 [xT]j :07.7 = 2m+175n .

Then, obviously (z = 0) |z, — Z|| = v24/7. As usual, without loss of generality, s,,(Z) > 0.
If CND holds, we can choose =, by

T

Sm(i')

[:]i =0,i=1,....m—1,m+1,....2m, [x;]m= ;e =0,i=2m+1,....n,

which satisfies ||z, — Z|| = e = O(r) .
To show the second relation, let z, € M7”, N B.(0). The last feasibility condition in (3.4) reads

S TiT i + ey @isi(z) = 7, which implies (see (3.3))

2
0 <min{x;, i} < V71, i=1,...,p and z; < ﬁT, i=p+1,...,m.
S; (T
Without loss of generality, we assume that [Z.]; < /7, i =1,...,p, and, putting ¢ := mam{ﬁ, 1=

p+1,...,m}, we can choose %, € M as follows:



This yields

m

In case SC holds, i.e., p = 0, we, obviously, have ||z, —Z. || < vVmc?t2 = O(7) .

From a global viewpoint we have the following result

Theorem 3.3. Suppose that the sets MP . are contained in some compact set K. Then, there exists
7 such that for all T € (0,7) the Hausdorff distance between M and MPF . is bounded by O(,/T) and
the LICQ is satisfied for all x,, feasible point of P .

Proof: Suppose that M, MP . are subsets of a compact set X C R”. Using compactness arguments,
Theorem 3.2. leads to a corresponding global (Hélder/Lipschitz) continuity result for M7, (cf., the
corresponding result for M<, in [2, Lemma 4.3]). That is the Hausdorff distance between M” . and
M is O(y/7) or O(7) if SC holds at all feasible point.

The same arguments will be used to prove the second part: for each z € M7P ., take B(z,dz), the
ball centered in Z and radium 0z where the transformation (3.2) is valid as a diffeomorphism and
the LICQ holds for all z € M, N B(%,6z), recall Theorem 3.1.. As M is a closed set included in a
compact, it is compact. So, we can take X° a set of finitely many points Z such that Ugze xo B(Z, 0z)

covers M. Defining § = min{dz, € X}, it is clear that for 7 small enough
dist(MP ., M) = O(\/7) < 6.
So,
MP . M+ B(0,6z) C UzexoB(Z, 0z)

and the result follows. [J
Now, we prove analogous results for the other approaches. From the previous analysis, it is clear that
it is enough to show a result similar to that obtained in Theorem 3.1. and bounds of the type O(7?),

p > 0. This is the scheme we will follow from now on.

3.2. Q.

A result analogous to Theorem 3.2. has been obtained for Q; in [2, Lemma 4.2]. We prove now the
local fulfillment of the LICQ using the local diffeomorphism.

Theorem 3.4. Let MPCC-LICQ holds at all feasible point of P. Then, for all T feasible point of P,
there exists T and a neighborhood V' of T such that for all (1,x), 7 € (0,7) and x, € VN M2, the
LICQ holds. Moreover if the sets M2, are contained in some compact set K, there exists T such that
for all T € (0,7) the LICQ is satisfied for all z,, feasible point of Q..

Proof: Again we apply the local diffeomorphism defined in (3.2). Locally the set of feasible sets is

LTilm+s = T, i = 17"'7pﬂ xp+i8p+’i(‘r) = T, i = 17"'7m_p7
Tm+p+i > 07 i = 1w~~7¢10, Tiy, Tmti 2 0, i= ]-a“'apa (35)
Tptiy Sp+i(‘r)207 Zzlavm_p

213



Define

X3(x) Vi, psi(x),i=p+1,....,m, 0

0 (@i Vpi1, msi(x),i=p+1,...,m,] +diag(sp+1(z),...,sm(z)) 0

B(z) = | X(x) TiVit1,. . mtpsi(x), i =p+1,...,m, 0
0 TiVintp+1,... . maptqSi(T), i =p+1,...,m, Iy,

0 TiVitptgo+1,..nSi(x),i=p+1,...,m, 0

Here X!(z) = diag(x1,...,7p), X3(z) = diag(xm+1,- -, Tmsp) and V, Y = (g;i e g—;/b). As
sp+1(0), ..., 8, (0) > 0, the matrix

Bo(z) = [2p4+iVpt1..msi(x), i =p+1,...,m,| + diag(sp+1(x), ..., Sm(x)) (3.6)

is regular for © = 0. So, after some easy algebraic manipulations, we get that B(z) has full column
rank and, therefore, LICQ holds. [J

As in the case of Theorem 3.3., a global result also follows.

3.3. Case R?

In this part we present analogous results for the regularisation proposed in [10]. In this case it is clear
that M C MS,. Again using the canonical transformation (3.2), it holds that = € B.(Z) is a feasible
solution of RS if and only if

{xizo, i=1,...,m, Tms:>0, i=1...,p, Tmapsi <0, i =1,...,qo, 57

Ty <7, i=1,...,p  xsi(x) <71, i=p+1,...,m.
Next result shows that the elements of M5, are also not far from M.

Theorem 3.5. Assume that MPCC-LICQ holds at T € M. Then there exist €, 7y, 8 > 0, such that for
all 7 € [0,79) and for any T, € Ms" N B.(T) there exists &r € M N B.(Z) fulfilling ||Z, — -] < BT
If in addition SC is satisfied then, 8+/T can be replaced by BT.

Proof: Fix T, € Mg™ N B:(Z), where B.(Z) is a neighborhood as in Theorem 3.2.. So, we can
consider the canonical transformation and assume that for ¢ > p, s;(x) > M > 0, for all x € B.(%).
In particular, for every ¢ = 1,...,p either x; or ,,; is smaller than or equal to /7. W.lo.g. we
assume that z; < /7. The result follows after taking z; =0, i = 1,...,m and x; = [Z,]; otherwise.
It is clear that the bound can be sharpened to O(7) if and only if SC. [.

Remark 3.1. The local fulfillment of the LICQ was already proven in [11]. Actually an analogous
relation was established between MPCC-MFCQ and MFCQ), see [12]. We want to point out that the
local diffeomorphism (3.2) simplifies the proof of the first case.
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3.4. Case R%” .

Now we consider the regularisation proposed in [8]. Again M C M*7 . By the canonical transfor-
mation (3.2), it holds that x € B.(Z) is a feasible solution of M%7 if and only if

(.I‘i+7')(l'm+i+7')272, t=1,...,p, ($i+T)(3i(m)+T)2T23 i:p+15"'ama
Tm+p+i < 07 1= 17' -+ 4o, TiTm+i < 7—2, i= 17 - Dy (38)
risi(x) <72, i=p+1,...,m.

Theorem 3.6. Assume that MPCC-LICQ holds at & € M. Then there ezist €, 1y, 8 > 0, such that for
all T € [0,70) and for any ., € M*% N B.(Z) there exists &, € MN B.(%) satisfying ||z, — .|| < BT.

Proof: Take Z, € M*¥_ N B.(z), where B.(Z) is a neighborhood as in Theorem 3.2.. This means
that the canonical transformation can be used and that for all z € B.(Z), it holds s;(x) > M > 0,
t=p+1,...,m.

For those indices such that z;s;(x) < 72, as s;(z) > M, x; < 72/M < 7/M.

Since for every i = 1,...,p, (z; + 7)(Tmei +7) > 72 > 0, either x;, Tppyi > —T OF Xj, Tpas < —T.
In the last case, if one of the inequalities is strict, we get the contradiction x;z,,1; > 72. Moreover,
TiTmti + T(T; + Tmti) > 0. So, at least one of them, x; or x,,+; is non-negative. Then we consider
two cases.

If 2;2,,44 > 0 since their product is smaller than or equal to 72 at least the modulus of one of them is
smaller than 7. Then, we assume |z;| < 7, ¢ = 1,...,p. The result follows after taking z, € M given
by (Z;); =0, i=1,...,m and (Z,); = z; otherwise.

If z; < 0 < 2444 since Tppqy +7 > 0, we get that x; +7 > 0, s0 0 > x; > —7. Taking Z, such that
()i =0,i=1,...,m and (Z,); = x;, otherwise; the desired bound is obtained.

Again O(7) is the sharpest bound, 72 can be taken if and only if SC is satified. 0.

We want to point out that 72 plays the role of 7 in the other approaches. Indeed, the product of the
complementarity functions is of order 72. If we use 72 instead of 7 in the other approaches, we get
bounds of the same order under similar conditions.

As in the case of RS7 the local fulfillment of the LICQ at the parametric problem under MPCC-LICQ
is known, see [12, Theorem 7.6]. An alternative proof based on the canonical transformation can be

found at Appendix A.

3.5. Case RF,

Now we study the set of feasible solutions for the regularisation proposed in [6]. By the canonical
transformation (3.2), it holds that @ € B.(Z) is a feasible solution of MX if and only if

{ Tjy Tmti > =T, izlv"'7pxi75i(x) > =T, z:p—l—l,,m xm+p+i§07 izla"'7Q0) (39)

(i =) (@i —7)<0,i=1,...,p(x; —7)(8i(x) = 7) <0, i=p+1,...,m.

Theorem 3.7. Assume that MPCC-LICQ holds at T € M. Then there exists €,19,c, 3 > 0, such
that for all T € [0,79) the following is true: there exists x. € M. N B.(%) satisfying ||z, — Z| < aT,
and for any T, € MP . N B.(Z) there exists &, € M N B.(Z) such that |7, — &.| < BT
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Proof: After the canonical transformation, Z = 0. As in Theorem 3.2., we assume that B.(Z) is a
neighborhood where the canonical transformation describes the set of feasible solutions and that for
i>p, si(x) > M >0, for all x € B.(Z).

We take z such that x4, =7i=1,...,p, and z; = 0, otherwise.

Since, for 7 small enough 7 < M, the constrains (z; —7)(s;(x)—7) <0, x4, 8;(x) > -7, i =p+1,...,m
are satisfied at this point. So, z € M. as desired.

Take x € MX_ N B.(z). For those indices such that z;s;(x) < 72, as s;(x) > M, we can assume that
x; <712/M < 71/M.

For the other indices, first note that for every i = 1,...,p, either —7 < z; <7 <z 0r z; > 7 >
Timti > —7. W.lo.g., we assume the first case holds. Then, taking Z such that (Z); =0, i=1,...,m
and (Z,); = x;, otherwise, the result follows.

O

As shown in [12], LICQ is not guaranteed. Actually, using the following example, it is clear that
if MPCC-LICQ holds and SC fails there exists for 7, small enough, a point x, such that r;(z,) =

si(x;) = 7 and, so, the constraint qualification is violated.

Example 3.1.

1,22 > -7, (11 —7) (2 —7) <0

The point (7, 7) is feasible and the gradient of the active constraint, (1 — 7)(z2 — 7) < 01is 0. O

3.6. Cases R°Y_ and RS .

For the regularisations proposed in [13, 12], we use [12, Lemma 7.15] and, applying the canonical
transformation (3.2), we obtain that if # € B.(Z) is a feasible solution of RS, the point is included

in

{ fi,$m+i20; Z:1,7p$1,81(m)207 i:p+17"'7m'xm+p+i§07 7;:17"'aq07

TiTmti =000 Ty + Ty <7, 8=1,...,p, misi(x) =0o0rz; +s;(x) <7, i=p+1,...,m.
(3.10)
Similarly, for regularisation (1.7) we get
Tiy Tm+4i 207 1= 17"'apl‘i78i(x) Z 0) Z:p+1;am Tm+p+i S 07 1= 17"'7qu (3 11)
min{z;, Tmii} <7, i =1,...,p, min{z;, s;(z)} <7, i=p+1,...,m. .

for more details, see [12]. So, we have the following results.

Theorem 3.8.
Mc MU Mc MSK_

Assume that MPCC-LICQ holds at * € M. Then there exists €,79,8 > 0, such that for any T, €
MSY N B.(Z) there exists &, € M N B.(Z) satisfying ||Z, — .|| < Br. If in addition SC holds at T,

then, in both bounds T can be replaced by T2
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Proof: The first part is clear.

After the canonical transformation, Z = 0. As in Theorem 3.2., we assume that B.(Z) is a neighbor-
hood where the canonical transformation describes the set of feasible solutions and that for ¢ > p,
si(x) > M > 0, for all x € B.(z). For regularisation (1.7), consider an element of the set de-
scribed at (3.10). In particular, for those indices such that ¢ = p+1,...,m, as s;(Z,) > M, for 7

small enough (Z,); = 0. If i = 1,...,p either (Z;);, (Z7)m+: are non-negative and complement or
(@) + (T )mai ST, (Zr)i, (Tr)ms = 0.
W.lo.g. we assume that (Z,); < 7/2 and take = such that #; = 00 = 1,...,m and Zpi = (T7)mri

otherwise. So, the result follows.

For the regularisation (1.8), the result is analogous, we only need to recall that, w.l.o.g., (Z,); <
(Tr)mti-

Again it is the sharpest bound, 72 can be taken if and only if SC is satisfied.

As before, the global bound holds can be found under the compactness assumption. .

After this analysis it is clear that the Hausdorff distance of the set of feasible solutions of the parametric
problem and of the P have the same order under similar conditions. However, LICQ is not fulfilled

in the last three cases, as has been remarked in [12].

4. THE SET OF SOLUTIONS OF P AND THE PARAMETRIC APPROACHES

In this part we study the set of solutions. We consider the g.c. points as solutions concepts. By g.c.
points we understand feasible solutions such that the gradient of the objective functions, the (classical)
equality constraints( i.e. 7;(z)s;(x) = 0 are not considered) and the active inequalities are linearly
dependent. Non-degeneracy is related with the non-singularity of the matrix of the derivatives of the
system describing the linear dependency.

At the g.c. points of regular MPCC, MPCC-LICQ, MPCC-SC and MPCC-SOC are fulfilled. In this
section we will study the consequences of these properties to the parametric problems P, Q,, R,
RLF RE RSV RSK. Roughly speaking, we will analyse if the critical points of the corresponding
problems are non-degenerated and we will provide bounds to the Hausdorff distance of the set of
critical points of P,, Q,, RS, REF RE RSV RSK and P. For a unified notation we define ®4(P)
as the set of solutions of type A of problem P. Here A may represent minimizers, local minimizers,
critical points and g.c. points.

As the MPCC-LICQ holds, we apply the canonical transformation (3.2) and w.l.o.g. we assume that
the solution is 0. As before, we consider the partition x1 = (21, ... 2p), T2 = (Tpt1,..-Tm), T3 =
(Tm41s - Tmtp)s T4 = (Tomtptis- - Tmdptgo)s 5 = (Tmtpt1s---Zn). The g.c. condition implies
V() = (p1,p2,01,—4,0). By the MPCC-SC, all the components of (p1,071, ) are non-zero. In
particular, close to 0, Vf(z) = (p1, p2,01, —p, 0) + q() where ¢(x) = O(||z||), see [2]. Vector ¢(z) is
also divided in (q1(z), ..., ¢s5(x)), where ¢;(z) = Vg, f(x) — V4, f(0). As MPCC-SOC holds, as in [2,

Theorem 5.1.], it is easy to prove that V,_g¢f (0) is non-singular.
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4.1. Problem P,

From Theorem 3.1., it is known that for 7 > 0 small enough, the solutions of problem P, are critical
points, i.e., LICQ holds. However we cannot guarantee that non-degeneracy holds. In fact, the

following example shows that SC fails for P, even if the problem is regular.

Example 4.1. Using the canonical transformation suppose that locally,
P: minzy4+xs st 0<x1ll—222>0, 0< 2511 +27>0.

The point Z = (0,0) is a minimiser of P (of order one) with corresponding multipliers v; = 2 = 1.
So, MPCC-SC and MPCC-SOC holds (the latter holds trivially since Tz M = {0}). The minimisers
of P; are . = «(0,7) + (1 — a)(7,0), a € [0,1]. Hence, they are degenerated.

Note that T, = (7,7), the minimisers of Q, are non-degenerate critical points, for 7 > 0. [
Nevertheless, next result shows that g.c. points of P, are not far from critical points of P and

vice-versa.

Theorem 4.1. LetT be a stationary point of P such that MPCC-LICQ , MPCC-5C and MPCC-S0C
holds. Then

If T is a C-stationary point and Iopo(T) = {1,...,m}, then for all T > 0 (small enough), there exists
xr a stationary point of Pr such that ||z, — T|| = O(\/T).

If T is a S-stationary point and Ioo(T) # {1,...,m}, then for all T > 0 (small enough), there exists
xr a stationary point of Pr such that |z, — T|| = O(7).

Proof: The proof is done by construction. Again using the canonical transformation it is clear that
as 0 is a C-stationary point, we get that p1jo; > 0,u > 0. By the MPCC-SC, the inequality is strict.
The point z shall fulfill for some multipliers (a, p1, p2, 0, ) the following system that describes the

condition of been a critical point of P;:

P1 (z3)r + Z:'ip-o-l(f?)Tvmlsi (p1)-/0
P2 [Spttse-esSm]t + Z?;p_,_l(m)rvzﬁi (p2)-/0
o1 | +d" (@) +a- (x1)r + Egp+1('x2)7'vx35i — | (e1)-/0] =0 (4.1)
— ® _,UT/O
0 ® 0

We will analyse the two cases:

Case p =m and 7 is a C-Stationary point: Since 27 x3 = 7, there exists i such that 21,323, 7# 0.
W.lLo.g. we assume that ¢ = m. Define (¢, d) as p1,m + gm(2) = ¢, 01,m + om(z) = d.

The MPCC-SC, MPCC-LICQ hold, and 7 is a C-stationary point, so, p1,mo1,m > 0. As ¢(x) =
O(||z]]), reducing the neighborhood such that ||z|| is small enough, we can guarantee that ¢ and d

have the same sign.
Now we define a, = C—Td, (z1)r = (0,...,0,/F), (z1); = (0, ...,0, dcr), and (22)r =0, (z4)r =
O, (175)7— =0.
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The multipliers are (p1.1,....m—1)r = P1,1,...m=1FG1,1,...m=1(2+), (G11,...m=1)r = 01.1,....m=1+¢2.1,...m-1(Z+),
i+ qs3(x;) = pr. Combining the definition of C-stationary points, and the fulfillment of the MPCC-
LICQ and MPCC-SC, we obtain that py,o1, 4 > 0. As ||z.|| = O(/7), q(z+) = O(J|z||) = O(/7),
(p1,01, )7 > 0. So, x, is the desired stationary point.

Case p < m and T is a M-Stationary point: We will prove that there exists a vector (z2,m,z5) €

R x R"~™~P~% guch that the feasible solution =, = (x1, z2, 23, 24,25)r = (0,(0,...,0,22,m),0,0, z5),
solves system (4.1) for suitable multipliers. Indeed, if 21 = 23 = 0,22 = (0,...,0,Z2.n), x4 = 0, the

conditions reads

p1 T2.:m Ve, Sm (p1)+
P2 [Spttse- oy Sm]t + T2.m Vi, sm (p2)+/0
o1 | +¢"(2) +a, 22.m Vs Sm —| (o) | =0 (4.2)
—H T2,mVaySm —Wr
0 22,mVasSm 0

It is clear that as s,,(x) is continuous near to 0, s, (z) > M > 0 and z9 ,,, = 7/ (2) is O(7). So, a,

,+ (T
— L2m T2 m L) ‘”g:fn(l) . Furthermore
Sm+T2,m

6a"2,'m

is well defined as a, =

T p2,m+q2,m(x) _
T,) — 2 o o Vi S (T = 0
qs5 ( 7-) sm+2m aax,;(m) 2,m Vs m( 7') (4'3)
22,mSm(0,(0,...,0,22,,),0,0,z5) = T

Derivating with respect to (z2,m,s) and evaluating at 0 we obtain the full row rank matrix

® V59(0)
Sm(O, (0,...,0,1‘27“1),0,0,1‘5) 0
So, we can apply the Implicit Function Theorem and obtain, for all 7 small enough, the existence of
(x2,m,%s5)r = O(7) solution of (4.3).
Now, given z,, the multipliers are computed as follows
p2,m + q2,m(T)
Osm (z

Oxo ,m

(p1)r = o1+ (2)] - 22V,

Sm + T2.m

p2,m + q2,m ()
9sm () T2,m
81‘21m

v127p+1 m—15m

,,,,,

(P2)r = [p2,p+1,...m—1 + @21, m—1(T)] —

Sm + T2 m

pP2.m + q2,m($)
Osm ()
amzym

(p3)r = [o1 + gq3(x)] — 22,m Vs Sm

Sm + T2.m

pP2.m + q2,m($)

Osm (w)
02, m

Hr = [/.L - Q4(Z‘)] + x?,mvamsm

Sm + T2.m

As the MPCC-SC holds, ¢(z) = O(7), and T is a S-stationary point, it is clear that (p1, p2, 01, 1) > 0.
So, x, shows the existence of the desired stationary point of P for 7 small enough. [J

Now we prove an analogous results for generalized critical points.
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Theorem 4.2. LetT be a g.c. point of P such that MPCC-LICQ , MPCC-SC and MPCC-SOC holds.
Then for all T > 0 (small enough), and all z, g.c. point of P, (near T ) it holds that ||z, —T| = O(/T).

Proof: 1t is clear, recall Theorem 3.1.; that the gradients of the active constraints are 1.i. So, the g.c.
points of P, are critical point of the parametric problem and satisfy the system. On the other hand,
since

p m

Zxr,ixm+i,r + Z xi,‘rsi(mr) =T, (44)

i=1 i=p+1
there exists ¢ such that either (z1)%, (23). # 0 or (z2)7 # 0. Moreover, as (z1)%(x3)L < 7, either
(z1)L or (z3)L = O(y/7). Similarly as s;(x) > m > 0 in a neighborhood of 0, (z2): = O(7). From
(4.4) it also follows that there are two cases: either (z2), # 0 or (z3); = 0 and there exists i*:
(x1,4)r, (z3,:+)r # 0. Now, suppose the first case is true, w.l.o.g. we assume that (z2.,), # 0.
Hence,

p2,m + O(||z]) + ar[sm + Z (22)7Va,,, 8] =0
i=p+1

In particular a, is bounded. By the MPCC-SC p, p1,01 # 0. After a suitable shrink of the neighbor-
hood of Z, we can assume that

m

—[(1/2)i| < aa(@) + [a-[( D (@2)7 Vausils < |(11/2)sl.
Jj=p+1

So, ptaa(@)Har[F 1 (22), Viaysilli # 0. Tn particular, prbqa(z)ar [+ 57 (@2)r Vsl # 0.
Hence, —pr # 0 and (z4), = 0, for 7 small enough.

Analogously, we prove that —[(p1/2)i| < q1(z) + [a-[(z3)r + 270,11 (22)7 Va5l < [(p1/2)i] and
—|(01/2)i| < g3(x) + [a-[(z1)r + Z;n:pﬂ(xg)TVmsj]i < |(1/2):]- So, (p1)+,(c1)r # 0, component-
wise. Then, (z1); = (23); = 0. Therefore, p2 + a(spt1,-..,8m) + (p2,+/0) = 0. So, =, fulfills that
(z1,23,24)r =0, z2 = O(7) and

m

g5(z:) +ar( Y (22)7Vay5i((0,22,0,0,25),) =0 (4.5)
i=p+I+1

At (z5,7) = 0, the system has a solution. Taking derivatives with respect to x5 we get, V,.q5(0). By
the MPCC-SOC, this matrix is non-singular. Using the Implicit Function Theorem, for all (a,, 2, )
close to (a,0,0) the solutions of (4.5) are O(r), recall a; — a, 7 — 0.

So, the solutions of the system (4.1) with (x2), # 0 satisfies 2, = (0,0(7),0,0,0(7)).

Now, we consider the case (z2); =0 and (21,)-, (23,)r # 0. System (4.1) reads

P1 (z3)r (p1)+/0

P2 [sp+1,...,sm]T 0

o | +¢" (=) +ar (w1)+ — | (61)-/0] =0 (4.6)
—p 0 —ptr /0

0 0 0
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As q(z) = O(||z])), and x; # 0 it is clear that a, is bounded. Moreover, we can assume that the

neighborhood of . is such that
—lp1i/2l < qui(x) <lp1s/2], —lo1,i/2] < g3,i(x) < |o1,4/2], —|wi/2| < qai(x) < |wi/2].

By the MPCC-SC p1, 01, pt # 0 component-wise. Using the previous inequalities all the components of
(p1,01, 1) + (q1(x), q3(x), ga(x)) are non-zero. In particular, p, # 0 component-wise. Hence, z4 = 0.
On the other hand

(P1p)r + @1(xr) + ar(z3)r = 0.

(01,p)r + @3(z7) + ar(21,p)r = 0.

As already noticed, either (z1,), = O(\/7) or (z3,)r = O(/7). W.lo.g. we assume that the first
case holds. Then, as (p1,p,01,p) # 0, a;,O(V/T) = —p1,p — q1,p(+) is bounded. So,
ar =1/0(/71).

Using this fact, we obtain that also (z3,), = O(y/7). Furthermore, noting that ps + g2(x) and s;(z),
i =p+1,...,m are bounded, it is clear that the growth of a, implies that p = m. For the other

indices we have the following options:
Case 1 1,4 = 0, Xr3,5 = 0.

Case 2 1, =0, xz3; >0or z3; =0, 1,; > 0: Then at system (4.6) o1,; + ¢(x) = 0. This is impossible
at the considered neighborhood.

Case 3 x1,; > 0, z3; > 0: Analogous to the case i = p, x1,;, = O(\/7), x5, = O(\/7).

So, either z1; =0 =23, =0 or x1,4,x3; = O(y/7). As the critical point condition reads ¢s(z,) = 0,
using again that MPCC-SOC holds and the Implicit Function Theorem, the only possible solutions
fulfill that (x5), = O(|[(x1, 22,23, 24)+||) = O(V/T). So, ||z-|| < O(\/7T) at all point that solves system
(4.1).0

4.2. Problem O,

Analogously, for this approach, the following result can be proven

Theorem 4.3. Let © be a g.c. point of P such that MCPC-LICQ , MPCC-5C and MPCC-SOC
holds. Then for all T > 0 (small enough) the g.c. points of x, of Q, (near x) are non-degenerated
critical points uniquely determined and satisfy ||z, — z| = O(/T).

Proof: For the uniqueness and the rate of convergence, see [2]. We only need to prove the non-
degeneracy of x, critical point of the non-linear program Q.. Here we only sketch the proof. The

involved algebraic work can be found in Appendix B. Consider the canonical representation of the
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system (3.5). The g.c. point condition at P, is

X3(z%) 0
0 0
ViR + | XN ah) | pf+ 0 P
0 eye(qo, Ly(zi))
0 0

¥V psi(@b)i=p+1,...,m

Bo(xk)
5V i1, mapsi(2F)i=p+1,...,m, us =0.
iV g1, mtprgoSi(2F), i =p+ 1, m
x§+ivm+p+qo+1,..‘,n5i(xk)7i =p+1,....m

Here X3(2%) = diag(ak, 1, ..., ¥mip), X (%) = diag(zh, ..., z,), Bo(zy) is defined as in (3.6) and
eye(qo, Iy(zy)) denotes the columns of the ¢°-dimensional unit matrix whose indices belong to I, (z").
Note that, due to the non-singularity of By(z*) and continuity arguments, it follows that T is a
MPCC-critical point, I,(Z) = I,(xx) and SC holds at z* for k large. The SOC follows from assuming
the contrary and obtaining a contradiction with the MPCC-SOC.

For the global bound, consider the open covering given by the diffeomorphism. Taking, by the com-

pactness a finite sub-covering, the result follows. [J

4.3. Problem RS

For the non-degenerancy, the following example shows that the parametric problem does not inherit

this property from MPCC as in the previous case.

Example 4.2.

minzy + x2 —|—x§
st. 0<x1lxe >0,0< Jng_(l + 1‘2) > 0.

0 is a non degenerated critical point in the MPCC-sense. It is also a critical point of RS for all T > 0
such that the multiplier of the inequality x3 > 0 is 0. So, the SC for nonlinear program is violated.

With respect to the distance between of the g.c. points of the respective problems let us consider
the g.c. points condition for RS. As before, we consider the canonical representation given in (3.7).
Assuming, again w.l.o.g., that the the index are regrouped in such a way that (z1,)(z3:)r = 7,1 =

la"'vpl and (IQ,i)TS(xT) :T7i :p+177p+p2

p1 (X°(27)/0) (0/p7) 0

09 0 0 0

o1 | +4" (@) + | (X!(27)/0/0)| uf — |(0/0])| + 0 Art
1 0 0 eye(qo, Ly(z,))

0 0 0 0
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(xi)Tvl,A..,pSi(-rT)ai =p+ 17 -.e D2

Bo(zr)
(@) r Vintt,..omepsi(Tr)i=p+1,...,p2 (12)r = 0.
(@) 7 Vintp+i,...mtptaSi(@:), i =p+1,...,p2
(Tp+i)r Vintptaotl,...n8i(@r), i =p+1,...,p2

(z1)-(p1)r =0, (z3)r(01)r =0, (z2)+(p2)r = 0.

Following the ideas of Theorem 4.1., we can assume that xo = O(7) and the previous condition reads

p1 (X3(27)/0) (0/p7) 0 o(r)
P2 0 0 0 Bo(2r)(p2)r
or | +O0(1) + [ (XY@™)/0) | uf — [(0/a])| + 0 Ar + O(r) =0.
—p 0 0 eye(qo; Io(a,)) O(7)
0 0 0 0 O(r)

Furthermore by the MPCC-SC, p # 0 and py 3, 01,; # 0. Hence, (z4); = 0 and either (z1;)-, (23,)r =
T or (1) = (z3,:)r = 0. For the first case \/m = 1. In particular it is only possible if
p1,; and o1 ; have the same sign. So, z1,x3 = O(y/7). By the MPCC-SOC, V,_¢(0) is regular. Using
the same arguments of Theorem 4.1. based on the Implicit Function Theorem at the g.c. points also,
x5 = O(y/7). We have proven the following result

Theorem 4.4. Let x be a g.c. point of P such that MCPC-LICQ , MPCC-S5C and MPCC-SOC holds.
Then for all T > 0 (small enough) the g.c. points of x, of RS (near x) satisfy ||z, — x| = O(v/7).

4.4. Problem R:7
For this problem we have the following result

Theorem 4.5. Letx be a g.c. point of P such that MPCC-LICQ , MPCC-5C and MPCC-SOC holds.
Then for all T > 0 (small enough) the g.c. points of x. of RS (near x) satisfy ||z, — | = O(7).

Proof: Using the ideas of the proof of the previous theorem we get that the g.c. point condition is

X3 (zx)+ 71 ® 0 0 ®
0 ® 0 X3z ® )
Zl 0 Si+7l+® 0 0 ® Z;
2 T

o |+om+ |, " ? R I DS )

X (x)+7I ® 0 0 ® 5
_0“ 0 ® 0 Xix) @ ZT
0 ® I, 0 ® "

0 ® 0 0 ®

and that the expressions ® = x;Vs; are O(7)Vs;. As in the previous cases, by the MPCC-SC, z4 =0
and either (z; + 7)(Tpmei +7) = 72 OF TiTmyi = 72,0 = 1,...,p. As both terms, (z; + 7) and
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(s + 7) in the first case and x; and 2,4, in the second shall have the same order, it follows that
(i +7), (Tmti +T), Tiy Trgs = O(7). This implies that a1, z2, 23,24 = O(7). The relation x5 = O(7)
is obtained after the MPCC-SOC. O

As in the previous case the non-degeneracy of the MPCC-model does not imply the degeneracy of the

solutions of REE as it is shown in the next example
Example 4.3. Let us consider the problem that locally corresponds with
minz; +23 st 0<z1la3>00< xgj_(x? +1)>0.

x = 0 is its unique solution and it is, evidently, non degenerated.

The parametric problem is

minz + 3

72, (x1 +7)(x3+7)

S.1. r1T3 >
2, (o +71)(22+14+7) > 72

<
ro(x? +1) <

x = (0,72,0) is a critical point and SC fails OJ.

4.5. Problem RF

We have already remarked that the LICQ does not hold in this case. So, we can not expect non-
degenerancy. We consider the concept of g.c. points as a condition the minimal solutions satisfy
because at minimizers in which the LICQ fails are critical points.

We suppose that x, is close to a critical point point Z.

In the first case, w.l.o.g., we assume that £ = 0 and, after rearranging conveniently the indices, we take

the following partition (z1,); = —7,(23:)r =7, ¢ = 1,...,p1, (@1p,4i)r = =T, (@3p4i)r £ T 1 =
L....p2, (x1,171+;02+i)7' =T, (xl,p1+172+i)7' ¢ {7-’ _T}7 i=1,...,ps, (z3»P1+P2+Ps+’i)T =7i=1,...,pa,
(Xopti)r =—T, i=1,...,ps and (T2 pyps+i)r =7, ¢ = 1,...,ps. The critical point condition reads

1 (_IIJ1+P2‘O|O)T (0]X3 — 7]0)" 0 0 0 pl

P2 0 0 (=1p10)" (Osg —7)" 0| | p2

o | +0(r) + 0 X710 i 0 0 of]ot]=0.

—p 0 0 0 0 Loz

0 0 0 0 0 0/ \ur

Here X{ —7,X?—7, X3—7 represent the diagonal matrices defined by the vectors 1, —7,i = 1,...p1,
Tlprtpotpsti — Tt =1,...,p4 x3; —T, i =p1 +p2+1,...,p1 + D2+ p3 +ps and sy — 7, is similarly
constructed using the vector so;(z) —7, i = p+ps+1,...,p+ps +ps. By the feasibility zo € [1,7/C]
where C' > 0 is a lower bound of s;(z) for i = p+1,...,m. The fulfillment of the MPCC-SC implies
that p1 +p2 = p, p2 = p3 = 0 and 4 = 0. In particular, x;,z5 € {7, —7}?. By the MPCC-SOC
x5 = O(71). So,

s — 2] < O(r).
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If the LICQ fails there exists and index ¢ such that xz;; = z3; = 7. In particular the direction
d = —es; is feasible and as %:T_) =03, +O(1) > 0, for 7 small enough, d is a descent direction. So,

x, can not be a stationary point or a local minimizer.

We have the following result

Theorem 4.6. Let T be a g.c. point of P such that MPCC-LICQ , MPCC-5C and MPCC-SOC
holds. Then for all T > 0 (small enough) there are no local minimizers of P.. Moreover the set of g.c.

points of RN x, (near ) is not empty and for all g.c. point x, it holds ||z, — Z|| = O(1).

4.6. Problems RSY and RSF

Although LICQ fails at the parametric problems, for the critical points we have the following result

Theorem 4.7. Given T a non-degenerated critical point of MPCC. Then locally around T, the Haus-
dorff distance between the sets of critical points of RSY (resp. REX ) and P is bounded by O(T)

Proof: Tt is clear that critical points of P are also critical solutions of RSY and RSX.

For the first approach, as already noticed in Section 3., r;(z) + s;(z) < ¢°Y(r;(z) — s;(z); 7) implies
ri(z) + si(x) < 7 or ri(x)si(x) = 0. si(z) > 0,i = p+1,...,m and locally s;(x) > M > 7, for
7 small enough. We use the local dipheomorphism, see (3.2). As s;(x;) > M > 7, for 7 large
enough, z;2(x;) + s;(x;) > 7 and, therefore, z; 2(z,)si(z;) = 0 As a consequence zo = 0 and
zi2(xr) + si(zr) — d(si2 — xi2) = 0.

Similarly ((z1,:)r > 7) if and only if (z;3); = 0. Analogously (z3;)r > 7 implies (21 ;) = 0. For

simplicity we suppose z1; < x3; Suppose we have the following partition z3; > 7, ¢« = 1,...p1,

T>w3; =221 >0, t=pr+1,...p1 +p2, T >3, >713, =0, i =p1 +p2+1,...p1 +p2+p3,
235 =21,; =0, i =p1 +p2 +ps+1,...p. Then the critical point condition is

I 0
0

0

2Ip,
0

fie
~
oo oo

coocoooog o o

P1
P2
o1 | +O(m) -

—n

Ip—p1—p2—p3
21

°
SN
cooocoocoo

0
0
0
0
0
0
0
0
0

q
4N

=

-
0

As, by the MPCC-SC, all the components of o1 # 0, p;1 = p3 = 0 and z4 = 0. So, for each

Oocooo®®o ococo® o
cooococod cooo
|
=

Ooocoocooco oooR
oo ooooo

oo ocooo

oo oocoocoooo

o o

T>ux3; > w1, > 0o0r x3; = x1,; = 0. As xg,24 = 0, we have that (z1,...,24) = O(7). By the
MPCC-SOC, also x5 = O(T).
For the second approach we have, for each i =1, ..., p, the following possible six sets of active indices

related to the complementarity constraints:

215 =1x3; =0, 5K (214,23,,7) <0,

T3> 21, =0, $55(v14,73,4,7) <0,

x5 > w1, = 1,0°K (214, 25,,7) = 0.

s; > M > 27, for T small enough x5 ; =0, (bSK(.%‘LZ‘,LL'g’i,T) < 0.
s; > M > 27, for 7 small enough z; = 7, ¢°K (21 ;,23,,7) = 0.

s; > M > 27, for 7 small enough x5, € (0,7), ¢°K (214, 23,,7) < 0.
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Without loss of generality we assume that z1; = 23; =0, ¢ = 1,...,p1, z1; = 0,23; > 0, i =
DP1y---sP1+ P2, X1 =T, 83 > T, t =p1+DP2,...,p1+p2+ps <p, 22, =0, i =p+1,....,p+ pa4,
To; =T, t=pP+Da,...,D+Dps+ps,and z4; =0, i=m+p+1,...,m+p+ps.

Considering these sets, the critical points satisfy the system:

]+

Again, by yhe MPCC-SC, p1 +p2 +p3 = p1 = p, pa = qo- So, x4 = 0 and, for each i = 1,...p,
1 =x3; = 0. As x9; = O(7), by the MPCC-SOC and the Implicit Function Theorem z5 = O(T).
So, all critical point of the parametric problem close to Z are in B(Z,O(7) as desired. O

0
(z3 i) — T
0

Ip1+po
0

© oo

~
I

P1
P2
o1 | +O(7) —
—w

si(zr) =7

—
T 9
N Ll 2l

~

o

0
0
0
p
0
0
0
0
0
0
0
0
0

cooooocoooo oo
~
cooooog oo ooo o
oco% ocoooooooo0o o
coococoooocooo

cocoocooocoo

5. CONCLUSIONS

A first result shows that the (Hausdorff) distance between the feasible sets of P,, Q,, RS and P is
bounded by O(y/7) for 7 — 0. Error bounds of the same order are also obtained for the set of the
local minimizers. In the case of R“*,, RE RSY and RSX ., the order is O(7). It is important to
realize that in the these regularisations, 72 is used to bound the complementarity constraints. So, a
similar rate of convergence was obtained in all cases.

For the smoothing approach defined by P, the g.c. points can be degenerated, even if at the original
problem MPCC-LICQ, MPCC-SC and MPCC-SOC hold . In the considered regularisation approaches
either LICQ or SC fails. From a numerical viewpoint non-degenarancy is an important advantage
because matrices of the system defined by Newton type algorithems will be non-singular. So, from
this point of view Q. has an important advantage.

In the second part of this paper we will complete this study. We will obtain the types of points that
can be obtained as limits of the critical points of the parametric problems defined by the corresponding
schemes near 7 = 0. From a global viewpoint we will obtain which kind of solutions may appear in
the generic case. In particular if they are critical points of P and M and the set of feasible solutions
of the parametric problems are compact, we can extend the results shown in Section 4. and provide

global bounds for the Hausdorff distance of the set of g.c. points.
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A ALTERNATIVE PROOF OF THEOREM 7.6, [12]

Theorem Al. Let MPCC-LICQ holds at all feasible point of P. Then, for all T feasible point of P,
there exists T and a neighborhood V' of T such that for all T € (0,7) and . € V N REF, the LICQ
holds. Moreover if the sets RE7 are contained in some compact set K, there exists T such that for all
7 € (0,7) the LICQ is satisfied for all x,, feasible point of RZT .

Proof: First we shall note that for 7 > 0 at most one of the following pair of constraints can be active
(i + 7)(@Tmai +7) = 72 OF T;Tmei = 72, Analogously, (z; + 7)(s;(z) +7) > 72 and x;5,(x) < 72
cannot be active simultaneously. Rearranging the index we suppose that (z; +7) (i +7) = 72,0 =

13"'7p17 Lilm4i — T2vi = D1 +17"-5p2 < p, (11714'7_)(51(1’)4’7') > 7_23 1= p+17'-'7p3 and

z;isi(x) < 7% i =p3+1,...,p0 < m. We use the following notation X{(z) = diag(z1,...,zp,),
X (x) = diag(xp, 11, .-, Tpy), X3 (2) = diag(Tmi1s- - Tmip, )y X5(T) = diag(Tmsp, 1, - - > Tmtps)s
Si(x) = diag(sp+1(2), ..., Smtps(€)), and Sa(x) = diag(Smip,+1(), ..., Tmip,(2)). Here ® is a
matrix whose columns are x;V;,s;, i =p+1,...,m, for a suitable indices set I.

The gradients are

X3 (x)+ 71 ® 0 0 ®

0 ® 0 Xiz)

0 Si1+7I+® 0 0 ®
0 ® 0 0 S+
C Xi(z)+7I ® 0 0 ®

0 ® 0 Xi(x) ®

0 ® L, 0 ®

0 ® 0 0 ®

As in the proof of Theorem 3.6., s;(z) > M > 0. So, S1,S2 are diagonal matrices whose elements
S1+7171+® ®

are larger than M. As ® = O(7), it follows that the matrix
oY Sy + ®

> is non singular.

From this fact, the result easily follows.

The second part is a consequence of the first part and Theorem 3.6.01.

B PROOF OF THEOREM 4.3.

Consider the canonical representation of the system (3.5). The g.c. point condition at P, is

X3(x*) 0
0 0
ViR + | X ar) | pf+ 0 pLES
0 eye(qo, Ly(akk))
0 0
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ohVy psi(@F)i=p+1,...m

Bo(l‘k)
kyy (k) 5 — 1 k_ 0
;' Vm41,..., m+psz(x )7Z*p+ R U Ha .
k kY
TP Vintpti,miptaSi(@7), i =p+1,....m
k kY 5 _
xp+iVm+p+qo+17m)nsi(x yi=p+1,...,m

Here X3(z%) = diag(zF, 1, ..., Tm4p), X' (z¥) = diag(zh,... ), Bo(zy) is defined as in (3.6) and
eye(qo, Iy(z,)) denotes the columns of the ¢°-dimensional unit matrix whose indices belong to I,(z*).
Note that, due to the non-singularity of By(x*), the multiplier u% is well-defined. Moreover, by the

continuity of the involved functions, u5 converges and we can define

po= lim diag(spi1(z%), ..., sm("))ps3.

Analogously, it can be seen that
X3(aP)pk =,
X' (@) — v,

and \¥ — \. As 2FVs;(2%) = 0 fori =p+1,...,m, T is a MPCC-critical point and

I, 0 0 0
0 In, 0 of[”
vi@m+|o o 1, ofl|"|=0
12
00 0 I,
0O 0 0 0

By the regularity of P the point T is a non-degenerate critical point. So, A # 0 and )\f # 0 for k large
enough and j € I4(Z). As a consequence, for k large enough I,(Z) C Ij(xy). Hence I4(Z) = I (ay) =
{1,...q0}, for k large and SC holds at z*.

To analyse SOC we need to prove that the following matrix is non singular over T,x M< x,

0 0 diag(p¥) 0 0
0 0 0 0 0
Y= V2L Nl ps) = | V2f(a%) + [ diag) 0 0 0 0[+®
0 0 0 0 0
0 0 0 0 0
X3(z%)  ®F 0
0 By(z*) 0
Recall that T, M<_x is the space orthogonal to B(z¥) = | X1(z¥) k 0
0 ®Z LIO
0 ®F 0
Here @ = 3207 1 (15)i Vi [wisi(2)](a%), @F = [2§ V1, psi(a®), i =p+1...,m], ®F = [2 Vi1, mipsi(a?), i =
p+1,...,ml, @ = [2FVii1  mapsi(@®), i = p+1,....m], @ = [2FViipi1, nsi(@®),i =

p+1,...,m] and By(z*), defined in (3.6), is non-singular for k large enough. So, a base of T,x M<,
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is given by the columns of

X1(zb) 0
oF oF
B(") = [ =x3(a") 0 ,
0 0
0 Ln—m—p—qo

where &F = — By (") 71 [ X (2*) @F —X3(2F)®5] and @8 = —By(2F) "1,
Now consider C(z¥) = B(z*)TY* B(2*). Then, after some algebraic manipulation we can prove that
o/t —2X3(z*)diag(ph) X1 (zF) 0
) W) (XX ) o)
f(=") 0

O(r

€= (ow O(r) + v

Tm+p+qy+1sTn 0
_ (O(T) — 2 (a*)diag (1) X' () O(v7) )
O(V7) O +V2 o f@))

As for SOC, we need to prove that C(z*) is non-singular. Assume to the contrary, that c* # 0 is a

solution of C(z*)c* = 0. Without loss of generality we assume that ||c*| = 1.

k

Taking k — oo and hence, 7% — 0, without loss of generality, we can assume ¢ — ¢ # 0. Thus,

considering c* = (c¥, c) = (c1,c2) = ¢ # 0, we have

k I O(T%)cl — 2X3(2¥)diag(uh) X (2F)ck + O(\/Ti""')céC
IMEg 00
g O(VTF)ck + O(r%)ck + V2 o, @)k

limy,_ 00 C(2%)c

Tm+p+qr+1s-

0 0
V2 fes)
Tltptqy+1sHTn 2

But as MPCC-SOC holds, V2 2, f(2¥) is non-singular. Hence c, = 0.

Tm+p+qr+1ss
Now, if O(7%)cf — 2X3(a*)diag(p}) X (z*)cf + O(\/7k)cs = 0, dividing by /7%, we obtain
O(p) ek — 2X3(a®)diag(ph) X1 (2%)ck + O(VTF)ck
VTk
2X° () diag (i) X (=¥)k _
vk '

= O(V7F)cE + 0(1)ck—

Taking limits for 7 — 0 yields
o 2X3 (M) diag M) X (2)ch

lim O(y/7x) — O(1)cs =0.
s (V7k) (1)e N
3 k . k 1 kN .k
As & — 0, it holds that lim,_,q 22—& >dw§%>x (@er _ .
However, for i =1,...,p, either xf or xan > \/Tk, because xfa:fnﬂ = 7. Without loss of generality,

we assume that z¥ > /7. As already obtained in (B1) —2X3(z*)diag(uf) — v # 0. Then

X3 (xR di EYX1(pk X1(F
lim (z%)diag(ui) X" (=) = diag(vy) lim &
k—o0 \/E k—o0 \/7'7f
But, as seen in [2], lim,, o X;g) = diag(y) exists and it is non zero. So,
—2X3 k di k Xl kN Lk
Jim, () Zci%m e _ diag(vy)diag(y)er = 0.

As y,v # 0, it follows that ¢; = 0 and ¢o = 0, contradicting the assumption that ¢ # 0.
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