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ABSTRACT
The Discrete Shapelet Transform II is designed to detect patterns, locating them in time and

frequency. This transform solves a system of nonlinear equations to obtain the high–pass filter of the

pattern–adapted wavelet (shapelet). This paper presents an exploratory study case to inquire about

the impact of the numerical method for estimating shapelets, considering numerical indicators and

the detection of two artificial patterns. Powell’s method with Anderson pre–iteration get orthogonal,

perfect reconstruction, finite impulse response, near–linear phase and compact support filters. For

pattern detection, we take the detail coefficient with the highest value of the normalized measure

S, instead of S = 1 used in the original publications. Compared to other wavelet filters, higher

values of S were obtained where the pattern was inserted. Accurate detection of repeated patterns

and robust detection when modifying the amplitudes were obtained. Modest noise robustness of

detection was verified. The results showed the need for further study to evaluate the impact of the

numerical method and the choice of the initial guess to estimate the shapelet using a larger number

of numerical methods, patterns and signals. As a consequence of the analysis and discussion, we

suggest new research questions about this transform to be answer in further research.
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RESUMEN
La Transformada Shapelet Discreta II está diseñada para detectar patrones, localizándolos en tiempo

y frecuencia. En dicha transformada se resuelve un sistema de ecuaciones no lineales para obtener

el filtro de paso alto de la wavelet adaptada a un patrón (shapelet). Esta investigación presenta un

estudio exploratorio de casos cuyo objetivo fue indagar sobre el impacto del método numérico para

estimar shapelets, considerando indicadores numéricos y la detección de dos patrones artificiales.

El método de Powell con pre–iteración de Anderson permitió estimar filtros ortogonales, de recon-

strucción perfecta, con respuesta finita al impulso, fase casi lineal y soporte compacto. Para detectar

el patrón se tomó el coeficiente de detalle con mayor valor de la medida normalizada S, en lugar de

S = 1 usado en las publicaciones originales. Respecto a otros filtros wavelet, se obtuvieron valores

mayores de S donde se insertó el patrón. Se logró la detección precisa de patrones repetidos y una

detección robusta al modificar su amplitud. Se verificó la modesta robustez de la detección ante el

ruido. Los resultados mostraron la necesidad de un estudio más profundo para evaluar el impacto

del método numérico y la elección de la aproximación inicial para estimar la shapelet, utilizando

un número mayor de métodos, patrones y señales. Como consecuencia del análisis y discusión, se

sugieren preguntas de investigación a responder próximamente.

PALABRAS CLAVE: Diseño de filtros wavelet, Wavelet adaptada, Análisis conjunto tiempo-

frecuencia-forma, Transformada Shapelet Discreta, Transformada Wavelet Discreta.

1. INTRODUCTION

In the last two decades, among the numerous fields where wavelets have been widely applied, there

are different techniques to create wavelet transforms that match a specified signal, see for instance

[11]. The idea of adapting a wavelet to specific problems, i.e., to create and use data-dependent

wavelets, has been developed for various purposes, for example, biological pattern recognition [3], iris

recognition system [14], and detection of the QRS of an electrocardiogram signal [8], among others.

We are interested in the proposal made by Guido and colleagues [5, 6, 7]. They constructed adapted

wavelets with the Discrete Shapelet Transform (DST), which determines the time support of the

frequencies and a pattern shape. The DST-I [7] include a constraint based on fractal dimension,

and solve the nonlinear equations system (NLS) formed by this constraint and others of unit energy,

vanishing moments and orthogonality. Its computational cost is high. Therefore, DST-II [5] replaced

the fractality constraint with two pattern correlation constraints. In the third version, DST-III [6], it

was proposed to obtain nearly symmetric wavelets by changing the vanishing moments constraint by

a symmetry constraint [10].

According to the original publications, this NLS can be solved “by any iterative numerical procedure”

(see [5, p. 10 and p. 11] and [6, p. 3]) to obtain the coefficients of the high-pass filter of the shapelet.

The cited studies show two numerical examples of shapelets for artificial patterns and experiments

on detecting seven patterns from the visual system of a fly. In these experiments, it is not specified

which numerical algorithm was used to find the NLS solution, nor which was the initial guess used

for iteration; a key aspect in the convergence [16].

When we decided to use the DST-II algorithm, we didn’t find in [5, 6, 7] which numerical algorithm

was used for solving the NLS, so we realized that this is a very relevant aspect. Therefore, this paper

presents an exploratory study case whose objective is to inquire about the impact of the numerical
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method to estimate shapelets, considering numerical indicators and the detection of two patterns

gave in the original publications [5, 6]. The pattern detection robustness to repetitions, amplitude

variations, contractions of these patterns, as well as robustness to noise, are also examined. The

pattern detection is compared with other wavelet filters.

The results showed the need for further study to evaluate the impact of the numerical method and

the choice of the initial guess to estimate the shapelet using a larger number of numerical methods,

patterns and signals.

The paper is structured as follows: Section 2. introduces basic concepts and elements of DST-II, as

well as the NLS under study. Section 3. is devoted to the theoretical aspects of system’s solution

algorithms used in the experiments. This is followed by the design of the experiments (section 4.),

and the results for both study cases, as well as their discussion (section 5.). Finally, we suggest new

research questions to be answered in future studies.

2. DISCRETE SHAPELET TRANSFORM II

The DST-II [5] proposes a way of constructing wavelets, which not only finds the temporal support of

the frequencies appearing in a given signal, but also the shape, hence its name shapelet. In analogy

to the construction of wavelet bases, high-pass filters and low-pass filters that define the scaling and

wavelet functions are needed.

This transform has the following constraints for the high–pass filter coefficients q: i) the filter support

size is N ≥ 6 and necessarily even to have perfect reconstruction [17]; and ii) the pattern m[·] must

have odd size equal to N + 1.

The NLS F(q0, q1, · · · , qN−1) = 0 of N equations and N unknowns is as follows:

� Unitary energy: (
N−1∑
k=0

q2k

)
− 1 = 0; (2.1)

�
N
2 − 2 vanishing moments for the wavelet:

N−1∑
k=0

qk · kb = 0, (2.2)

where b = 0, 1, · · · , N
2 − 3;

�
N
2 − 1 orthogonality conditions:

N−2l−1∑
k=0

qk · qk+2l = δ0,l, (2.3)

where δ is the Dirac’s delta function and l ∈ [1, N/2− 1]; and

� two matching conditions for detecting the pattern:

N−1∑
k=0

qk ·mk = 0,

N−1∑
k=0

qk ·mk+1 = 0. (2.4)
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To obtain the perfect reconstruction filter bank [17] of a DST-II the following filters are computed:

� p[·] and q[·], where pk = (−1)k · qN−k−1 (0 ≤ k ≤ N − 1), forming finite impulse response (FIR)

filters with an even support size, N ; and

� p[·] and q[·], where pk = pN−k−1 and qk = (−1)k+1 · pk, characterizing the synthesis filter bank.

The DST-II will be used to decompose a signal, modify its coefficients and reconstruct it. The

more modifications are made to the coefficients, the more the reconstructed signal will resemble the

shape of the DST-II scale and wavelet functions [3]. That is why, the major shapelet function,

Γ(x) =
∑
k

pk · Γ(2N − k), and the minor shapelet function, Θ(x) =
∑
k

qk · Γ(2N − k) are computed,

similar to the scale and wavelet functions of the Discrete Wavelet Transform [17].

3. NUMERICAL METHODS FOR FINDING THE FILTER OF A DST-II

To obtain the coefficients of the shapelet high-pass filter q, the NLS described above, must be solved.

There are several methods to solve it, but the convergence depends on the initial guess of the iteration

and certain theoretical characteristics of the methods. In what follows, we present a brief overview of

three methods we used. These methods start from a predefined initial guess, typically, the null vector

[15, 16].

3.1. Powell’s method

Powell’s method [15] is based on Newton’s algorithm. At each iteration of the Newton’s algorithm,

if the solution lies within the confidence region, then Powell’s method is used to update the solution,

otherwise it is used to find the minimum of the objective function in the direction of gradient descent.

If the minimum point known as the Cauchy point is outside the confidence region, then it is truncated

to the boundary of the confidence region and taken as the new solution. If the Cauchy point is inside

the confidence region, the new solution is taken at the intersection between the boundary of the

confidence region and the line joining the Cauchy point and the Newton method solution [15]. This

method is implemented in MINPACK-1 [12] as HYBRD. Its number of operations is O(N2) per function

call and requires (3N2 + 17N)/2 for storage memory.

3.2. Broyden’s method with scalar approximation of the Jacobian

Broyden’s methods [15] are based on a quasi–Newton algorithm. They differ in the way they use to

replace the Jacobian matrix [16]. These methods have superlinear convergence, require N function

evaluations per iteration, and O(N2) operations. When the iteration matrix is constructed with a

scalar approximation of the Jacobian, this method is called linear mixing.

3.3. Anderson’s method

Let the input and output vectors, respectively, of the M iterations to be considered be: x(k) :=

x(k) +

M∑
j=1

ϑ
(k)
j

(
x(k−j) − x(k)

)
, where 0 ≤ M ≤ k − 1. The coefficients ϑ

(k)
j are sought such that the
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linear combination minimizes the norm of the general residual vector. For this purpose, a system

of linear equations whose solution are the coefficients ϑ
(k)
j is solved [1]. Once the optimal linear

combination has been found, the input vector is set for the following iteration: x(k+1) = x(k)+β(k)R
(k)

,

where β(k) is the mixing parameter and R
(k)

the residual. Anderson’s method needs the storage for

the (2M + 2)N−component vectors x(k) and R(k), of the current and previous M iterations, and, in

addition, the solution of a linear system of order M .

4. EXPERIMENTAL DESIGN

a) Two study cases were considered corresponding to two artificial patterns taken from the original

publications [5] and [6], respectively:

� Pattern m1[·] with support size N + 1 = 8 + 1 = 9 and coordinates (sample number,

amplitude): (0, 0.20); (1, 0.50); (2, 0.45); (3, 0.85); (4, 0.80); (5, -0.75); (6, 0.25); (7, 0.20)

and (8, 0.55).

� Pattern m2[·] of size N + 1 = 12 + 1 = 13 and coordinates: (0, 0.01); (1, 0.01); (2, 0.01);

(3, 0.02); (4, 0.05); (5, 0.23); (6, 0.62); (7, 0.90); (8, 0.98); (9, 0.88); (10, 0.02); (11, 0.01)

and (12, 0.01).

b) Construction of the DST-II filter bank: The NLS to obtain q was symbolically encoded in SymPy

and solved independently for the two artificial patterns considered with Powell’s hybrid method

(hybr) from three initial guesses: the null vector (null), the solution from linear mixing

method, and the one from Anderson’s method (anderson). The MINPACK-1 [12, 15] routines

implemented in the Python package scipy.optimize.root [18] were used.

c) Seven experiments were performed with double numerical precision:

� Experiment I : Using the numerical methods describe above, and considering the two arti-

ficial patterns that appear in [5, 6], the resulting shapelet functions were compared with

those obtained in the cited works. We also examine the effect of the choice of initial guess

on methods’ convergence. From the numerical point of view, for each NLS solution we

reported the number of F evaluations (Evals.), the norm of the residual (||F(q∗)||2), and
the distance ||qGuido (2018/2021) − q∗||2 to the filters from original publications [5, 6]. In

addition, the corresponding minor and major shapelets were obtained using the cascade

algorithm [17] with 8 levels, implemented in PyWavelets [9]. To evaluate the quality of

the filters from a signal processing point of view, their frequency and phase response are

computed and plotted, in addition to the corresponding zeros plot [13].

� Experiment II : Evaluation of shapelet performance in pattern detection. To achieve this,

we inserted the patterns (m1[·] and m2[·]) at position 41 in two signals (f1[·] and f2[·])
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with 64 samples, given in [5, 6]:

f1[·] =


cos

(
27

8
· π · i

)
· sin

(
75

8
· π · i

)
, 0 ≤ i ≤ 40,

m1[i], 41 ≤ i ≤ 49,

cos

(
295

32
· π · i

)
· sin

(
105

32
· π · i

)
, 50 ≤ i ≤ 63

and (4.1)

f2[·] =


cos (3, 5 · π · i) · sin (31, 250 · π · i) , 0 ≤ i ≤ 40,

m2[i], 41 ≤ i ≤ 53,

cos (13, 281 · π · i) · sin (3, 906 · π · i) , 54 ≤ i ≤ 63.

(4.2)

To perform the shapelet transform, the filter bank was constructed in PyWavelets. The

detection was based on the normalized similarity measure S = e−(|DST-II(f [·])|)α (0 < α ≤
1), which emphasizes the presence of zeros in the DST-II(f [·]), with f [·] being the analyzed

signal. In [5], the pattern was detected at the position where S = 1. In our experiments

this value was not reached. After a mathematical analysis of measure S, we take as a

criterion for pattern detection the index k of the shapelet coefficient with the highest value

of S(α = 0.1). Thus, the pattern m[·] is estimated to start at f(k·2j−1) or f(k·2j).

For next experiments, we choose the shapelet obtained with the most adequate initial

guess, and perform the following experiments.

� Experiment III : To compare the detection of the selected shapelet with other wavelet

filters, such as Haar, Daubechies with support sizes 4, 6, 8, 8, 10, 20, 30 and 38, and

Symlet with support sizes 8 and 16, Coiflets with support sizes 6, 12 and 16. These filter

sizes are similar to those used for comparison in [5, 6]. The prediction errors of the pattern

occurrence in the signal were computed for each wavelet filter used.

� Experiment IV : To evaluate the detection of a repeated pattern in a signal.

� Experiment V : To evaluate stability in pattern detection when varying its amplitude.

� Experiment VI : To evaluate stability in pattern detection when shrinking (subsampling)

the pattern by a factor of 2. Theoretically, DST-II should detect this subsampled version

of the pattern at the second level of decomposition [4, 10].

In general, the algorithm to measure the similarity between the signal f [·] and the pattern

of interest m[·] in a particular frequency subband j is:

i) Create the DST-II filter bank for the pattern m[·];

ii) Calculate the j−th DST-II level of f [·], with j being the subband of interest, j ≤
log(N)

log(2)
, j ∈ Z;

iii) Take the index k of the shapelet coefficient with the largest value of S(α = 0.1).

Thus, the pattern m[·] is estimated to start at f(k·2j−1) or f(k·2j).
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� Experiment VII : To evaluate the noise robustness adding Gaussian and Poisson noise to

the signal using different noise levels. For each noise level, 30 noisy signals were obtained

and the detection was performed. Thresholds for pattern detection errors were considered

and the detection rate was computed for each noise level.

5. RESULTS AND DISCUSSION

This section presents the results of the seven experiments described above for two artificial patterns,

and evaluating the detection robustness against a group of signal transformation. These patterns were

used because the original papers publish the data to obtained it, also because they represent different

behavior for a signal: the first pattern present one oscillation around zero and has wiggles; the second

one is symmetric and positive, without oscillation around zero.

5.1. First study case: pattern m1[·]

Table 1 shows the numerical indicators of the NLS solutions for pattern m1[·], using Powell’s method

from three initial guesses. Starting with anderson fewer systems evaluations are performed, and the

most accurate solution was obtained. When compared with the solution reported in [5], the closest

result was achieved starting from the anderson initial guess (0.56).

Initial guess/Pre–iteration Evals. ||F(q∗)||2 ||qGuido (2018) − q∗||2
null 56 3,26147598401959 ·10−12 1,27

linear mixing 113 4,17346034158683 ·10−12 1,51

anderson 11 1,12228928558634 ·10−13 0,56

Table 1: Numerical indicators of the NLS solution by shapelet construction for the pattern m1[·].

Figure 1 plots filter properties such as frequency response, phase, and zeros plot, as well as the

graphical representation of minor and major shapelets. Using null as the initial guess, a very irregular

shapelet was obtained (Figure 1a), which is reflected in the nonlinear phase of the corresponding filters.

Also, this shapelet had no frequency differentiation with respect to π
2 cutoff point. Smoother shapelets

with nearly linear phase (Figure 1c) and better frequency differentiation were estimated for the rest

of initial guesses.

For each filter obtained, the detection algorithm was applied to locate the pattern m1[·] in the signal

f1[·]. These detection results can be seen in Figure 2. It should be clarified that, given the detection

constraints in the NLS, the shapelet can predict the pattern occurrence from its first or second position.

In the calculation of prediction and error for this table, it was assumed that the shapelet locates the

pattern at its first position.

Each subfigure in Figure 2 shows: the signal with the pattern highlighted in green (top), the DST-

II (center) and the S measurement of the wavelet coefficients, where the coefficient selected by the

detection algorithm (bottom) is marked (light blue dashed line). In yellow lines (top) the two positions

where the pattern is located according to that algorithm are highlighted. The plots in the center and

below show a purple dashed line separating the approximation and detail coefficients.
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(a) Shapelet obtained from the initial guess null.

(b) Shapelet obtained from the initial guess linear mixing.

(c) Shapelet obtained from the initial guess anderson.

Figure 1: Filters q (high-pass) and p (low-pass) of the shapelet adapted for pattern m1[·] with Powell’s

method, starting from three initial guesses.
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It can be seen that all the initial guesses located the pattern with no error. Therefore, taking in account

the good numerical indicators for anderson initial guess, from now on we will use the estimated

shapelet with this starting point for the following experiments.

Using this shapelet, we compare the pattern detection against other wavelet filters. Figure 3 shows

the values of S for the detail coefficients of signal f1[·] decomposed using the shapelet and 13 other

wavelet filters. Only the shapelet detect the pattern with high precision.

By tripling the signal f1[·], three occurrences of the pattern were obtained at positions 41, 105 and

169. In Figure 4, the pattern is highlighted in green (top), the DST-II of the signal (center) and

the measure S for detail shapelet coefficients (bottom) are shown. The coefficients selected by the

detection algorithm are marked (light blue dashed line). Yellow lines (top) highlight the positions

where the pattern is located according to the algorithm. The plots in the center and below show a

purple dashed line separating the approximation and detail coefficients.

It can be seen that the generated filter bank for pattern m1[·] was able to detect the three occurrences

of the pattern, corresponding to the positions of the detail shapelet coefficients with the three highest

values of the measure S, at positions 22, 86 and 150, respectively (Figure 4, see stitched vertical line).

By modifying the amplitude of pattern m1[·] by 0.5 and 4 within signal f1[·], the detection algorithm

is successful with a one-sample error (Figure 5). This verifies the theoretical argument about the

DST-II allowing the pattern shape to be detected, even when it appears amplified [4].

To examine the ability of DST-II for multilevel detection of the pattern for which it was constructed,

the pattern was subsampled by a factor of 2.

Figure 6 shows the signal with the dilated pattern and highlighted in green (top), the DST-II of the

signal (center) and the measure S for detail shapelet coefficients (bottom), the separation of the 2-level

wavelet coefficients of the DST-II is marked (purple dashed line). Green and yellow dashed lines show

the positions of the coefficients selected by the detection algorithm at both levels. Above, a green

(yellow) line marks the prediction of pattern occurrence at level 1 (level 2) of DST-II.

Note that the DST-II detects the pattern at the first level of decomposition (green line), and not at

the second one (yellow line), as expected. This might be due to the similarity between some fragments

of the signal and the compressed pattern, which cause false negatives in the detection.

Incorporating together the patternm1[·] and its dilated version into the signal f1[·] resulted in detecting

the original pattern at level 1 of the decomposition and its subsampled version at level 2 at the correct

positions, with one-sample error (Figure 7).

In this figure, the signal with the dilated pattern (position 4) and the pattern (position 43) is high-

lighted in green (top), the DST-II of the signal (center) and the measure S of the detail shapelet

coefficients (bottom), the separation of the 2-level detail shapelet coefficients of the DST-II is marked

(purple dashed line). Green and yellow dashed lines show the positions of the coefficients selected

by the detection algorithm at both levels. Above, a green (yellow) line marks the prediction of pat-

tern occurrence at level 1 (level 2) of DST-II. This corresponds with the theoretical assumption of

multilevel localization of the pattern.

Table 2 shows the results of pattern m1[·] detection for different noise values (σ and λ parameters of

a Gaussian and Poisson distributions, respectively) using a detection threshold of 2 samples.

For both types of noise it is observed that by slightly perturbing the signal, the pattern is correctly

192



(a) Localization with the filter obtained from the initial guess null. Error = 0.

(b) Localization with the filter obtained from the initial guess linear mixing. Error = 0.

(c) Localization with the filter obtained from the initial guess anderson. Error = 0.

Figure 2: Localization of the pattern m1[·] in the signal f1[·] with the proposed detection algorithm.
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Figure 3: Similarity measure S for the shapelet (in black) and 13 other classical wavelet filters applied

to signal f1[·]. Sample 53 is highlighted, which is the position where the pattern m1[·] should be

detected.

Figure 4: Detection of three repetitions of the pattern m1[·] in a signal.

Gaussian noise Poisson noise

σ Pattern detection counts Detection rate λ Pattern detection counts Detection rate

0.01 30 100% 0.01 24 80.00%

0.02 29 96.67% 0.02 16 53.33%

0.03 21 70.00% 0.03 19 63.33%

0.04 13 43.33% 0.04 13 43.33%

0.05 7 23.33% 0.05 8 26.67%

Table 2: Detection results for pattern m1[·] after adding noise to the signal f1[·]. The pattern was

detected with an error of up to 2 samples.
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(a) Pattern amplitude modification by 0.5.

(b) Pattern amplitude modification by 3.

Figure 5: Detection of two amplified versions of pattern m1[·] in the signal f1[·].
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Figure 6: Detection of a dilated version of the pattern m1[·].

Figure 7: Joint detection of the pattern m1[·] and its dilated version.
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detected, but when increasing the noise level, the detection results become progressively worse, re-

flected in the decrease of the detection rate. This is consistent with the “modest robustness to noise”

of DST-II mentioned in [5, 6].

5.2. Second study case: pattern m2[·]

Table 3 shows the numerical results referring to the solution of the system to adapt the shapelet to

the pattern. For this purpose, three initial guesses were again taken. The Powell’s method converged,

except for the initial guess linear mixing. This algorithm performed fewer NLS evaluations when

starting with linear mixing (35), but did not converge. The initial guess that obtained the most

accurate solution was anderson. When compared with the solution reported in [6], the closest result

was achieved starting from the aforementioned initial guess.

Initial guess/Pre–iteration Evals. ||F(q∗)||2 ||qGuido (2021) − q∗||2
null 57 1,63977362698396 ·10−10 1,49

linear mixing 35 1639398805595530 39252437,11

anderson 160 4,00892364240798 ·10−13 1,45

Table 3: Numerical indicators of the solution for the pattern m2[·].

The estimated filters are shown in Figure 8, which exposes their frequency response properties, phase

and zeros plot, as well as the plots of the minor and major shapelets. By using linear mixing as the

initial guess, a very irregular shapelet was obtained, which is reflected in the nonlinear phase of the

corresponding filter and the non-differentiation of frequencies. This is due to not convergence of the

iteration, showed by a very large value of the residual. On the other hand, for null and anderson

initial guesses, smoother shapelets were estimated with almost linear phase (Figure 8a and c) and

better frequency differentiation.

The pattern detection results for each shapelet are shown in Figure 9. It can be noted that the initial

guess linear mixing generates false negatives. By taking null and anderson guesses, the heuristic

detected the pattern more accurately, as expected. Therefore, as in our fisrt study case, from now on

we will use the estimated shapelet with anderson initial guess for the following experiments.

The values of S for the detail coefficients of signal f2[·] decomposed using this shapelet and the other

wavelet filters are shown in Figure 10. Only the shapelet detected it accurately.

By tripling the signal f2[·], three occurrences of the pattern were obtained at positions 41, 105 and 169.

In Figure 11 it can be seen that the constructed shapelet for m2[·] was able to detect all occurrences

of the pattern with a 2-samples error.

By modifying the amplitude of pattern m2[·] by 0.5 and 3 within signal f2[·], the pattern was success-

fully detected when modified by a factor of 3, and with a 4-samples error using a factor of 0.5 (Figure

12). This verifies the theoretical argument in [5].

To examine the ability of DST-II for multilevel detection, the pattern m2[·] was subsampled by a factor

of 2. The detection had a 1-sample error (Figure 13). By incorporating the subsampled pattern into

the same signal, the original pattern was successfully detected in level 1 of the decomposition (Figure
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(a) Shapelet obtained from the initial guess null.

(b) Shapelet obtained from the initial guess linear mixing.

(c) Shapelet obtained from the initial guess anderson.

Figure 8: Filters q (high pass) and p (low pass) for the adapted pattern m2[·] with Powell’s method,

starting from three initial guesses.
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(a) Localization with the filter obtained from the initial guess null. Error = 0.

(b) Localization with the filter obtained from the initial guess linear mixing. Error = 5.

(c) Localization with the filter obtained from the initial guess anderson. Error = 0.

Figure 9: Localization of the pattern m2[·] in the signal f2[·] with the proposed detection algorithm.
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Figure 10: Similarity measure S for the shapelet (in black) and 13 other classical wavelet filters

applied to signal f2[·]. Sample 53 is highlighted, which is the position where the pattern m2[·] should
be detected.

Figure 11: Detection of three repetitions of the pattern m2[·] in a signal.
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(a) Pattern amplitude modification by 0.5.

(b) Pattern amplitude modification by 3.

Figure 12: Detection of two amplified versions of pattern m2[·] in the signal f2[·].
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14). However, the detection algorithm based on the measure S fails to detect the dilated version at

level 2, although it is observed that at position 30 the second maximum of that measure is reached,

which corresponds to the correct position of the subsampled pattern.

Figure 13: Detection of a dilated version of the pattern m2[·].

Incorporating together the pattern m2[·] and its dilated version into f2[·] resulted in detecting the

pattern at decomposition level 1, but not its subsampled version at level 2 (Figure 14).

Figure 14: Joint detection of the pattern m2[·] and its dilated version.

Respecting noise robustness, the detection of pattern m2[·] for selected values of σ and λ is presented

in Table 4, where a detection threshold of 5 samples was used. For both types of noise it is observed

that by slightly perturbing the signal, the pattern is correctly detected, but by slightly increasing the

noise level, the detection results become progressively worse, reflected in the decrease of the detection

rate. Again, this is consistent with the results from [5, 6].
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Gaussian noise Poisson noise

σ Pattern detection counts Detection rate λ Pattern detection counts Detection rate

0.01 30 100% 0.01 24 80.00%

0.02 29 96.67% 0.02 16 53.33%

0.03 21 70.00% 0.03 19 63.33%

0.04 13 43.33% 0.04 13 43.33%

0.05 7 23.33% 0.05 8 26.67%

Table 4: Detection results for pattern m2[·] after adding noise to the signal f2[·]. The pattern was

detected with an error of up to 5 samples.

6. CONCLUSIONS

The case studies show that the approximation in the construction of the shapelet adapted to a given

pattern depends on the numerical solution of the NLS to obtain the high-pass filters. In the ex-

periments, the Powell’s method with Anderson’s initial guess was obtained as the best proposal. In

this way filters with finite impulse response, compact support, and nearly linear phase response are

obtained. The filter banks are, by construction, orthogonal and have perfect reconstruction property.

To evaluate the performance of the shapelet to detect patterns, we propose to take the detail coefficient

with measure S closer to one. The measure S value equal 1, used in [5, 6] is not reached.

As in reference works [5, 6], the results obtained show an improvement in detection with respect to

other wavelet filters, which reaffirms its effectiveness.

The DST-II performs a successful detection of the pattern when it appears repeated within the input

signal, however, the results are not the same when a subsampled version of the pattern appears. The

detection of a dilated version of the pattern was successful, except when it is found between similar

fragments of the signal. The wavelet bases created with the DST-II algorithm succeed in jointly

detecting the presence of the original pattern and its dilation, verifying this theoretical assumption of

the DST-II. It was confirmed that the detection algorithm is robust to changes in the amplitude of

the patterns, with a lower precision in noisy signals.

The previous results lead us to, on the one hand, having to apply a noise attenuation process [2],

if necessary, so that the detection of the required pattern is efficient, and on the other hand, to

distinguish in some way the pattern location from other similar fragments in the signal.

This exploratory study brings several questions that have to be answer for using the DST-II in real

problems: what is the impact of the iterative method of solving the system to construct the shapelet, as

well as of the initial guess when using a large number of patterns?, will such methods work for patterns

with larger numbers of samples?, could the behavior observed in this experiment be generalized to

a larger variety of patterns?, will the numerical and detection parameters improve if pre–iteration

is performed with any of the above mentioned methods, and will this improvement be statistically

significant?, how effective would be the detection of a greater variety of signals with and without the

presence of the patterns when compared to other wavelet filters?, will there be statistically significant

differences between the parameters with respect to the numerical methods for solving the system? All

these questions will be answered in further research.
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