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ABSTRACT

Due to the complex disjunctive structure of mathematical programs with complementarity con-

straints (MPCC), parametric approaches are used to overcome this difficulty. The underlying idea is

to solve a program depending on the real parameter τ ≥ 0, where τ = 0 corresponds to the original

MPCC program. The paper considers seven approaches: two based on smoothing the complemen-

tarity constraints and the other five, on their regularisation. We consider the point-to-set functions

that, for each value of the parameter τ , define the set of feasible solutions and the set of optimal

solution of the parametric problems they define. We study the distance between the feasible sets

and the set of minimisers of the parametric program for τ going to zero.

KEYWORDS: mathematical program with complementarity constraints, smoothing scheme, reg-

ularisation scheme, order of convergence, stationarity.

MSC: 90C30.

RESUMEN

Los problemas de de progaramación matemática con restricciones de complementariedad (MPCC,

por sus siglas en inglés) tienen una estructura disjuntiva. Es por eso que se han usado enfoques

paramétricos para su resolución. Para ello se considera un problema que depende de un parámetro

τ ≥ 0, tal que para τ = 0 el modelo es equivalente al MPCC original. En este art́ıculo de con-

sideran los siete enfoques paramétricos fundamentales: dos basados en suavizar las restricciones de

complementariedad y cinco que la regularizan. Consideramos las funciones conjunto-evaluadas que

para cada valor del parámetro definen el conjunto de soluciones factibles y el conjunto de soluciones

óptimas del problema paramétrico. En este trabajo se estudia la distancia entre dichos conjuntos

cuando τ → 0.

PALABRAS CLAVE: programación matemática con restricciones de complementariedad, es-

quema de suavización, esquema de regularización, orden de convergencia estacionariedad

�Corresponding author: gema@matcom.uh.cu

206



1. INTRODUCTION

A Mathematical Program with Complementarity Constraints (MPCC for short) can be written as:

(P) : minf(x) s.t. x ∈ M =

x ∈ Rn


gj(x) ≤ 0, j = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

ri(x)si(x) = 0, i = 1, . . . ,m,

 (1.1)

with functions f, g1, . . . , gq, r1, . . . , rm, s1, . . . , sm : Rn → R. The conditions ri(x)si(x) = 0, i =

1, . . . ,m, are called complementarity constraints. Due to the combinatorial nature of these comple-

mentarity conditions, approaches which override this difficulty are of high interest. In the past, several

solutions approaches have been investigated, see for example, [4], [10],[8],[6], [13] and [12]. The main

idea of these methods is to replace the complementarity conditions by equality or inequality con-

straints depending on a parameter τ ≥ 0 such that, at τ = 0, the original MPCC is obtained. Then,

for a sequence τk ↓ 0, the solutions of the parametric program are computed. It is expected that these

solutions converge to a solution of the original program P.

The present paper considers seven of these approaches. In two of them the complementarity constraints

are substituted by equality constraints, leading to the following parametric problems:

(Qτ ) : minf(x) s.t. x ∈ MQ
τ =

x ∈ Rn


gj(x) ≤ 0, j = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

ri(x)si(x) = τ, i = 1, . . . ,m,

 (1.2)

and

(Pτ ) : minf(x) s.t. x ∈ MP
τ =

x ∈ Rn


gj(x) ≤ 0, j = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

rT (x)s(x) = τ.

 (1.3)

The other five approaches are the regularisation methods proposed in [10], [8], [6], [13] and [12]. They

are given, respectively, by the parametric problems

(RS
τ ) : minf(x)

s.t. x ∈ MS
τ

(1.4)

MS
τ =

x ∈ ℜn


gi(x) ≤ 0, i = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

ri(x)si(x) ≤ τ, i = 1, . . . ,m.


(RLF

τ ) : minf(x)

s.t. x ∈ MLF
τ

(1.5)

MLF
τ =

x ∈ ℜn


gi(x) ≤ 0, i = 1, . . . , q,

ri(x)si(x)− τ2 ≤ 0, i = 1, . . . ,m,

(ri(x) + τ)(si(x) + τ)− τ2 ≥ 0, i = 1, . . . ,m.


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(RK
τ ) : minf(x)

s.t. x ∈ MK
τ

(1.6)

MK
τ =

x ∈ ℜn


gi(x) ≤ 0, i = 1, . . . , q,

ri(x), si(x) ≥ −τ, i = 1, . . . ,m,

(ri(x)− τ)(si(x)− τ) ≤ 0, i = 1, . . . ,m.


(RSU

τ ) : minf(x)

s.t. x ∈ MK
τ

(1.7)

MSU
τ =

x ∈ ℜn


gi(x) ≤ 0, i = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

ri(x) + si(x)− ϕSU (ri(x)− si(x); τ) ≤ 0, i = 1, . . . ,m.


(RSK

τ ) : minf(x)

s.t. x ∈ MSK
τ

(1.8)

MSK
τ =

x ∈ ℜn


gi(x) ≤ 0, i = 1, . . . , q,

ri(x), si(x) ≥ 0, i = 1, . . . ,m,

ϕSK(x, τ) ≤ 0, i = 1, . . . ,m.


Here

ϕSU (a, τ) =

{
|a|, if |a| ≥ τ,

τθ(a/τ), otherwise

and

ϕSK(x, τ) =

{
(ri(x)− τ)(si(x)− τ), if ri(x) + si(x) ≥ 2τ,

−
[
(ri(x)− τ)2 + (si(x)− τ)2

]
/2, otherwise.

,

where θ is a C2-function regularising function, i.e. θ(1) = θ(−1) = 1, θ′(1) = −θ′(−1) = 1, θ′′(−1) =

θ(1) = 0 and θ′′(x) > 0, for all x ∈ (−1, 1).

Problems (1.2), (1.4), (1.5), (1.6), (1.7) and (1.8) have been studied in papers as [2, 9, 5, 12, 7],

respectively. With these parametrizations, the singularity at points such that ri(x) = si(x) = 0

can be treated with known algorithms. However, all properties have not been studied for all the

approaches. So, a comparison among these approaches is not complete. The goal of this paper is to

start to fill these gaps. For each case, we will obtain which properties are satisfied. In this part, using

tools from Parametric Optimization, we will analyse the distance between the sets of feasible solutions

of the parametric problems and M. Similar properties will be studied for the set of optimal solutions.

We emphasize that most of the properties of Qτ have been studied in [2]. So, we are mainly interested

in analising the other approaches. Often we will simply refer to [2] and only sketch proofs if arguments

or techniques are similar to those used in this reference.

For simplicity we consider only inequality constraints, but under standard extensions of the linear

independence constraint qualification (LICQ) and the Mangasarian Fromovitz constraint qualification

(MFCQ), all results of this paper can be extended to the case of MPCC problems with additional

equality constraints.

208



The paper is organized as follows. In Section 2, we review some preliminary material on MPCC

programs and parametric optimisation problems needed in the subsequent sections. Section 3 studies

the local stability of the sets of feasible solutions of the parametric models with respect to MP .

Bounds (depending on τ) for the Hausdorff distance between the sets will be given. The results are

compared with those obtained in [2] for model Qτ . In Section 4, similar results are proven for the set

of solutions. Finally, we summarize the contributions of the paper.

We end this section with some basic notation that will be used throughout the text. The canonical

vectors in Rn will be denoted by ei. The open ball centered at x̄ ∈ Rn with radius ϵ > 0 will be

Bϵ(x̄) = {x | ∥x− x̄∥ < ϵ}, where ∥x∥ is the Euclidean norm. The distance from a point x to the set

A is d(x,A) = inf{∥x− y∥ | y ∈ A}. The Hausdorff distance between the sets A and B is defined as

d̃(A,B) = max {max{d(x,B) | x ∈ A},max{d(x,A) | x ∈ B}} .

2. PRELIMINARIES

We start with some basic concepts and results from MPCC theory and parametric optimisation that

will be needed later on.

2.1. MPCC theory

When dealing with MPCC problems P, the following active index sets play an important role:

Ig(x) = {j ∈ {1, . . . , q} | gj(x) = 0},

Ir(x) =

{
i ∈ {1, . . . ,m}

∣∣∣∣∣ri(x) = 0,

si(x) > 0

}
, Is(x) =

{
i ∈ {1, . . . ,m}

∣∣∣∣∣ri(x) > 0,

si(x) = 0

}
,

Irs(x) = {i ∈ {1, . . . ,m} | ri(x) = 0, si(x) = 0},

Definition 2.1. (Strict Complementarity (SC) for P) Let x̄ ∈ M. We say that SC holds for P
at x̄ if Irs(x̄) = ∅.

The regularity conditions for MPCC constitute adaptations from their nonlinear programming coun-

terpart, see [1]. Here we present some that will be used later.

Definition 2.2. Let x̄ ∈ M. We say that MPCC-LICQ holds at x̄, if the set of vectors

{∇gj(x̄)|j ∈ Ig(x̄)} ∪ {∇ri(x̄)|i ∈ Ir(x̄) ∪ Irs(x̄)} ∪ {∇si(x̄)|i ∈ Is(x̄) ∪ Irs(x̄)}

is linearly independent. MPCC-MFCQ is said to hold at x̄ if the system

{∇ri(x̄)|i ∈ Ir(x̄) ∪ Irs(x̄)} ∪ {∇si(x̄)|i ∈ Is(x̄) ∪ Irs(x̄)}

is linearly independent and there exists some d ∈ Rn such that

∇gj(x̄)
T d < 0, ∀ j ∈ Ig(x̄),

∇ri(x̄)
T d = 0, ∀ i ∈ Ir(x̄) ∪ Irs(x̄), ∇si(x̄)

T d = 0, ∀ i ∈ Is(x̄) ∪ Irs(x̄).
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It is clear MPCC-LICQ and MPCC-MFCQ lead to the classical LICQ and MFCQ if m = 0.

As a consequence of Farkas’s Lemma, an alternative characterization of MPCC-MFCQ can be ob-

tained.

Lemma 2.1. (cf. [1]) Let x̄ ∈ M. Then MPCC-MFCQ holds at x̄ if and only if the relation

0 =
∑

j∈Ig(x̄)

µj∇gi(x̄)−
∑

i∈Ir(x̄)∪Irs(x̄)

ρi∇ri(x̄)−
∑

i∈Is(x̄)∪Irs(x̄)

σi∇si(x̄),

for µ ≥ 0 and (free) real vectors ρ, σ implies (µ, ρ, σ) = 0.

For x̄ ∈ M, we introduce the Lagrangean function (near x̄),

L(x, µ, ρ, σ) = f(x) +
∑

j∈Ig(x̄)

µjgj(x)−
∑

i∈Ir(x̄)∪Irs(x̄)

ρiri(x)−
∑

i∈Is(x̄)∪Irs(x̄)

σisi(x). (2.1)

Now, we present main stationarity concepts:

Definition 2.3. (Stationarity Concepts) Let x̄ ∈ M. Then, x̄ is called weakly stationary (W-

stationary) if there are multipliers (µ, ρ, σ) ∈ R|Ig(x̄)|+|Ir(x̄)|+|Is(x̄)| with µ ≥ 0 such that

0 = ∇f(x̄) +
∑

j∈Ig(x̄)

µj∇gj(x̄)−
∑

i∈Ir(x̄)∪Irs(x̄)

ρi∇ri(x̄)−
∑

i∈Is(x̄)∪Irs(x̄)

σi∇si(x̄).

A W-stationary point x̄ with corresponding multipliers (µ, ρ, σ) is:

(a) Clarke stationary (C-stationary) if ρiσi ≥ 0, for all i ∈ Irs(x̄).

(b) Mordukhovich stationary (M-stationary) if either ρiσi = 0 or ρi, σi > 0 holds, for all i ∈ Irs(x̄).

(c) Strongly stationary (S-stationary) if ρi, σi ≥ 0 for all i ∈ Irs(x̄).

Clearly

S-stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ W-stationarity.

It is worth to point out that the S-stationarity condition is equivalent to the standard KKT condition

applied directly to problem (1.1).

The following necessary condition holds:

Theorem 2.1. (First order necessary condition, cf. [3]) Let x̄ be a local minimiser at which

MPCC-LICQ is satisfied. Then x̄ is an S-stationary point.

3. THE SET OF FEASIBLE POINTS OF THE SCHEMES.

In this section we will analyse the properties of the sets defined by the approaches. Roughly speaking,

for each approach we perform a local analysis. We will study if, locally around a feasible solution in

which MPCC-LICQ holds, we can expect that LICQ holds at the parametric problem defined by the

approaches. Moreover, we will find a bound of the Hausdorff distance of the parametric problem and
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the set of feasible solutions. We will obtain properties Most of the latter was studied earlier for Qτ in

[2] and, as mentioned before, we will often refer to arguments and techniques used in this article.

We assume from now on that g, r, s are C1 or C2 functions.

If Ig(x̄) has q0 elements, by exchanging indices we can assume that the active constraints are the first

q0. In the case of the complementarity constraints there are some indices such that ri(x̄) = si(x̄) = 0.

Suppose |I00(x̄)| = p. Again, after some possible exchange of the indices of the functions we can

assume that ri(x̄) = si(x̄) = 0, for i = 1, . . . , p and r2i (x̄) + s2i (x̄) > 0, for i = p+ 1, . . . ,m. For those

indices, i, i > p such that 0 = si(x̄) < ri(x̄), we exchange the roles of ri and si. So, without loss of

generality (w.l.o.g.), in the sequel we assume

Ig(x̄) = {1, . . . , q0}, Irs(x̄) = {1, . . . , p}, Ir(x̄) = {p+ 1, . . . ,m}, Is(x̄) = ∅. (3.1)

We assume x̄ = 0. As in [2], recall that the MPCC-LICQ condition is satisfied at x̄, we suppose that

rank(∇x1,...xm+p+q0
(r1(x̄), . . . rm(x̄), s1(x̄), . . . sp(x̄), g1(x̄), . . . gq0(x̄)) = m+ p+ q0.

So, we can define a local diffeomorphism T : Bε(x̄) → Bδ(0), as

T (x) = (r1(x), . . . rm(x), s1(x), . . . sp(x), g1(x), . . . gq0(x), xm+p+q0 , . . . xn).

T (x) canonically transforms the feasible sets of the parametric problems for small τ ≥ 0. Hence,

locally around x̄ we can assume that

ri(x) = xi, i = 1, . . . ,m,

si(x) = xm+i, i = 1, . . . , p,

gj(x) = xm+p+j , j = 1, . . . , q0.

(3.2)

and

si(x) ≥
si(x̄)

2
> 0, i = p+ 1, . . .m, gj(x) ≤

gj(x̄)

2
< 0, j /∈ Ig(x̄). (3.3)

We refer to [2] for details. Now, we particularise these results for the different approaches.

3.1. Case Pτ

Theorem 3.1. Suppose that MPCC-LICQ is satisfied at x̄, feasible point of P, then there exists τ

and a neighborhood V of x̄ such that for all τ ∈ (0, τ) all xτ ∈ V ∩MP
τ , the LICQ holds.

Proof: As the MPCC-LICQ is fulfilled at x̄, we can use (3.2). Then, locally, the set of constraints

is described by{
xi ≥ 0, i = 1, . . . ,m, xm+i ≥ 0, i = 1, . . . , p, xm+p+i ≤ 0, i = 1, . . . , q0,∑p

i=1 xixm+i +
∑m

i=p+1 xisi(x) = τ.
(3.4)

By the continuity of the involved functions there exists a neighborhood V such that if xτ ∈ MP
τ ,

I1g (xτ ) ⊂ Ig(x̄), {i : xi = 0},⊂ Ir(x̄)∪Is(x̄). On the other hand, as
∑p

i=1 xixm+i+
∑m

i=p+1 xisi(x) = τ ,

at least one of the terms of the previous sum is non-zero. We consider two cases. If p+ 1 < i∗ ≤ m,

xi∗ ̸= 0, w.l.o.g. i∗ = m, and xi = 0, i = p+ 1, . . . ,m, The respective gradients are
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
I1r 0 0 0

0 0 I1s 0 0

0 0 0 I1g 0

⊗ sm +
∑m

i=p+1 xi
∂si
∂xm

⊗ ⊗ ⊗


T 

0|I1r 0 0 0

0 I1s 0 0

0 0 I1g 0

xm+1|0|0 ⊗ ⊗ ⊗


T

Noting that in the first case as xi → 0, we get sm +
∑m

i=p+1 xi
∂si
∂xm

̸= 0 and that in the second case∑p
i=1 xixm+i = τ . implies that at least one term is non-zero, it follows that in both cases the gradients

are linearly independent, for τ small enough. □

For the analysis of MP
τ apart from the SC-assumption the following condition will play a role.

Definition 3.1. We say that the point x̄ is a complementarity non-degenerate point, or that CND

holds at x̄, if Irs(x̄) ̸= {1, . . . ,m}, or equivalently p < m. This condition says that at least for

one i0 it holds ri0(x̄) + si0(x̄) > 0.

Now we prove the (Hölder) stability of the feasible set MP
τ near x̄ ∈ M.

Theorem 3.2. Assume that MPCC-LICQ holds at x̄ ∈ M. Then there exist ε, τ0, α, β > 0, such that

for all τ ∈ [0, τ0) the following is true: there exists xτ ∈ MP
τ ∩ Bε(x̄) satisfying ∥xτ − x̄∥ ≤ α

√
τ ,

and for any x̄τ ∈ MP
τ ∩Bε(x̄) there exists x̂τ ∈ M∩Bε(x̄) such that ∥x̄τ − x̂τ∥ ≤ β

√
τ .

If in addition CND holds at x̄, then α
√
τ can be replaced by ατ and if SC is satisfied then, we can

take βτ instead of β
√
τ .

Proof: According to the arguments given above, without loss of generality, we can assume x̄ = 0 and

that in Bε(0), for small τ ≥ 0, the feasibility condition for MP
τ is given by (3.4). In case that CND

does not hold, we can choose the element xτ with components

[xτ ]i = 0, . . . ,m− 1,m+ 1, . . . , 2m− 1, [xτ ]m = [xτ ]2m =
√
τ , [xτ ]j = 0, j = 2m+ 1, . . . , n .

Then, obviously (x̄ = 0) ∥xτ − x̄∥ =
√
2
√
τ . As usual, without loss of generality, sm(x̄) > 0.

If CND holds, we can choose xτ by

[xτ ]i = 0, i = 1, . . . ,m− 1,m+ 1, . . . , 2m, [xτ ]m =
τ

sm(x̄)
, [xτ ]j = 0, j = 2m+ 1, . . . , n ,

which satisfies ∥xτ − x̄∥ = τ
sm(x̄) = O(τ) .

To show the second relation, let x̄τ ∈ MP
τ ∩ Bε(0). The last feasibility condition in (3.4) reads∑p

i=1 xixm+i +
∑m

i=p+1 xisi(x) = τ , which implies (see (3.3))

0 ≤ min{xi, xm+i} ≤
√
τ , i = 1, . . . , p and xi ≤

2

si(x̄)
τ, i = p+ 1, . . . ,m.

Without loss of generality, we assume that [x̄τ ]i ≤
√
τ , i = 1, . . . , p, and, putting c := max{ 2

si(x̄)
, i =

p+ 1, . . . ,m}, we can choose x̂τ ∈ M as follows:

[x̂τ ]i = 0, i = 1, . . . ,m, [x̂τ ]i = [x̄τ ]i, i = m+ 1, . . . , n .
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This yields

∥x̄τ − x̂τ∥ =

√√√√ m∑
i=1

[x̄τ ]2i ≤
√

pτ + (m− p)c2τ2 = O(
√
τ) .

In case SC holds, i.e., p = 0, we, obviously, have ∥x̄τ−x̂τ∥ ≤
√
mc2τ2 = O(τ) . □

From a global viewpoint we have the following result

Theorem 3.3. Suppose that the sets MP
τ are contained in some compact set K. Then, there exists

τ such that for all τ ∈ (0, τ) the Hausdorff distance between M and MP
τ is bounded by O(

√
τ) and

the LICQ is satisfied for all xτ , feasible point of Pτ .

Proof: Suppose that M,MP
τ are subsets of a compact set X ⊂ Rn. Using compactness arguments,

Theorem 3.2. leads to a corresponding global (Hölder/Lipschitz) continuity result for MP
τ (cf., the

corresponding result for MQ
τ in [2, Lemma 4.3]). That is the Hausdorff distance between MP

τ and

M is O(
√
τ) or O(τ) if SC holds at all feasible point.

The same arguments will be used to prove the second part: for each x̄ ∈ MP
τ , take B(x̄, δx̄), the

ball centered in x̄ and radium δx̄ where the transformation (3.2) is valid as a diffeomorphism and

the LICQ holds for all x ∈ MP
τ ∩ B(x̄, δx̄), recall Theorem 3.1.. As M is a closed set included in a

compact, it is compact. So, we can take X0 a set of finitely many points x̄ such that ∪x̄∈X0B(x̄, δx̄)

covers M. Defining δ = min{δx̄, x̄ ∈ X}, it is clear that for τ small enough

dist(MP
τ ,M) = O(

√
τ) ≤ δ.

So,

MP
τ ⊂ M+B(0, δx̄) ⊂ ∪x̄∈X0B(x̄, δx̄)

and the result follows. □

Now, we prove analogous results for the other approaches. From the previous analysis, it is clear that

it is enough to show a result similar to that obtained in Theorem 3.1. and bounds of the type O(τp),

p > 0. This is the scheme we will follow from now on.

3.2. Qτ

A result analogous to Theorem 3.2. has been obtained for Qτ in [2, Lemma 4.2]. We prove now the

local fulfillment of the LICQ using the local diffeomorphism.

Theorem 3.4. Let MPCC-LICQ holds at all feasible point of P. Then, for all x̄ feasible point of P,

there exists τ and a neighborhood V of x̄ such that for all (τ, x), τ ∈ (0, τ) and xτ ∈ V ∩MQ
τ , the

LICQ holds. Moreover if the sets MQ
τ are contained in some compact set K, there exists τ such that

for all τ ∈ (0, τ) the LICQ is satisfied for all xτ , feasible point of Qτ .

Proof: Again we apply the local diffeomorphism defined in (3.2). Locally the set of feasible sets is

xixm+i = τ, i = 1, . . . , p, xp+isp+i(x) = τ, i = 1, . . . ,m− p,

xm+p+i ≥ 0, i = 1, . . . , q0, xi, xm+i ≥ 0, i = 1, . . . , p,

xp+i, sp+i(x) ≥ 0, i = 1, . . . ,m− p.

(3.5)
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Define

B(x) =


X3(x) xi∇1,...,psi(x), i = p+ 1, . . . ,m, 0

0 [xi∇p+1,...,msi(x), i = p+ 1, . . . ,m, ] + diag(sp+1(x), . . . , sm(x)) 0

X1(x) xi∇m+1,...,m+psi(x), i = p+ 1, . . . ,m, 0

0 xi∇m+p+1,...,m+p+q0si(x), i = p+ 1, . . . ,m, Iq0

0 xi∇m+p+q0+1,...,nsi(x), i = p+ 1, . . . ,m, 0

 .

Here X1(x) = diag(x1, . . . , xp), X
3(x) = diag(xm+1, . . . , xm+p) and ∇a,...,bY =

(
∂Y
∂xa

, . . . , ∂Y
∂xb

)
. As

sp+1(0), . . . , sm(0) > 0, the matrix

B0(x) = [xp+i∇p+1...msi(x), i = p+ 1, . . . ,m, ] + diag(sp+1(x), . . . , sm(x)) (3.6)

is regular for x = 0. So, after some easy algebraic manipulations, we get that B(x) has full column

rank and, therefore, LICQ holds. □

As in the case of Theorem 3.3., a global result also follows.

3.3. Case RS
τ

In this part we present analogous results for the regularisation proposed in [10]. In this case it is clear

that M ⊂ MS
τ . Again using the canonical transformation (3.2), it holds that x ∈ Bε(x̄) is a feasible

solution of RS
τ if and only if{

xi ≥ 0, i = 1, . . . ,m, xm+i ≥ 0, i = 1, . . . , p, xm+p+i ≤ 0, i = 1, . . . , q0,

xixm+i ≤ τ, i = 1, . . . , p xisi(x) ≤ τ, i = p+ 1, . . . ,m.
(3.7)

Next result shows that the elements of MS
τ are also not far from M.

Theorem 3.5. Assume that MPCC-LICQ holds at x̄ ∈ M. Then there exist ε, τ0, β > 0, such that for

all τ ∈ [0, τ0) and for any x̄τ ∈ MS
τ ∩Bε(x̄) there exists x̂τ ∈ M∩Bε(x̄) fulfilling ∥x̄τ − x̂τ∥ ≤ β

√
τ .

If in addition SC is satisfied then, β
√
τ can be replaced by βτ .

Proof: Fix x̄τ ∈ MS
τ ∩ Bε(x̄), where Bε(x̄) is a neighborhood as in Theorem 3.2.. So, we can

consider the canonical transformation and assume that for i > p, si(x) > M > 0, for all x ∈ Bε(x̄).

In particular, for every i = 1, . . . , p either xi or xm+i is smaller than or equal to
√
τ . W.l.o.g. we

assume that xi ≤
√
τ . The result follows after taking xi = 0, i = 1, . . . ,m and xi = [x̄τ ]i otherwise.

It is clear that the bound can be sharpened to O(τ) if and only if SC. □.

Remark 3.1. The local fulfillment of the LICQ was already proven in [11]. Actually an analogous

relation was established between MPCC-MFCQ and MFCQ, see [12]. We want to point out that the

local diffeomorphism (3.2) simplifies the proof of the first case.
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3.4. Case RLF
τ

Now we consider the regularisation proposed in [8]. Again M ⊂ MLF
τ . By the canonical transfor-

mation (3.2), it holds that x ∈ Bε(x̄) is a feasible solution of MLF
τ if and only if

(xi + τ)(xm+i + τ) ≥ τ2, i = 1, . . . , p, (xi + τ)(si(x) + τ) ≥ τ2, i = p+ 1, . . . ,m,

xm+p+i ≤ 0, i = 1, . . . , q0, xixm+i ≤ τ2, i = 1, . . . , p,

xisi(x) ≤ τ2, i = p+ 1, . . . ,m.

(3.8)

Theorem 3.6. Assume that MPCC-LICQ holds at x̄ ∈ M. Then there exist ε, τ0, β > 0, such that for

all τ ∈ [0, τ0) and for any x̄τ ∈ MLF
τ ∩Bε(x̄) there exists x̂τ ∈ M∩Bε(x̄) satisfying ∥x̄τ − x̂τ∥ ≤ βτ.

Proof: Take x̄τ ∈ MLF
τ ∩ Bε(x̄), where Bε(x̄) is a neighborhood as in Theorem 3.2.. This means

that the canonical transformation can be used and that for all x ∈ Bε(x̄), it holds si(x) > M > 0,

i = p+ 1, . . . ,m.

For those indices such that xisi(x) ≤ τ2, as si(x) > M , xi ≤ τ2/M ≤ τ/M .

Since for every i = 1, . . . , p, (xi + τ)(xm+i + τ) ≥ τ2 ≥ 0, either xi, xm+i ≥ −τ or xi, xm+i ≤ −τ .

In the last case, if one of the inequalities is strict, we get the contradiction xixm+i > τ2. Moreover,

xixm+i + τ(xi + xm+i) ≥ 0. So, at least one of them, xi or xm+i is non-negative. Then we consider

two cases.

If xixm+i ≥ 0 since their product is smaller than or equal to τ2 at least the modulus of one of them is

smaller than τ . Then, we assume |xi| ≤ τ, i = 1, . . . , p. The result follows after taking x̄τ ∈ M given

by (x̄τ )i = 0, i = 1, . . . ,m and (x̄τ )i = xi otherwise.

If xi < 0 ≤ xm+i since xm+i + τ > 0, we get that xi + τ ≥ 0, so 0 ≥ xi ≥ −τ . Taking x̄τ such that

(x̄τ )i = 0, i = 1, . . . ,m and (x̄τ )i = xi, otherwise; the desired bound is obtained.

Again O(τ) is the sharpest bound, τ2 can be taken if and only if SC is satified. □.

We want to point out that τ2 plays the role of τ in the other approaches. Indeed, the product of the

complementarity functions is of order τ2. If we use τ2 instead of τ in the other approaches, we get

bounds of the same order under similar conditions.

As in the case of RSτ the local fulfillment of the LICQ at the parametric problem under MPCC-LICQ

is known, see [12, Theorem 7.6]. An alternative proof based on the canonical transformation can be

found at Appendix A.

3.5. Case RK
τ

Now we study the set of feasible solutions for the regularisation proposed in [6]. By the canonical

transformation (3.2), it holds that x ∈ Bε(x̄) is a feasible solution of MK
τ if and only if{

xi, xm+i ≥ −τ, i = 1, . . . , p xi, si(x) ≥ −τ, i = p+ 1, . . . ,m. xm+p+i ≤ 0, i = 1, . . . , q0,

(xi − τ)(xm+i − τ) ≤ 0, i = 1, . . . , p (xi − τ)(si(x)− τ) ≤ 0, i = p+ 1, . . . ,m.
(3.9)

Theorem 3.7. Assume that MPCC-LICQ holds at x̄ ∈ M. Then there exists ε, τ0, α, β > 0, such

that for all τ ∈ [0, τ0) the following is true: there exists xτ ∈ MK
τ ∩Bε(x̄) satisfying ∥xτ − x̄∥ ≤ ατ,

and for any x̄τ ∈ MP
τ ∩Bε(x̄) there exists x̂τ ∈ M∩Bε(x̄) such that ∥x̄τ − x̂τ∥ ≤ βτ.
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Proof: After the canonical transformation, x̄ = 0. As in Theorem 3.2., we assume that Bε(x̄) is a

neighborhood where the canonical transformation describes the set of feasible solutions and that for

i > p, si(x) > M > 0, for all x ∈ Bε(x̄).

We take x such that xm+i = τ i = 1, . . . , p, and xi = 0, otherwise.

Since, for τ small enough τ < M , the constrains (xi−τ)(si(x)−τ) ≤ 0, xi, si(x) ≥ −τ, i = p+1, . . . ,m

are satisfied at this point. So, x ∈ Mτ as desired.

Take x ∈ MK
τ ∩Bε(x̄). For those indices such that xisi(x) ≤ τ2, as si(x) > M , we can assume that

xi ≤ τ2/M ≤ τ/M .

For the other indices, first note that for every i = 1, . . . , p, either −τ ≤ xi ≤ τ ≤ xm+i or xi ≥ τ ≥
xm+i ≥ −τ . W.l.o.g., we assume the first case holds. Then, taking x̄ such that (x̄)i = 0, i = 1, . . . ,m

and (x̄τ )i = xi, otherwise, the result follows.

□

As shown in [12], LICQ is not guaranteed. Actually, using the following example, it is clear that

if MPCC-LICQ holds and SC fails there exists for τ , small enough, a point xτ such that ri(xτ ) =

si(xτ ) = τ and, so, the constraint qualification is violated.

Example 3.1.

x1, x2 ≥ −τ, (x1 − τ)(x2 − τ) ≤ 0

The point (τ, τ) is feasible and the gradient of the active constraint, (x1 − τ)(x2 − τ) ≤ 0 is 0. □

3.6. Cases RSU
τ and RSK

τ .

For the regularisations proposed in [13, 12], we use [12, Lemma 7.15] and, applying the canonical

transformation (3.2), we obtain that if x ∈ Bε(x̄) is a feasible solution of RSU
τ , the point is included

in {
xi, xm+i ≥ 0, i = 1, . . . , p xi, si(x) ≥ 0, i = p+ 1, . . . ,m. xm+p+i ≤ 0, i = 1, . . . , q0,

xixm+i = 0 or xi + xm+i ≤ τ, i = 1, . . . , p, xisi(x) = 0 or xi + si(x) ≤ τ, i = p+ 1, . . . ,m.

(3.10)

Similarly, for regularisation (1.7) we get

{
xi, xm+i ≥ 0, i = 1, . . . , p xi, si(x) ≥ 0, i = p+ 1, . . . ,m. xm+p+i ≤ 0, i = 1, . . . , q0,

min{xi, xm+i} ≤ τ, i = 1, . . . , p, min{xi, si(x)} ≤ τ, i = p+ 1, . . . ,m.
(3.11)

for more details, see [12]. So, we have the following results.

Theorem 3.8.

M ⊂ MSU
τ , M ⊂ MSK

τ .

Assume that MPCC-LICQ holds at x̄ ∈ M. Then there exists ε, τ0, β > 0, such that for any x̄τ ∈
MSU

τ ∩Bε(x̄) there exists x̂τ ∈ M∩Bε(x̄) satisfying ∥x̄τ − x̂τ∥ ≤ βτ. If in addition SC holds at x̄,

then, in both bounds τ can be replaced by τ2
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Proof: The first part is clear.

After the canonical transformation, x̄ = 0. As in Theorem 3.2., we assume that Bε(x̄) is a neighbor-

hood where the canonical transformation describes the set of feasible solutions and that for i > p,

si(x) > M > 0, for all x ∈ Bε(x̄). For regularisation (1.7), consider an element of the set de-

scribed at (3.10). In particular, for those indices such that i = p + 1, . . . ,m, as si(x̄τ ) > M , for τ

small enough (x̄τ )i = 0. If i = 1, . . . , p either (x̄τ )i, (x̄τ )m+i are non-negative and complement or

(x̄τ )i + (x̄τ )m+i ≤ τ, (x̄τ )i, (x̄τ )m+i ≥ 0.

W.l.o.g. we assume that (x̄τ )i ≤ τ/2 and take x such that x̄i = 0 i = 1, . . . ,m and x̄m+i = (x̄τ )m+i

otherwise. So, the result follows.

For the regularisation (1.8), the result is analogous, we only need to recall that, w.l.o.g., (x̄τ )i ≤
(x̄τ )m+i.

Again it is the sharpest bound, τ2 can be taken if and only if SC is satisfied.

As before, the global bound holds can be found under the compactness assumption. □.

After this analysis it is clear that the Hausdorff distance of the set of feasible solutions of the parametric

problem and of the P have the same order under similar conditions. However, LICQ is not fulfilled

in the last three cases, as has been remarked in [12].

4. THE SET OF SOLUTIONS OF P AND THE PARAMETRIC APPROACHES

In this part we study the set of solutions. We consider the g.c. points as solutions concepts. By g.c.

points we understand feasible solutions such that the gradient of the objective functions, the (classical)

equality constraints( i.e. ri(x)si(x) = 0 are not considered) and the active inequalities are linearly

dependent. Non-degeneracy is related with the non-singularity of the matrix of the derivatives of the

system describing the linear dependency.

At the g.c. points of regular MPCC, MPCC-LICQ, MPCC-SC and MPCC-SOC are fulfilled. In this

section we will study the consequences of these properties to the parametric problems Pτ ,Qτ , RS
τ ,

RLF
τ , RK

τ , RSU
τ , RSK

τ . Roughly speaking, we will analyse if the critical points of the corresponding

problems are non-degenerated and we will provide bounds to the Hausdorff distance of the set of

critical points of Pτ ,Qτ ,RS
τ ,RLF

τ ,RK
τ ,RSU

τ ,RSK
τ and P. For a unified notation we define ΦA(P )

as the set of solutions of type A of problem P . Here A may represent minimizers, local minimizers,

critical points and g.c. points.

As the MPCC-LICQ holds, we apply the canonical transformation (3.2) and w.l.o.g. we assume that

the solution is 0. As before, we consider the partition x1 = (x1, . . . xp), x2 = (xp+1, . . . xm), x3 =

(xm+1, . . . xm+p), x4 = (xm+p+1, . . . xm+p+q0), x5 = (xm+p+1, . . . xn). The g.c. condition implies

∇f(0) = (ρ1, ρ2, σ1,−µ, 0). By the MPCC-SC, all the components of (ρ1, σ1, µ) are non-zero. In

particular, close to 0, ∇f(x) = (ρ1, ρ2, σ1,−µ, 0) + q(x) where q(x) = O(∥x∥), see [2]. Vector q(x) is

also divided in (q1(x), . . . , q5(x)), where qi(x) = ∇xif(x)−∇xif(0). As MPCC-SOC holds, as in [2,

Theorem 5.1.], it is easy to prove that ∇x5q
T
5 (0) is non-singular.
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4.1. Problem Pτ

From Theorem 3.1., it is known that for τ > 0 small enough, the solutions of problem Pτ are critical

points, i.e., LICQ holds. However we cannot guarantee that non-degeneracy holds. In fact, the

following example shows that SC fails for Pτ even if the problem is regular.

Example 4.1. Using the canonical transformation suppose that locally,

P : minx1 + x2 s.t. 0 ≤ x1⊥1− x2 ≥ 0, 0 ≤ x2⊥1 + x1 ≥ 0.

The point x̄ = (0, 0) is a minimiser of P (of order one) with corresponding multipliers γ1 = γ2 = 1.

So, MPCC-SC and MPCC-SOC holds (the latter holds trivially since Tx̄M = {0}). The minimisers

of Pτ are xτ = α(0, τ) + (1− α)(τ, 0), α ∈ [0, 1]. Hence, they are degenerated.

Note that x̄τ = (τ, τ), the minimisers of Qτ are non-degenerate critical points, for τ > 0. □

Nevertheless, next result shows that g.c. points of Pτ are not far from critical points of P and

vice-versa.

Theorem 4.1. Let x be a stationary point of P such that MPCC-LICQ , MPCC-SC and MPCC-SOC

holds. Then

- If x is a C-stationary point and I00(x) = {1, . . . ,m}, then for all τ > 0 (small enough), there exists

xτ a stationary point of Pτ such that ∥xτ − x∥ = O(
√
τ).

- If x is a S-stationary point and I00(x) ̸= {1, . . . ,m}, then for all τ > 0 (small enough), there exists

xτ a stationary point of Pτ such that ∥xτ − x∥ = O(τ).

Proof: The proof is done by construction. Again using the canonical transformation it is clear that

as 0 is a C-stationary point, we get that ρ1σ1 ≥ 0, µ ≥ 0. By the MPCC-SC, the inequality is strict.

The point xτ shall fulfill for some multipliers (a, ρ1, ρ2, σ, µ)τ the following system that describes the

condition of been a critical point of Pτ :
ρ1

ρ2

σ1

−µ

0

+ qT (x) + aτ


(x3)τ +

∑m
i=p+1(x2)τ∇x1

si

[sp+1, . . . , sm]T +
∑m

i=p+1(x2)τ∇x2
si

(x1)τ +
∑m

i=p+1(x2)τ∇x3
si

⊗
⊗

−


(ρ1)τ/0

(ρ2)τ/0

(σ1)τ/0

−µτ/0

0

 = 0 (4.1)

We will analyse the two cases:

Case p = m and x is a C-Stationary point: Since xT
1 x3 = τ , there exists i such that x1,ix3,i ̸= 0.

W.l.o.g. we assume that i = m. Define (c, d) as ρ1,m + qm(x) = c, σ1,m + q2m(x) = d.

The MPCC-SC, MPCC-LICQ hold, and x is a C-stationary point, so, ρ1,mσ1,m > 0. As q(x) =

O(∥x∥), reducing the neighborhood such that ∥x∥ is small enough, we can guarantee that c and d

have the same sign.

Now we define aτ =
√

cd
τ , (x1)τ =

(
0, . . . , 0,

√
cτ
d

)
, (x1)τ =

(
0, . . . , 0,

√
dτ
c

)
, and (x2)τ = 0, (x4)τ =

0, (x5)τ = 0.
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The multipliers are (ρ1,1,...,m−1)τ = ρ1,1,...,m−1+q1,1,...,m−1(xτ ), (σ1,1,...,m−1)τ = σ1,1,...,m−1+q2,1,...,m−1(xτ ),

µ+ q3(xτ ) = µτ . Combining the definition of C-stationary points, and the fulfillment of the MPCC-

LICQ and MPCC-SC, we obtain that ρ1, σ1, µ > 0. As ∥xτ∥ = O(
√
τ), q(xτ ) = O(∥x∥) = O(

√
τ),

(ρ1, σ1, µ)τ > 0. So, xτ is the desired stationary point.

Case p < m and x is a M-Stationary point: We will prove that there exists a vector (x2,m, x5) ∈
R×Rn−m−p−q0 such that the feasible solution xτ = (x1, x2, x3, x4, x5)τ = (0, (0, . . . , 0, x2,m), 0, 0, x5),

solves system (4.1) for suitable multipliers. Indeed, if x1 = x3 = 0, x2 = (0, . . . , 0, x2,m), x4 = 0, the

conditions reads
ρ1

ρ2

σ1

−µ

0

+ qT (x) + aτ


x2,m∇x1

sm

[sp+1, . . . , sm]T + x2,m∇x2
sm

x2,m∇x3
sm

x2,m∇x4
sm

x2,m∇x5
sm

−


(ρ1)τ

(ρ2)τ/0

(σ1)τ

−µτ

0

 = 0 (4.2)

It is clear that as sm(x) is continuous near to 0, sm(x) > M > 0 and x2,m = τ/sm(x) is O(τ). So, aτ

is well defined as aτ = − ρ2,m+q2,m(x)

sm+x2,m
∂sm(x)
∂x2,m

. Furthermore

qT5 (xτ )− ρ2,m+q2,m(x)

sm+x2,m
∂sm(x)
∂x2,m

x2,m∇x5
sm(xτ ) = 0

x2,msm(0, (0, . . . , 0, x2,m), 0, 0, x5) = τ
(4.3)

Derivating with respect to (x2,m, x5) and evaluating at 0 we obtain the full row rank matrix

⊗ ∇x5
q(0)

sm(0, (0, . . . , 0, x2,m), 0, 0, x5) 0

So, we can apply the Implicit Function Theorem and obtain, for all τ small enough, the existence of

(x2,m, x5)τ = O(τ) solution of (4.3).

Now, given xτ , the multipliers are computed as follows

(ρ1)τ = [ρ1 + q1(x)]−
ρ2,m + q2,m(x)

sm + x2,m
∂sm(x)
∂x2,m

x2,m∇x1sm

(ρ2)τ = [ρ2,p+1,...,m−1 + q2,p+1,...,m−1(x)]−
ρ2,m + q2,m(x)

sm + x2,m
∂sm(x)
∂x2,m

x2,m∇x2,p+1,...,m−1
sm

(ρ3)τ = [σ1 + q3(x)]−
ρ2,m + q2,m(x)

sm + x2,m
∂sm(x)
∂x2,m

x2,m∇x3sm

µτ = [µ− q4(x)] +
ρ2,m + q2,m(x)

sm + x2,m
∂sm(x)
∂x2,m

x2,m∇x4
sm

As the MPCC-SC holds, q(x) = O(τ), and x is a S-stationary point, it is clear that (ρ1, ρ2, σ1, µ)τ > 0.

So, xτ shows the existence of the desired stationary point of P for τ small enough. □

Now we prove an analogous results for generalized critical points.
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Theorem 4.2. Let x be a g.c. point of P such that MPCC-LICQ , MPCC-SC and MPCC-SOC holds.

Then for all τ > 0 (small enough), and all xτ g.c. point of Pτ (near x) it holds that ∥xτ−x∥ = O(
√
τ).

Proof: It is clear, recall Theorem 3.1., that the gradients of the active constraints are l.i. So, the g.c.

points of Pτ are critical point of the parametric problem and satisfy the system. On the other hand,

since
p∑

i=1

xτ,ixm+i,τ +

m∑
i=p+1

xi,τsi(xτ ) = τ , (4.4)

there exists i such that either (x1)
i
τ , (x3)

i
τ ̸= 0 or (x2)

τ
i ̸= 0. Moreover, as (x1)

i
τ (x3)

i
τ ≤ τ, either

(x1)
i
τ or (x3)

i
τ = O(

√
τ). Similarly as si(x) > m > 0 in a neighborhood of 0, (x2)

i
τ = O(τ). From

(4.4) it also follows that there are two cases: either (x2)τ ̸= 0 or (x2)τ = 0 and there exists i∗:

(x1,i∗)τ , (x3,i∗)τ ̸= 0. Now, suppose the first case is true, w.l.o.g. we assume that (x2,m)τ ̸= 0.

Hence,

ρ2,m +O(∥x∥) + aτ [sm +

m∑
i=p+1

(x2)τ∇x2,m
si] = 0

In particular aτ is bounded. By the MPCC-SC µ, ρ1, σ1 ̸= 0. After a suitable shrink of the neighbor-

hood of x̄, we can assume that

−|(µ/2)i| < q4(x) + [aτ [(

m∑
j=p+1

(x2)τ∇x4
sj ]i < |(µ/2)i|.

So, µ+q4(x)+aτ [+
∑m

j=p+1(x2)τ∇x4
sj ]]i ̸= 0. In particular, µ+q4(x)+aτ [+

∑m
j=p+1(x2)τ∇x4

sj ]]i ̸= 0.

Hence, −µτ ̸= 0 and (x4)τ = 0, for τ small enough.

Analogously, we prove that −|(ρ1/2)i| < q1(x) + [aτ [(x3)τ +
∑m

j=p+1(x2)τ∇x1
sj ]i < |(ρ1/2)i| and

−|(σ1/2)i| < q3(x) + [aτ [(x1)τ +
∑m

j=p+1(x2)τ∇x3
sj ]i < |(σ1/2)i|. So, (ρ1)τ , (σ1)τ ̸= 0, component-

wise. Then, (x1)τ = (x3)τ = 0. Therefore, ρ2 + a(sp+1, . . . , sm) + (ρ2,τ/0) = 0. So, xτ fulfills that

(x1, x3, x4)τ = 0, x2 = O(τ) and

q5(xτ ) + aτ (

m∑
i=p+l+1

(x2)τ∇x5
si((0, x2, 0, 0, x5)τ ) = 0 (4.5)

At (x5, τ) = 0, the system has a solution. Taking derivatives with respect to x5 we get, ∇x5
q5(0). By

the MPCC-SOC, this matrix is non-singular. Using the Implicit Function Theorem, for all (aτ , x2, τ)

close to (a, 0, 0) the solutions of (4.5) are O(τ), recall aτ → a, τ → 0.

So, the solutions of the system (4.1) with (x2)τ ̸= 0 satisfies xτ = (0, O(τ), 0, 0, O(τ)).

Now, we consider the case (x2)τ = 0 and (x1,p)τ , (x3,p)τ ̸= 0. System (4.1) reads
ρ1

ρ2

σ1

−µ

0

+ qT (x) + aτ


(x3)τ

[sp+1, . . . , sm]T

(x1)τ

0

0

−


(ρ1)τ/0

0

(σ1)τ/0

−µτ/0

0

 = 0 (4.6)

220



As q(x) = O(∥x∥), and xi ̸= 0 it is clear that aτ is bounded. Moreover, we can assume that the

neighborhood of xτ is such that

−|ρ1,i/2| < q1,i(x) < |ρ1,i/2|, −|σ1,i/2| < q3,i(x) < |σ1,i/2|, −|µi/2| < q4,i(x) < |µi/2|.

By the MPCC-SC ρ1, σ1, µ ̸= 0 component-wise. Using the previous inequalities all the components of

(ρ1, σ1, µ) + (q1(x), q3(x), q4(x)) are non-zero. In particular, µτ ̸= 0 component-wise. Hence, x4 = 0.

On the other hand

(ρ1,p)τ + q1(xτ ) + aτ (x3,p)τ = 0.

(σ1,p)τ + q3(xτ ) + aτ (x1,p)τ = 0.

As already noticed, either (x1,p)τ = O(
√
τ) or (x3,p)τ = O(

√
τ). W.l.o.g. we assume that the first

case holds. Then, as (ρ1,p, σ1,p) ̸= 0, aτO(
√
τ) = −ρ1,p − q1,p(xτ ) is bounded. So,

aτ = 1/O(
√
τ).

Using this fact, we obtain that also (x3,p)τ = O(
√
τ). Furthermore, noting that ρ2 + q2(x) and si(x),

i = p + 1, . . . ,m are bounded, it is clear that the growth of aτ implies that p = m. For the other

indices we have the following options:

Case 1 x1,i = 0, x3,i = 0.

Case 2 x1,i = 0, x3,i > 0 or x3,i = 0, x1,i > 0: Then at system (4.6) σ1,i + q(x) = 0. This is impossible

at the considered neighborhood.

Case 3 x1,i > 0, x3,i > 0: Analogous to the case i = p, x1,i = O(
√
τ), x3,i = O(

√
τ).

So, either x1,i = 0 = x3,i = 0 or x1,i, x3,i = O(
√
τ). As the critical point condition reads q5(xτ ) = 0,

using again that MPCC-SOC holds and the Implicit Function Theorem, the only possible solutions

fulfill that (x5)τ = O(∥(x1, x2, x3, x4)τ∥) = O(
√
τ). So, ∥xτ∥ ≤ O(

√
τ) at all point that solves system

(4.1).□

4.2. Problem Qτ

Analogously, for this approach, the following result can be proven

Theorem 4.3. Let x be a g.c. point of P such that MCPC-LICQ , MPCC-SC and MPCC-SOC

holds. Then for all τ > 0 (small enough) the g.c. points of xτ of Qτ (near x) are non-degenerated

critical points uniquely determined and satisfy ∥xτ − x∥ = O(
√
τ).

Proof: For the uniqueness and the rate of convergence, see [2]. We only need to prove the non-

degeneracy of xτ critical point of the non-linear program Qτ . Here we only sketch the proof. The

involved algebraic work can be found in Appendix B. Consider the canonical representation of the
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system (3.5). The g.c. point condition at Pτ is

∇f(xk) +


X3(xk)

0

X1(xk)

0

0

µk
1 +


0

0

0

eye(q0, Ig(xkk))

0

λk+


xk
i∇1,...,psi(x

k), i = p+ 1, . . . ,m

B0(x
k)

xk
i∇m+1,...,m+psi(x

k), i = p+ 1, . . . ,m,

xk
i∇m+p+1,...,m+p+q0si(x

k), i = p+ 1, . . . ,m

xk
p+i∇m+p+q0+1,...,nsi(x

k), i = p+ 1, . . . ,m

µk
2 = 0.

Here X3(xk) = diag(xk
m+1, . . . , xm+p), X

1(xk) = diag(xk
1 , . . . , xp), B0(xk) is defined as in (3.6) and

eye(q0, Ig(xk)) denotes the columns of the q0-dimensional unit matrix whose indices belong to Ig(x
k).

Note that, due to the non-singularity of B0(x
k) and continuity arguments, it follows that x is a

MPCC-critical point, Ig(x̄) = Ig(xk) and SC holds at xk for k large. The SOC follows from assuming

the contrary and obtaining a contradiction with the MPCC-SOC.

For the global bound, consider the open covering given by the diffeomorphism. Taking, by the com-

pactness a finite sub-covering, the result follows. □

4.3. Problem RS
τ

For the non-degenerancy, the following example shows that the parametric problem does not inherit

this property from MPCC as in the previous case.

Example 4.2.

minx1 + x2 + x2
3

s.t. 0 ≤ x1⊥x2 ≥ 0, 0 ≤ x3⊥(1 + x2) ≥ 0.

0 is a non degenerated critical point in the MPCC-sense. It is also a critical point of RS
τ for all τ > 0

such that the multiplier of the inequality x3 ≥ 0 is 0. So, the SC for nonlinear program is violated.

With respect to the distance between of the g.c. points of the respective problems let us consider

the g.c. points condition for RS
τ . As before, we consider the canonical representation given in (3.7).

Assuming, again w.l.o.g., that the the index are regrouped in such a way that (x1,i)τ (x3,i)τ = τ, i =

1, . . . , p1 and (x2,i)τs(xτ ) = τ, i = p+ 1, . . . , p+ p2
ρ1

ρ2

σ1

−µ

0

+ qT (xτ ) +


(X3(xτ )/0)

0

(X1(xτ )/0/0)

0

0

µτ
1 −


(0/ρτ1)

0

(0/στ
1 )

0

0

+


0

0

0

eye(q0, Ig(xτ ))

0

λτ+
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
(xi)τ∇1,...,psi(xτ ), i = p+ 1, . . . , p2

B0(xτ )

(xi)τ∇m+1,...,m+psi(xτ ), i = p+ 1, . . . , p2

(xi)τ∇m+p+1,...,m+p+q0si(xτ ), i = p+ 1, . . . , p2

(xp+i)τ∇m+p+q0+1,...,nsi(xτ ), i = p+ 1, . . . , p2

 (µ2)τ = 0.

(x1)τ (ρ1)τ = 0, (x3)τ (σ1)τ = 0, (x2)τ (ρ2)τ = 0.

Following the ideas of Theorem 4.1., we can assume that x2 = O(τ) and the previous condition reads


ρ1

ρ2

σ1

−µ

0

+O(τ) +


(X3(xτ )/0)

0

(X1(xτ )/0)

0

0

µτ
1 −


(0/ρτ1)

0

(0/στ
1 )

0

0

+


0

0

0

eye(q0, Ig(xτ ))

0

λτ +


O(τ)

B0(xτ )(µ2)τ

O(τ)

O(τ)

O(τ)

 = 0.

Furthermore by the MPCC-SC, µ ̸= 0 and ρ1,i, σ1,i ̸= 0. Hence, (x4)τ = 0 and either (x1,i)τ , (x3,i)τ =

τ or (x1,i)τ = (x3,i)τ = 0. For the first case
√

ρ1,iσ1,i/τ = µ1,i. In particular it is only possible if

ρ1,i and σ1,i have the same sign. So, x1, x3 = O(
√
τ). By the MPCC-SOC, ∇x5q(0) is regular. Using

the same arguments of Theorem 4.1. based on the Implicit Function Theorem at the g.c. points also,

x5 = O(
√
τ). We have proven the following result

Theorem 4.4. Let x be a g.c. point of P such that MCPC-LICQ , MPCC-SC and MPCC-SOC holds.

Then for all τ > 0 (small enough) the g.c. points of xτ of RS
τ (near x) satisfy ∥xτ − x∥ = O(

√
τ).

4.4. Problem RLF
τ

For this problem we have the following result

Theorem 4.5. Let x be a g.c. point of P such that MPCC-LICQ , MPCC-SC and MPCC-SOC holds.

Then for all τ > 0 (small enough) the g.c. points of xτ of RS
τ (near x) satisfy ∥xτ − x∥ = O(τ).

Proof: Using the ideas of the proof of the previous theorem we get that the g.c. point condition is


ρ1

ρ2

σ1

−µ

0

+O(τ) +



X3
1 (x) + τI ⊗ 0 0 ⊗

0 ⊗ 0 X3
2 (x) ⊗

0 S1 + τI +⊗ 0 0 ⊗
0 ⊗ 0 0 S2 +⊗

X1
1 (x) + τI ⊗ 0 0 ⊗

0 ⊗ 0 X1
2 (x) ⊗

0 ⊗ Iq0 0 ⊗
0 ⊗ 0 0 ⊗




ρ1τ

ρ2τ

σ1
τ

σ2
τ

µτ

 = 0.

and that the expressions ⊗ = xi∇si are O(τ)∇si. As in the previous cases, by the MPCC-SC, x4 = 0

and either (xi + τ)(xm+i + τ) = τ2 or xixm+i = τ2, i = 1, . . . , p. As both terms, (xi + τ) and
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(xm+i + τ) in the first case and xi and xm+i in the second shall have the same order, it follows that

(xi + τ), (xm+i + τ), xi, xm+i = O(τ). This implies that x1, x2, x3, x4 = O(τ). The relation x5 = O(τ)

is obtained after the MPCC-SOC. □

As in the previous case the non-degeneracy of the MPCC-model does not imply the degeneracy of the

solutions of RLF
τ as it is shown in the next example

Example 4.3. Let us consider the problem that locally corresponds with

minx1 + x3 s.t. 0 ≤ x1⊥x3 ≥ 0 0 ≤ x2⊥(x2
1 + 1) ≥ 0.

x = 0 is its unique solution and it is, evidently, non degenerated.

The parametric problem is

minx1 + x3

s.t. x1x3 ≤ τ2, (x1 + τ)(x3 + τ) ≥ τ2,

x2(x
2
1 + 1) ≤ τ2, (x2 + τ)(x2

1 + 1 + τ) ≥ τ2.

x = (0, τ2, 0) is a critical point and SC fails □.

4.5. Problem RK
τ

We have already remarked that the LICQ does not hold in this case. So, we can not expect non-

degenerancy. We consider the concept of g.c. points as a condition the minimal solutions satisfy

because at minimizers in which the LICQ fails are critical points.

We suppose that xτ is close to a critical point point x̄.

In the first case, w.l.o.g., we assume that x̄ = 0 and, after rearranging conveniently the indices, we take

the following partition (x1,i)τ = −τ, (x3,i)τ = τ, i = 1, . . . , p1, (x1,p1+i)τ = −τ, (x3,p1+i)τ ̸= τ i =

1, . . . , p2, (x1,p1+p2+i)τ = τ, (x1,p1+p2+i)τ /∈ {τ,−τ}, i = 1, . . . , p3, (x3,p1+p2+p3+i)τ = τ i = 1, . . . , p4,

(x2,p+i)τ = −τ, i = 1, . . . , p5 and (x2,p+p5+i)τ = τ, i = 1, . . . , p6. The critical point condition reads
ρ1

ρ2

σ1

−µ

0

+O(τ) +



(−Ip1+p2
|0|0)T (0|X3 − τ |0)T 0 0 0

0 0 (−Ip5
|0)T (0|s2 − τ)T 0

0
X1

1−τ
0 |0| 0

X2
1−τ

0 0 0

0 0 0 0 I
0

0 0 0 0 0




ρ1τ

ρ2τ

σ1
τ

σ2
τ

µτ

 = 0.

Here X1
1 −τ ,X2

1 −τ , X3−τ represent the diagonal matrices defined by the vectors x1,i−τ, i = 1, . . . p1,

x1,p1+p2+p3+i − τ, i = 1, . . . , p4 x3,i − τ, i = p1 + p2 + 1, . . . , p1 + p2 + p3 + p4 and s2 − τ , is similarly

constructed using the vector s2,i(x)− τ, i = p+p5+1, . . . , p+p5+p6. By the feasibility x2 ∈ [τ, τ/C]

where C > 0 is a lower bound of si(x) for i = p+ 1, . . . ,m. The fulfillment of the MPCC-SC implies

that p1 + p2 = p, p2 = p3 = 0 and x4 = 0. In particular, x1, x3 ∈ {τ,−τ}p. By the MPCC-SOC

x5 = O(τ). So,

∥xτ − x̄∥ ≤ O(τ).
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If the LICQ fails there exists and index i such that x1.i = x3,i = τ . In particular the direction

d = −e3,i is feasible and as ∂f(xτ )
∂x3,i

= σ3,i +O(τ) > 0, for τ small enough, d is a descent direction. So,

xτ can not be a stationary point or a local minimizer.

We have the following result

Theorem 4.6. Let x̄ be a g.c. point of P such that MPCC-LICQ , MPCC-SC and MPCC-SOC

holds. Then for all τ > 0 (small enough) there are no local minimizers of Pτ . Moreover the set of g.c.

points of RK
τ xτ (near x̄) is not empty and for all g.c. point xτ it holds ∥xτ − x̄∥ = O(τ).

4.6. Problems RSU
τ and RSK

τ

Although LICQ fails at the parametric problems, for the critical points we have the following result

Theorem 4.7. Given x̄ a non-degenerated critical point of MPCC. Then locally around x̄, the Haus-

dorff distance between the sets of critical points of RSU
τ (resp. RSK

τ ) and P is bounded by O(τ)

Proof: It is clear that critical points of P are also critical solutions of RSU
τ and RSK

τ .

For the first approach, as already noticed in Section 3., ri(x) + si(x) ≤ ϕSU (ri(x) − si(x); τ) implies

ri(x) + si(x) ≤ τ or ri(x)si(x) = 0. si(x) > 0, i = p + 1, . . . ,m and locally si(x) > M > τ , for

τ small enough. We use the local dipheomorphism, see (3.2). As si(xτ ) > M > τ , for τ large

enough, xi,2(xτ ) + si(xτ ) > τ and, therefore, xi,2(xτ )si(xτ ) = 0 As a consequence x2 = 0 and

xi,2(xτ ) + si(xτ )− ϕ(si,2 − xi,2) = 0.

Similarly ((x1,i)τ > τ) if and only if (xi,3)τ = 0. Analogously (x3,i)τ > τ implies (x1,i)τ = 0. For

simplicity we suppose x1,i ≤ x3,i Suppose we have the following partition x3,i ≥ τ, i = 1, . . . p1,

τ > x3,i ≥ x1,i > 0, i = p1 + 1, . . . p1 + p2, τ > x3,i > x1,i = 0, i = p1 + p2 + 1, . . . p1 + p2 + p3,

x3,i = x1,i = 0, i = p1 + p2 + p3 + 1, . . . p. Then the critical point condition is


ρ1
ρ2
σ1
−µ

0

 + O(τ) −



Ip1 0 0

0 0 0

0 Ip3 0

0 0 Ip−p1−p2−p3
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



ρ
1
τ −



0

0

0

0

ρ2τ
0

0

0

0

0

0



−



0

0

0

0

0

0

0

0

σ2
τ
0

0



+



0

0

0

0

0

0

0

0

0

µτ

0



+



2Ip1 0 0

0 ⊗ 0

0 0 0

0 0 0

0 0 2Im−p
0 0 0

0 ⊗ 0

0 0 0

0 0 0

0 0 0

0 0 0



aτ

bτ

cτ

 = 0

As, by the MPCC-SC, all the components of σ1 ̸= 0, p1 = p3 = 0 and x4 = 0. So, for each i

τ > x3,i ≥ x1,i > 0 or x3,i = x1,i = 0. As x2, x4 = 0, we have that (x1, . . . , x4) = O(τ). By the

MPCC-SOC, also x5 = O(τ).

For the second approach we have, for each i = 1, . . . , p, the following possible six sets of active indices

related to the complementarity constraints:

x1,i = x3,i = 0, ϕSK(x1,i, x3,i, τ) < 0,

x3,i > x1,i = 0, ϕSK(x1,i, x3,i, τ) < 0,

x3,i ≥ x1,i = τ ,ϕSK(x1,i, x3,i, τ) = 0.

si > M > 2τ , for τ small enough x2,i = 0, ϕSK(x1,i, x3,i, τ) < 0.

si > M > 2τ , for τ small enough x2,i = τ , ϕSK(x1,i, x3,i, τ) = 0.

si > M > 2τ , for τ small enough x2,i ∈ (0, τ), ϕSK(x1,i, x3,i, τ) < 0.
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Without loss of generality we assume that x1,i = x3,i = 0, i = 1, . . . , p1, x1,i = 0, x3,i > 0, i =

p1, . . . , p1 + p2, x1,i = τ, x3,i > τ, i = p1 + p2, . . . , p1 + p2 + p3 ≤ p, x2,i = 0, i = p + 1, . . . , p + p4,

x2,i = τ, i = p+ p4, . . . , p+ p4 + p5, and x4,i = 0, i = m+ p+ 1, . . . ,m+ p+ p5.

Considering these sets, the critical points satisfy the system:


ρ1
ρ2
σ1
−µ

0

 + O(τ) −



Ip1+p2
0 0 0

0 0 0 0

0 0 0 0

0 Ip4
0 0

0 0 0 0

0 0 0 0

0 0 Ip1
0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ip5
0 0 0 0

0 0 0 0




ρ1τ
ρ2τ
σ1
τ

µ1
τ

 +



0 0

(x3,i)τ − τ 0

0 0

0 0

0 si(xτ ) − τ

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0



(
aτ

bτ

)
= 0

Again, by yhe MPCC-SC, p1 + p2 + p3 = p1 = p, p4 = q0. So, x4 = 0 and, for each i = 1, . . . p,

x1,i = x3,i = 0. As x2,i = O(τ), by the MPCC-SOC and the Implicit Function Theorem x5 = O(τ).

So, all critical point of the parametric problem close to x̄ are in B(x̄, O(τ) as desired. □

5. CONCLUSIONS

A first result shows that the (Hausdorff) distance between the feasible sets of Pτ ,Qτ ,RS
τ and P is

bounded by O(
√
τ) for τ → 0. Error bounds of the same order are also obtained for the set of the

local minimizers. In the case of RLF
τ , RK

τ , RSU
τ and RSK

τ , the order is O(τ). It is important to

realize that in the these regularisations, τ2 is used to bound the complementarity constraints. So, a

similar rate of convergence was obtained in all cases.

For the smoothing approach defined by Pτ the g.c. points can be degenerated, even if at the original

problem MPCC-LICQ, MPCC-SC and MPCC-SOC hold . In the considered regularisation approaches

either LICQ or SC fails. From a numerical viewpoint non-degenarancy is an important advantage

because matrices of the system defined by Newton type algorithems will be non-singular. So, from

this point of view Qτ has an important advantage.

In the second part of this paper we will complete this study. We will obtain the types of points that

can be obtained as limits of the critical points of the parametric problems defined by the corresponding

schemes near τ = 0. From a global viewpoint we will obtain which kind of solutions may appear in

the generic case. In particular if they are critical points of P and M and the set of feasible solutions

of the parametric problems are compact, we can extend the results shown in Section 4. and provide

global bounds for the Hausdorff distance of the set of g.c. points.
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A ALTERNATIVE PROOF OF THEOREM 7.6, [12]

Theorem A1. Let MPCC-LICQ holds at all feasible point of P. Then, for all x̄ feasible point of P,

there exists τ and a neighborhood V of x̄ such that for all τ ∈ (0, τ) and xτ ∈ V ∩ RLF
τ , the LICQ

holds. Moreover if the sets RLF
τ are contained in some compact set K, there exists τ such that for all

τ ∈ (0, τ) the LICQ is satisfied for all xτ , feasible point of RLF
τ .

Proof: First we shall note that for τ > 0 at most one of the following pair of constraints can be active

(xi + τ)(xm+i + τ) = τ2 or xixm+i = τ2. Analogously, (xi + τ)(si(x) + τ) ≥ τ2 and xisi(x) ≤ τ2

cannot be active simultaneously. Rearranging the index we suppose that (xi + τ)(xm+i + τ) = τ2, i =

1, . . . , p1, xixm+i = τ2, i = p1 + 1, . . . , p2 ≤ p, (xi + τ)(si(x) + τ) ≥ τ2, i = p + 1, . . . , p3 and

xisi(x) ≤ τ2, i = p3 + 1, . . . , p4 ≤ m. We use the following notation X1
1 (x) = diag(x1, . . . , xp1),

X1
2 (x) = diag(xp1+1, . . . , xp2), X

3
1 (x) = diag(xm+1, . . . , xm+p1), X

3
2 (x) = diag(xm+p1+1, . . . , xm+p2),

S1(x) = diag(sp+1(x), . . . , sm+p3(x)), and S2(x) = diag(sm+p1+1(x), . . . , xm+p4(x)). Here ⊗ is a

matrix whose columns are xi∇xI
si, i = p+ 1, . . . ,m, for a suitable indices set I.

The gradients are

B =

X3
1 (x) + τI ⊗ 0 0 ⊗

0 ⊗ 0 X3
2 (x) ⊗

0 S1 + τI +⊗ 0 0 ⊗
0 ⊗ 0 0 S2 +⊗

X1
1 (x) + τI ⊗ 0 0 ⊗

0 ⊗ 0 X1
2 (x) ⊗

0 ⊗ Iq0 0 ⊗
0 ⊗ 0 0 ⊗

As in the proof of Theorem 3.6., si(x) > M > 0. So, S1, S2 are diagonal matrices whose elements

are larger than M . As ⊗ = O(τ), it follows that the matrix

(
S1 + τI +⊗ ⊗

⊗ S2 +⊗

)
is non singular.

From this fact, the result easily follows.

The second part is a consequence of the first part and Theorem 3.6.□.

B PROOF OF THEOREM 4.3.

Consider the canonical representation of the system (3.5). The g.c. point condition at Pτ is

∇f(xk) +


X3(xk)

0

X1(xk)

0

0

µk
1 +


0

0

0

eye(q0, Ig(xkk))

0

λk+
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
xk
i∇1,...,psi(x

k), i = p+ 1, . . . ,m

B0(x
k)

xk
i∇m+1,...,m+psi(x

k), i = p+ 1, . . . ,m,

xk
i∇m+p+1,...,m+p+q0si(x

k), i = p+ 1, . . . ,m

xk
p+i∇m+p+q0+1,...,nsi(x

k), i = p+ 1, . . . ,m

µk
2 = 0.

Here X3(xk) = diag(xk
m+1, . . . , xm+p), X

1(xk) = diag(xk
1 , . . . , xp), B0(xk) is defined as in (3.6) and

eye(q0, Ig(xk)) denotes the columns of the q0-dimensional unit matrix whose indices belong to Ig(x
k).

Note that, due to the non-singularity of B0(x
k), the multiplier µk

2 is well-defined. Moreover, by the

continuity of the involved functions, µk
2 converges and we can define

µ = lim
k→∞

diag(sp+1(x
k), . . . , sm(xk))µk

2 .

Analogously, it can be seen that

X3(xk)µk
1 → γ,

X1(xk)µk
1 → ν,

(B1)

and λk → λ. As xk
i∇si(x

k) → 0 for i = p+ 1, . . . ,m, x is a MPCC-critical point and

∇f(x) +


Ip 0 0 0

0 Im−p 0 0

0 0 Ip 0

0 0 0 Iq0

0 0 0 0




γ

µ

ν

λ

 = 0.

By the regularity of P the point x̄ is a non-degenerate critical point. So, λ ̸= 0 and λk
j ̸= 0 for k large

enough and j ∈ Ig(x). As a consequence, for k large enough Ig(x̄) ⊂ Ig(xk). Hence Ig(x̄) = Ig(xk) =

{1, . . . q0}, for k large and SC holds at xk.

To analyse SOC we need to prove that the following matrix is non singular over TxkMQ
τk ,

Y k = ∇2
xL(x

k, λk, µk
1 , µ

k
2) =

∇2
xf(x

k) +


0 0 diag(µk

1) 0 0

0 0 0 0 0

diag(µk
1) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+
⊗


Recall that TxkMQ
τk is the space orthogonal to B(xk) =


X3(xk) ⊗k

1 0

0 B0(x
k) 0

X1(xk) ⊗k
3 0

0 ⊗k
k Iq0

0 ⊗k
5 0

.

Here
⊗

=
∑m

i=p+1(µ
k
2)i∇2

x[xisi(x)](x
k), ⊗k

1 = [xk
i∇1,...,psi(x

k), i = p+1 . . . ,m], ⊗k
3 = [xk

i∇m+1,...,m+psi(x
k), i =

p + 1, . . . ,m], ⊗k
4 = [xk

i∇m+1,...,m+psi(x
k), i = p + 1, . . . ,m], ⊗k

5 = [xk
i∇m+p+1,...,nsi(x

k), i =

p+ 1, . . . ,m] and B0(x
k), defined in (3.6), is non-singular for k large enough. So, a base of TxkMQ

τ
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is given by the columns of

B̂(xk) =


X1(xk) 0

⊕k
1 ⊕k

2

−X3(xk) 0

0 0

0 In−m−p−q0

 ,

where ⊕k
1 = −B0(x

k)−1[X1(xk)⊗k
1 −X3(xk)⊗k

3 ] and ⊕k
2 = −B0(x

k)−1⊗k
5 ,

Now consider C(xk) = B̂(xk)TY kB̂(xk). Then, after some algebraic manipulation we can prove that

C(xk) =

(
O(τ) O(

√
τ)

O(
√
τ) O(τ) +∇2

xm+p+q1+1,...,xn
f(xk)

)
+

(
−2X3(xk)diag(µk

1)X
1(xk) 0

0 0

)
+O(τ)

=

(
O(τ)− 2X3(xk)diag(µk

1)X
1(xk) O(

√
τ)

O(
√
τ) O(τ) +∇2

xm+p+q1+1,...,xn
f(xk)

)
.

As for SOC, we need to prove that C(xk) is non-singular. Assume to the contrary, that ck ̸= 0 is a

solution of C(xk)ck = 0. Without loss of generality we assume that ∥ck∥ = 1.

Taking k → ∞ and hence, τk → 0, without loss of generality, we can assume ck → c ̸= 0. Thus,

considering ck = (ck1 , c
k
2) → (c1, c2) = c ̸= 0, we have

limk→∞ C(xk)ck = limk→∞

(
O(τk)ck1 − 2X3(xk)diag(µk

1)X
1(xk)ck1 +O(

√
τk)ck2

O(
√
τk)ck1 +O(τk)ck2 +∇2

xm+p+q1+1,...,xn
f(xk)ck2

)

=

(
0

∇2
xl+p+q1+1,...,xn

fc2

)
= 0.

But as MPCC-SOC holds, ∇2
xm+p+q1+1,...,xn

f(xk) is non-singular. Hence c2 = 0.

Now, if O(τk)ck1 − 2X3(xk)diag(µk
1)X

1(xk)ck1 +O(
√
τk)c

k
2 = 0, dividing by

√
τk, we obtain

O(τk)c
k
1 − 2X3(xk)diag(µk

1)X
1(xk)ck1 +O(

√
τk)ck2√

τk
= O(

√
τk)ck1 +O(1)ck2−

2X3(xk)diag(µk
1)X

1(xk)ck1√
τk

= 0.

Taking limits for τ → 0 yields

lim
τ→0

O(
√
τk)−O(1)ck2 − 2X3(xk)diag(λk

1)X
1(xk)ck1√

τk
= 0.

As ck2 → 0, it holds that limτ→0
2X3(xk)diag(λk

1 )X
1(xk)ck1√

τk
= 0.

However, for i = 1, . . . , p, either xk
i or xk

m+i ≥
√
τk, because xk

i x
k
m+i = τk. Without loss of generality,

we assume that xk
i ≥ √

τk. As already obtained in (B1) −2X3(xk)diag(µk
1) → γ ̸= 0. Then

lim
k→∞

X3(xk)diag(µk
1)X

1(xk)
√
τk

= diag(γ) lim
k→∞

X1(xk)
√
τk

.

But, as seen in [2], limτk→0
X1(xk)√

τk
= diag(y) exists and it is non zero. So,

lim
τk→0

−2X3(xk)diag(µk
1)X

1(xk)ck1√
τ

= diag(γ)diag(y)c1 = 0.

As y, γ ̸= 0, it follows that c1 = 0 and c2 = 0, contradicting the assumption that c ̸= 0.
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