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ABSTRACT 

In this article, a new discrete distribution called the exponentiated discrete Lindley distribution is derived. The 
usefulness of this distribution is supported by its ability to analyze different types of count data (over-, under-, 

equi-dispersed, positively, and negatively skewed). Also, with two parameters, it possesses a bathtub-shaped 

hazard rate function, which is not the case for well-known discrete distributions. We also discuss some of its 

important properties with numerical illustrations. Subsequently, the point and interval estimation of the 

parameters are performed under the classical and Bayesian paradigms. A simulation study is carried out to 

showcase the numerical illustration of the discussed estimation procedures. To examine the practical 
applicability, four real datasets are fitted, and the results are fairly compared with other well-known existing 

discrete models.  
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RESUMEN 

En este artículo, se deriva una nueva distribución discreta llamada distribución de Lindley discreta 

exponencial. La utilidad de esta distribución está respaldada por su capacidad para analizar diferentes tipos de 

datos de recuento (sobre, bajo, equidisperso, sesgado positiva y negativamente). Además, con dos parámetros, 
posee una función de tasa de riesgo en forma de bañera, que no es el caso de distribuciones discretas 

conocidas. También discutimos algunas de sus propiedades importantes con ilustraciones numéricas. 

Posteriormente, la estimación puntual e intervalológica de los parámetros se realiza bajo los paradigmas 
clásico y Bayesiano. Se lleva a cabo un estudio de simulación para mostrar la ilustración numérica de los 

procedimientos de estimación discutidos. Para examinar la aplicabilidad práctica, se ajustan cuatro conjuntos 

de datos reales, y los resultados se comparan de manera justa con otros modelos discretos existentes bien 
conocidos. 

 

PALABRAS CLAVE: Estimación Bayesiana, Distribución de Lindley discreta exponencial, Datos de conteo, 
Método de máxima probabilidad, Estudio de simulación.  

 

1. INTRODUCTION 

 

In many areas, statistical distributions are used to make decisions and characterize the probabilistic 

behavior of random phenomena. The distributions are proven to be helpful in all fields of science. For 

instance, the traditional distributions, including the Weibull, normal, gamma, Gompertz, and Maxwell 

distributions, have drawn a lot of interest from scholars and found usage in a variety of fields, including 

demography, engineering, and science. Many situations produce data that are discrete in nature, either due 

to measurement instrument limitations or inherent characteristics. For example, in reliability engineering, 

the number of successful cycles prior to the failure when the device works in cycle is the number of times 

a device is switched on or off; in survival analysis, the survival times for those suffering from diseases 

like lung cancer or the period from remission to relapse may be recorded as the number of days or weeks, 

the number of deaths or daily cases due to the COVID-19 pandemic observed over a specified duration, 

etc. Moreover, in many practical problems, the count phenomenon occurs, as, for example, in the number 

of occurrences of earthquakes in a calendar year, the number of absences, the number of accidents, the 

number of kinds of species in ecology, the number of insurance claims, and so on. Therefore, it is 

reasonable to model such situations with a suitable discrete distribution. 

Because traditional discrete distributions such as the binomial, Poisson, geometric, and negative binomial 

distributions were unable to adequately characterize different types of data, academics have been more 

interested in the discretization of continuous distributions throughout the previous two decades. Such a 

discretization can be performed through various methods; one can refer to Chakraborty (2015) in this 

regard. These methods have been used by many authors to generate the discrete analogue of any 

continuous distribution. See, for instance, Roy (2004), Krishna and Pundir (2009), Chakraborty and 
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Chakravarty (2012), Almalki and Nadarajah (2014), Nekoukhou and Bidram (2015), Tyagi et al. (2019, 

2020), Singh et al. (2022), Pandey et al. (2022), and related references cited therein. 

Given the existing literature, we found that many discrete distributions have been introduced over the past 

few decades. Yet there is still scope to introduce new plausible discrete distributions that can adequately 

capture the diversity of real data. This phenomenon motivates us to provide a flexible discrete model for 

fitting a wide spectrum of discrete real-world datasets. Therefore, in this paper, we propose the 

exponentiated discrete Lindley ( ExDLi) distribution and its related statistical model. Some prime 

objectives for introducing this distribution are as follows: 

• In this existing literature, many of the developed discrete distributions claim to model over- and 

under-dispersed datasets. But they fail or ignore studying both types of datasets. In view of this, we 

showcase the applicability of the present model for both types of datasets, i.e., over- and under-dispersed 

datasets.  

• One of the important lacunae of the recent papers on discrete models is that in the application 

section, they compare the applicability of the over-dispersed (or under-dispersed) model with under-

dispersed (or over-dispersed) models, and this always results in the superiority of the proposed model. 

But theoretically, it does not sound good. To overcome this issue, we compare our proposed model with 

over-dispersed (or under-dispersed) models for over-dispersed (or under-dispersed) datasets. 

• We aim to develop a discrete model that is capable of analyzing various types of failure data, 

discrete data generated from many practical studies, such as mortality experiments, industrial 

experiments, etc., showing constant, increasing, decreasing, or bathtub-shaped failure rates. 

• Last but not least, to consistently outperform other well-known discrete models in the statistical 

literature.  

The article is organized as follows: In Section 2, we introduce the ExDLi distribution. Different 

distributional measures are discussed in Section 3. The other sections are devoted to the inferential aspect 

and applications. In Section 4, the point estimation of the model parameters is discussed using maximum 

likelihood (ML) and Bayesian methods. Interval estimation of the unknown parameters is pointed out in 

Section 5. Numerical illustrations with empirical data are examined in Section 6. Four real datasets are 

analyzed to observe the flexibility of the ExDLi model in Section 7. Finally, Section 8 provides some 

conclusions. 

 

2. EXPONENTIATED DISCRETE LINDLEY DISTRIBUTION 

 

Suppose that a random variable (RV) Y follows the one parameter continuous Lindley distribution 

(Lindley, 1958) with the probability density function (PDF) defined as  
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From the Methodology III of Chakraborty (2015), the discrete analogue of Y has the following probability 

mass function (PMF):  
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Using Equation (2.2) with consecutive integer values, and putting e
 − = , the PMF of the discrete 

analogue of Lindley distribution can be derived as 
2( ) (1 ) (1 ) ; 0,1,2,...,.xP X x x x = = − + =       (2.3) 

Alternatively, we can obtain this PMF by putting 1 =  in Hussain et al. (2016). The cumulative 

distribution function (CDF) corresponding to Equation (2.3) is indicated as 

     
( 1) ( 2)( , ) 1 ( 2) ( 1)x xF x x x  + += − + + + .  (2.4) 

The CDF of the ExDLi distribution is  
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where 
( 1)( , ) ( 1)x xw x x x   += + − . 

Therefore, the PMF of the ExDLi distribution is obtained as 

( ) ( )
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Figure 1 shows some PMF plots for various values of the parameters. From this figure, it can be inferred 

that the ExDLi distribution is always unimodal, which is the case for log-concave PMFs in general. 

 
Figure 1: The PMF plots of the ExDLi distribution for different sets of parameters. 

The survival function of the proposed distribution is 

( ) ( ) ( )( )1, , ; 0,1, ,1 ,...1 , 2S x w xx P X x


  − − +=  = =     (2.7) 

The hazard rate is a reliability characteristic that describes the system's failure behavior over time. The 

discrete hazard rate function (HRF) of the ExDLi distribution can be expressed as 

 ( )
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provided that ( )1, , 0S x  −  . Figure 2 presents some PMF plots for various values of the 

parameters. 
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Figure 2: The HRF plots of the ExDLi distribution for different sets of parameters. 

As we see from this figure, a characteristic of the ExDLi distribution is that its HRF can be increasing, 

decreasing, decreasing–increasing–decreasing, increasing–decreasing–increasing, unimodal, bathtub, and 

J-shaped, which makes the proposed distribution able to fit suitably different datasets. As a matter of fact, 

the ExDLi distribution is clearly more flexible than other discrete distributions. Also, the reversed hazard 

rate function (RHRF) of the ExDLi distribution can be expressed as follows: 
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3. DISTRIBUTIONAL PROPERTIES 

 

3.1 Moments, Skewness and Kurtosis 

 

Moments of a probability distribution are important tools for measuring its different properties such as 

mean, variance, skewness, kurtosis, etc.  If ( )G x is the CDF of a discrete RV X, then the 
thr  raw 

moments of this RV can be obtained by using the following formula:  

( )( ) ( )( ) 
0

( ) 1 1
rr r

x

E X x x G x


=

= + − − . 

Using the above expression, the 
thr  raw moment of a RV X with the ExDLi distribution denoted by 

'

r  

can be written as 
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Using the ratio test, we can easily observe that the expression in Equation (3.1) is convergent. It implies 

the existence of the 
thr  moment of the proposed distribution.  

Now, using Equation (3.1), the first four raw moments of the ExDLi distribution are 
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The variance of the ExDLi distribution is obtained as  
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Using the raw moments in Equations (3.2) -(3.5), we can easily find the skewness and kurtosis from the 

following relations: 
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Tables 1-4 present some numerical results of the mean, variance, skewness and kurtosis for the ExDLi 

distribution by considering diverse combinations of   and  . 

Table 1. Some values of the mean of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 0.0131 0.0273 0.0594 0.1417 0.4178 1.0293 2.9994 

0.5 0.0260 0.0539 0.1162 0.2715 0.7714 1.8317 5.1288 

1 0.0513 0.1053 0.2222 0.5000 1.3333 3.0000 8.0000 

2 0.1001 0.2010 0.4075 0.8588 2.0914 4.4355 11.3471 

5 0.2332 0.4396 0.8047 1.4875 3.2279 6.4957 16.0843 

 

Table 2. Some values of the variance of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 0.0139 0.0307 0.0746 0.2179 0.9592 3.7811 22.5825 

0.5 0.0273 0.0593 0.1399 0.3886 1.5737 5.7787 32.4436 

1 0.0526 0.1108 0.2469 0.6250 2.2222 7.5000 40.0000 

2 0.0980 0.1937 0.3880 0.8464 2.6111 8.3799 43.9230 

5 0.1985 0.3284 0.5117 0.9232 2.7277 8.6759 45.2818 

 

Table 3. Some values of the skewness of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 90.8306 50.2438 29.2631 17.8122 10.9628 8.1387 6.5501 
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0.5 44.2721 24.0723 13.7378 8.2443 5.1368 3.9685 3.4003 

1 21.0125 11.0250 6.0500 3.6000 2.4500 2.1333 2.0250 

2 9.4228 4.5799 2.3547 1.5352 1.4297 1.4530 1.4576 

5 2.6037 0.9686 0.5674 0.9057 1.1141 1.1616 1.1793 

 

Table 4. Some values of the kurtosis of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 102.6584 61.1713 38.8921 25.8762 17.4862 13.9119 11.9258 

0.5 50.8751 30.3618 19.5630 13.4970 9.8360 8.4303 7.7678 

1 25.0125 15.0250 10.0500 7.6000 6.4500 6.1333 6.0250 

2 12.1416 7.5012 5.6175 5.2139 5.3142 5.3439 5.3463 

5 4.6313 3.5210 4.0692 4.8308 4.9769 5.0323 5.0518 

 

From these tables, we can infer that: 

1. For a fixed value of   and increasing value of  as well as for a fixed value of   and 

increasing value of  ,  the mean and variance of the ExDLi distribution increase. 

2. The skewness and kurtosis of the ExDLi distribution decrease for a fixed value of   and 

increasing value of  as well as for a fixed value of   and increasing value of  , implying that the 

proposed model is appropriate for modelling positively skewed and leptokurtic data. 

 

3.3 Index of dispersion and coefficient of variation 

 

The index of dispersion (IOD) is a metric used to determine whether data is over- or under-dispersed. An 

IOD greater than one indicates over-dispersion, whereas an IOD lower than one indicates under-

dispersion. Equi-dispersion is indicated when the IOD is equal to one. The expression for the IOD of a 

RV X with the ExDLi distribution is 
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Furthermore, the coefficient of variation (COV) is a measure of data variability. It is commonly used to 

compare the variability of independent samples. The larger the coefficient of variation (COV), the more 

erratic the data. The COV of a RV X with the ExDLi distribution may be represented as 
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 (3.7) 

Some numerical values of the IOD and COV are shown in Tables 5 and 6, respectively, for a variety of 

parametric values. 

 

Table 5. Some values of the IOD of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 1.0625 1.1255 1.2547 1.5372 2.2956 3.6736 7.5289 

0.5 1.0501 1.1006 1.2043 1.4310 2.0401 3.1548 6.3258 

1 1.0256 1.0526 1.1111 1.2500 1.6667 2.5000 5.0000 

2 0.9786 0.9639 0.9520 0.9855 1.2485 1.8893 3.8709 

5 0.8511 0.7471 0.6360 0.6207 0.8450 1.3356 2.8153 

 

Table 6. Some values of the COV of the ExDLi distribution. 

  →  0.025 0.05 0.1 0.2 0.4 0.6 0.8 

0.25 9.0211 6.4248 4.5940 3.2933 2.3439 1.8892 1.5843 

0.5 6.3608 4.5192 3.2191 2.2957 1.6263 1.3124 1.1106 

1 4.4721 3.1623 2.2361 1.5811 1.1180 0.9129 0.7906 

2 3.1264 2.1901 1.5284 1.0713 0.7727 0.6526 0.5841 
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5 1.9106 1.3037 0.8890 0.6460 0.5117 0.4535 0.4184 

 

From these tables, it is observable that, for a fixed value of   and increasing value of  , the IOD 

increases and the COV decreases, whereas, for a fixed value of   and increasing value of  , the IOD 

and COV both decrease. Rather than this, we can clearly see that the value of IOD is greater than or less 

than 1, indicating that the proposed distribution is appropriate for modelling over-dispersed and under-

dispersed data.  
 

3.4 Order statistics 

Order statistics have several applications in reliability engineering and life testing. Let 1 2, ,..., nY Y Y  be a 

random sample drawn from ExDLi distribution. Also, let 
( ) ( ) ( )1 2

...
n
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The corresponding PMF of 
thr  order statistic is   
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Particularly, by putting 1r =  and r n=  in Equation (3.9), we can obtain the PMF of the minimum 

order statistic, and the PMF of the maximum order statistic, respectively. 

 

4. ESTIMATION OF PARAMETERS 

 

In this section, two estimation methods are utilized to estimate the ExDLi distribution's unknown 

parameters, namely the ML estimation (MLE) and Bayesian methods. 

 

4.1 Maximum Likelihood Estimation 

 

In this section, we estimate the unknown parameter of the ExDLi distribution using the MLE method. Let  

( )1 2, ,...., nX x x x=  be a random sample of size n drawn from the ExDLi distribution. Then, the 

likelihood function is given by 
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The corresponding log-likelihood (LL) function is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) 1 2 1

1

log | , log 1 2 1 1 1i i ii
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By maximizing this function with respect to of  and  , we get the corresponding ML estimates. These 

estimates are also the solutions of the following non-linear equations:   

Let us set 

( )log | ,
0

L X  




=


          (4.3) 

( )log | ,
0

L X  




=


         (4.4) 

Unfortunately, these equations cannot yield analytical solutions. Therefore, we use an iterative approach 

such as Newton-Raphson (NR) to calculate the estimates computationally. 
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4.2 Bayesian Estimation 

 

In this section, we compute estimates of the parameters of the ExDLi distribution in a Bayesian setup. 

This method enables the investigator to combine prior beliefs (knowledge) about variations in parameters 

available in the form of prior densities with the sample information at hand. Choosing priors for the 

unknown model parameters is an important and difficult problem. There is no clear methodology to 

choose the best priors in such a setting. Here, we assume the independent prior densities as 

( )1 1,IBeta a b  and ( )2 2,Gamma a b with the following respective PDFs: 
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where ( )1 1,IB a b  in Equation (4.5) denotes the standard beta integral function and ( )2b in Equation 

(4.6) represents the standard gamma function. 

These priors become non-informative if we set 
1 1 2 2 0a b a b= = = = . Given the likelihood function in 

Equation (4.1) and the prior distributions in Equations (4.5) and (4.6), the unnormalized joint posterior 

distribution of ( ),   given data is 

( ) ( ) ( )1 2, | . . ( | , ).X f f L X             (4.7) 

To draw Bayesian inferences on the parameters, one needs the marginal posterior distribution of each 

parameter, which cannot be developed in this case. To overcome this difficulty, we use the well-known 

Markov Chain Monte Carlo (MCMC) technique and the Metropolis-Hastings (M-H) algorithm 

(Metropolis and Ulam, 1949; Hasting, 1970) within a Gibbs sampler, which generates parametric draws 

from the unnormalized posterior distribution of each of the parameters using the current value of the 

given parameters. After removing the sufficient burn-in-sample and checking the draws' convergence to 

their target distributions, we use these parametric draws to find posterior sample-based Bayes estimates of 

unknown parameters under different loss functions. The unnormalized marginal posterior distributions of 

  and   are as follows:  

( ) ( ) 11
11

1 | , ( | , ). 1
ba

X L X      
−−

 − ,      (4.8) 

( ) 2 21

2 | , ( | , ). .
b a

X L X e
      − −

        (4.9) 

 

5. INTERVAL ESTIMATION 

 

In this section, two types of confidence intervals for parameters, namely asymptotic confidence intervals, 

and highest posterior density (HPD) intervals, are constructed. 

 

5.1 Asymptotic Confidence Intervals 

Here, we develop asymptotic confidence intervals (ACI) for the model parameters ( ),    based on 

large sample theory as the exact sampling distribution of the MLEs cannot be obtained explicitly. By 

using the general theory of MLEs, the asymptotic distribution of ( )ˆ−  is ( )1

2 )0, (N I −  , where 

( )I   is the Fisher's information matrix which can be approximated as 

2 2
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Thus, for a large sample, the 100 (1 )% −  ACI for ; 1, 2i i = , where 1  =  and 2  =  is 

given by  

( )/2 /2
ˆ ˆ ˆ ˆ( ), ( )i i i iZ Var Z Var  −   +  , 

where ˆ( )iVar   is the ( , )thi i  diagonal element of 
1 ˆ( )I −   and /2Z  is the 100(1 / 2)− % 

percentile of a standard normal variate.    

 

5.2 Highest Posterior Density Intervals 

 

Let 1 2 3...N N N M+ + +     be the ordered values of a generated sequence 

1 2 3, , ...N N N M+ + +     of   from the M-H within the Gibbs algorithm. Then, using the method 

proposed by Chen and Shao (1999), the (1 ) 100−  % HPD intervals for   is given by 

( )* * [(1 )( )]
,

N i N i M N+ + + − −
  , where 

*i  is chosen so that  

( ) ( )( )* * * [(1 )( )][(1 )( )] ( ) [(1 )( )]
, N i N i M N N iN i N i M N N i N i M N M N

min  
+ + + − − ++ + + − − +   − − − −

  − =  + − . 

 

6. NUMERICAL ILLUSTRATION USING SIMULATED DATA 

 

This section deals with an extensive simulation study to investigate the performance of the classical and 

Bayesian estimation methods. For this purpose, we generate samples of different sizes, i.e. n=25, 50, 100, 

and 200 from the ExDLi distribution with four sets of parametric values as (0.4, 1.5), (0.4, 3), (0.8, 1.5), 

and (0.8, 3). All these combinations of true parameters and sample size are used to obtain classical as well 

as Bayesian estimates of the unknown model parameters. In frequentist point estimation, we obtain the 

MLEs along with their standard errors (SEs) through the NR method, and these values are reported in 

Table 7. Under classical interval estimation, we find the 95% ACIs for the unknown model parameters 

and the same is summarized in Table 7.  

In a Bayesian paradigm, under the squared error loss function (SELF), we compute the Bayes estimates 

with non-informative priors (NIPs) as well as informative priors (IP). For the Bayesian estimation with 

IPs, the prior PDFs for the parameters   and   are taken to be as 1 1( , )IBeta a b  and 

2 2( , )Gamma a b , respectively. The hyper-parameters in these prior PDFs are chosen in such a way 

that the mean of the priors’ PDF is approximately equal to the corresponding assumed value of the 

unknown parameter. On the contrary, all these hyper-parameters are equated to zero to obtain Bayes 

estimates with NIPs. To compute these aforesaid Bayesian estimates under such a setup, we generate 

11,000 realizations of the MCMC of   and  from their conditional posterior distributions given in 

Equations (4.8) and (4.9), respectively, using the M-H algorithm within the Gibbs sampler. The initial 

1000 burn-in values for each of the chains are discarded to remove the effects of the starting values of the 

parameters. Also, we store every 10th observation so that the autocorrelation of successive draws would 

diminish. The convergence diagnostics are performed through Geweke’s (Geweke, 1991) criterion, by 

selecting a 95% credibility level.  

After the successful convergence of each of the generated chains, we use these simulated posterior 

samples to obtain Bayes estimates with their associated posterior standard error (PSE) under the SELF,  

and they are listed in Tables 8 and 9. Using these generated MCMC, we also compute the HPD credible 

intervals for the unknown model parameters of the proposed distribution, and the same is presented in 

Tables 8 and 9. All the above numerical computations are performed using the open-source R 

programming language. The following fruitful conclusions can be drawn from the above simulation 

study: 

• We notice that as the sample size increases, the SE as well as the PSE of all the estimates tend to 

decrease. The same trend is observed in the case of the lengths of various confidence intervals. 

• Overall, Bayes estimates with IP outperform Bayes estimates with NIP and MLEs in terms of 

estimation errors. 

• The MLEs outperform Bayes estimates under NIPs because they have smaller estimation errors 

in the comparison of Bayes estimates with NIPs. 
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• In the case of interval estimation of unknown model parameters, the HPD credible interval with 

IP comes out to be a better interval estimate than the HPD credible interval under NIP and ACI in terms 

of the length of the CIs.  

• For both estimation procedures, the estimation of   is more sensitive than the estimation of  , 

because it produces a larger estimation error as compared to the other parameter. 

 

Table 7.  Simulation results for the MLEs for varying values of   and . 

( ),   n Parameter Estimate SE 
95% ACIs 

Lower Upper Width 

(0.4, 1.5) 

25 
  0.4007 0.077 0.275 0.5839 0.3089 
  1.6575 0.6515 0.7672 3.581 2.8138 

50 
  0.4332 0.0551 0.3376 0.5558 0.2182 
  1.4472 0.3946 0.8481 2.4695 1.6214 

100 
  0.4325 0.0404 0.3602 0.5193 0.1591 
  1.3189 0.2596 0.8967 1.9398 1.0431 

200 
  0.4052 0.0284 0.3531 0.4649 0.1118 
  1.4611 0.2085 1.1047 1.9325 0.8278 

(0.4, 3) 

25 
  0.3819 0.065 0.2736 0.533 0.2594 
  4.1974 1.8385 1.7789 9.9039 8.125 

50 
  0.429 0.0464 0.347 0.5303 0.1833 
  2.8846 0.8077 1.6663 4.9936 3.3273 

100 
  0.4218 0.0331 0.3616 0.492 0.1304 
  2.8677 0.5713 1.9407 4.2375 2.2968 

200 
  0.4067 0.0235 0.3632 0.4554 0.0922 
  2.9135 0.4132 2.2064 3.8471 1.6407 

(0.8,1.5) 

25 
  0.7839 0.035 0.7183 0.8555 0.1372 
  2.2867 0.8211 1.1313 4.6221 3.4908 

50 
  0.8231 0.022 0.7812 0.8673 0.0861 
  1.4108 0.3187 0.906 2.1967 1.2907 

100 
  0.817 0.0161 0.7861 0.8492 0.0631 
  1.4028 0.2252 1.0242 1.9214 0.8972 

200 
  0.8071 0.0117 0.7846 0.8303 0.0457 
  1.4943 0.1688 1.1974 1.8647 0.6673 

(0.8, 3) 

25 
  0.7837 0.0335 0.7206 0.8523 0.1317 
  4.7433 2.1371 1.9615 11.4705 9.509 

50 
  0.8214 0.0198 0.7835 0.8611 0.0776 
  2.6406 0.672 1.6035 4.3485 2.745 

100 
  0.8165 0.0141 0.7893 0.8447 0.0554 
  2.6686 0.4712 1.888 3.772 1.884 

200 
  0.8083 0.0105 0.788 0.8292 0.0412 
  2.8643 0.376 2.2145 3.7048 1.4903 

 

Table 8.  Simulation results for the Bayes estimates using non-informative priors for varying values of   

and . 

( ),   n Parameter Estimate SE 
95% HPD Intervals  

Lower Upper Width 

(0.4, 1.5) 

25 
  0.4091 0.0780 0.2691 0.5725 0.3033 

  1.7074 0.6963 0.5942 3.0725 2.4783 

50 
  0.4365 0.0557 0.3294 0.5447 0.2152 

  1.4726 0.4106 0.7379 2.2586 1.5207 

100 
  0.4337 0.0406 0.3580 0.5150 0.1570 

  1.3313 0.2656 0.8683 1.8799 1.0116 

200   0.4062 0.0286 0.3514 0.4618 0.1104 
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  1.4667 0.2128 1.0747 1.8862 0.8115 

(0.4, 3) 

25 
  0.3917 0.0636 0.2681 0.5128 0.2447 

  4.2856 1.9237 1.3238 8.0384 6.7146 

50 
  0.4329 0.0462 0.3451 0.5245 0.1794 

  2.9169 0.8286 1.5145 4.5797 3.0652 

100 
  0.4234 0.0330 0.3585 0.4861 0.1276 

  2.8882 0.5828 1.8270 4.0737 2.2467 

200 
  0.4076 0.0236 0.3623 0.4533 0.0910 

  2.9207 0.4188 2.1784 3.7859 1.6075 

(0.8, 1.5) 

25 
  0.7850 0.0350 0.7179 0.8535 0.1357 

  2.3680 0.8772 0.8626 4.0314 3.1688 

50 
  0.8240 0.0219 0.7839 0.8704 0.0865 

  1.4150 0.3254 0.8083 2.0384 1.2300 

100 
  0.8171 0.0160 0.7853 0.8478 0.0625 

  1.4092 0.2248 0.9974 1.8527 0.8553 

200 
  0.8073 0.0116 0.7856 0.8310 0.0454 

  1.4940 0.1702 1.1803 1.8396 0.6593 

(0.8, 3) 

25 
  0.7878 0.0315 0.7237 0.8471 0.1235 

  4.7824 2.0602 1.5832 8.8996 7.3164 

50 
  0.8230 0.0198 0.7826 0.8604 0.0778 

  2.6280 0.6836 1.4390 4.0055 2.5665 

100 
  0.8168 0.0143 0.7884 0.8440 0.0556 

  2.6800 0.4872 1.8005 3.6720 1.8715 

200 
  0.8086 0.0103 0.7881 0.8282 0.0401 

  2.8628 0.3687 2.1497 3.5650 1.4153 

 

Table 9.  Simulations results for the Bayes estimates using informative priors for varying values of   

and . 

( ),   n Parameter Estimate SE 
95% HPD Intervals 

Lower Upper Width 

(0.4, 1.5) 

25 
  0.4097 0.0414 0.3347 0.4945 0.1597 

  1.5366 0.2404 1.0957 2.0278 0.9321 

50 
  0.4229 0.0347 0.3612 0.4979 0.1367 

  1.5074 0.2192 1.0793 1.9226 0.8433 

100 
  0.4180 0.0292 0.3621 0.4750 0.1129 

  1.4280 0.1879 1.0626 1.7773 0.7147 

200 
  0.4036 0.0229 0.3592 0.4481 0.0889 

  1.4801 0.1628 1.1752 1.8026 0.6274 

(0.4, 3) 

25 
  0.4180 0.0334 0.3575 0.4869 0.1294 

  3.0960 0.3701 2.3717 3.8311 1.4593 

50 
  0.4211 0.0270 0.3699 0.4750 0.1051 

  2.9979 0.3449 2.3564 3.6724 1.3160 

100 
  0.4159 0.0220 0.3734 0.4594 0.0860 

  2.9767 0.3198 2.3664 3.5994 1.2329 
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200 
  0.4043 0.0176 0.3702 0.4390 0.0687 

  2.9681 0.2768 2.4432 3.5160 1.0728 

(0.8, 1.5) 

25 
  0.8096 0.0214 0.7686 0.8519 0.0833 

  1.6282 0.2527 1.1423 2.1166 0.9742 

50 
  0.8190 0.0168 0.7859 0.8519 0.0660 

  1.4710 0.2071 1.0691 1.8602 0.7912 

100 
  0.8142 0.0134 0.7883 0.8405 0.0522 

  1.4489 0.1725 1.1152 1.7882 0.6729 

200 
  0.8069 0.0104 0.7876 0.8284 0.0407 

  1.4977 0.1431 1.2307 1.7801 0.5494 

(0.8, 3) 

25 
  0.8103 0.0164 0.7789 0.8430 0.6410 

  3.1126 0.3731 2.3773 3.8293 1.4520 

50 
  0.8142 0.0130 0.7910 0.8415 0.0506 

  2.9266 0.3367 2.2871 3.5869 1.2999 

100 
  0.8111 0.0105 0.7897 0.8309 0.0412 

  2.8842 0.3034 2.3123 3.4820 1.1697 

200 
  0.8068 0.0084 0.7907 0.8234 0.0328 

  2.9318 0.2699 2.3983 3.4533 1.0551 

 

7. REAL DATA ANALYSIS 

 

7.1 Statistical analysis of the real datasets 

 

In this section, we analyze four real-world datasets to demonstrate the applicability of the ExDLi model. 

Several standard criteria are used to compare fitted models, including the negative log-likelihood (-LL), 

the Akaike information criterion (AIC), the corrected AIC (CAIC), the Bayesian information criterion 

(BIC), the Hannan Quinn information criterion (HQIC), and the Chi-square (χ2) statistic with its 

associated P-value. The descriptive summaries of the datasets are shown in Table 3. From this table, we 

can see that the IOD of datasets I-II is greater than 1 whereas the IOD of datasets III-IV is less than 1, 

indicating that the considered datasets I-II can only be modelled by discrete distributions with over-

dispersion phenomena, and datasets III-IV can only be modelled by discrete distributions with under-

dispersion phenomena. Table 11 lists the competitive models for the ExDLi model.  

Table 10: Descriptive statistics of the Datasets. 

Data n Mean Variance Skewness Kurtosis IOD COV 

Dataset I 100 0.6700 1.1526 1.5715 4.5320 1.7203 1.6024 

Dataset II 110 1.3909 6.1118 2.2612 7.8066 4.3941 1.7774 

Dataset III 156 0.9936 0.7419 0.8023 3.5038 0.7467 0.8669 

Dataset IV 40 6.3250 3.6096 -0.5893 2.6273 0.5707 0.3004 

 

Table 11: The competitive models of the ExDLi model. 

Distribution 
Abbreviatio

n 
Author(s) 

Geometric Geo - 

Discrete Lindley DLi 
Gómez-Déniz and Calderín-Ojeda 

(2011) 

Discrete Lindley-Two Parameter DLi-II Hussain et al. (2016) 

Discrete Pareto DPa Krishna and Pundir (2009) 

Discrete Linear Failure Rate DLFR Kumar et al. (2017) 
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Discrete Inverse Weibull DIW Jazi et al. (2010) 

Discrete Log-Logistic DLog-L Para and Jan (2016b) 

Discrete Burr-XII DB-XII Para and Jan (2016a) 

Discrete Lomax DLo Para and Jan (2016a) 

Discrete Burr-Hatke  DBH El-Morshedy et al. (2020) 

Generalized Geometric GGeo Gómez-Déniz (2010) 

Binomial  Binomial - 

Discrete Generalized Exponentiated Type 

II 
DGE2 Nekoukhou et al. (2013) 

Type I Discrete Quasi Xgamma  DQX1 Mazucheli et al. (2020) 

Type II Discrete Quasi Xgamma  DQX2 Mazucheli et al. (2020) 

Discrete Weibull DW Khan et al. (1989) 

Discrete Generalized Odd Lindley–

Weibull  
DGOL-W Aryuyuen et al. (2020) 

Discrete Generalized Rayleigh  DGR Alamatsaz et al. (2016) 

Discrete Burr DB Krishna and Pundir (2009) 

Poisson Xgamma PX Para and Jan (2020) 

The New Discrete Lindley TNDL Al-Babtain et al. (2020) 

Natural Discrete Lindley NDL Al-Babtain et al. (2020) 

Discrete Poisson-Lindley DPL Sankaran (1970) 

Dataset I: The first dataset consists of the recordings of the total number of carious teeth among the four 

deciduous molars in a sample of 100 children between 10 and 11 years old (Krishna and Pundir, 2009). 

Under these data, the fitting summary based on the MLEs for proposed and rival models is provided in 

Table 12. 

Table 12: The MLEs and goodness of fit statistics for different models under dataset I. 

X O.Fr. 
E.Fr. 

ExDLi Geo DLi DLi-II DPa DLFR DIW DLogL 

0 64 63.57 59.88 57.13 59.88 69.04 59.9 63.3 62.73 

1 17 19.73 24.02 26.88 24.02 15.37 24.01 22.48 22.42 

2 10 9.13 9.64 10.45 9.64 6.01 9.63 6.44 7.01 

3 6 4.2 3.87 3.71 3.87 3.01 3.86 2.76 2.98 

>=4 3 3.36 2.59 1.83 2.59 6.57 2.6 5.02 4.86 

Total 100 100 100 100 100 100 100 100 100 

MLE 
0.373 0.401 0.274 0.401 0.184 0.401 0.633 0.745 

0.485 - - 0.001 - 1 1.576 1.768 

− LL 111.425 112.474 113.68 112.475 116.83 112.47 116.275 115.47 

AIC 226.85 226.947 229.36 228.95 235.66 228.94 236.55 234.94 

CAIC 226.974 226.988 229.39 229.073 235.7 229.063 236.673 235.063 

BIC 232.061 229.552 232.96 234.16 238.27 234.15 241.76 240.15 

HQIC 228.959 228.001 230.41 231.058 236.72 231.048 238.658 237.048 

χ2 0.737 3.347 6.638 3.347 3.225 3.34 3.503 2.783 

DF 1 2 2 1 2 1 1 1 

P-value 0.692 0.188 0.036 0.067 0.199 0.068 0.061 0.095 

*O.Fr.: Observed frequency and E.Fr.:Expected frequency 



 179 

Dataset II: The second dataset is the number of deaths due to horse kicks in the Prussian army between 

1875 and 1894 (Klugman et al., 2012). The fitting summary for these data using MLEs is recorded in 

Table 13. 

Table 13: The MLEs and goodness of fit statistics for different models under dataset II. 

X O.Fr. 
E.Fr. 

ExDLi DLi DLi-II Geo DW DB-XII DLo DBH GGeo DLogL 

0 65 64.96 40.25 46.03 45.98 63.64 63.32 61.89 61.94 62.79 63.19 

1 14 14.45 29.83 26.77 26.76 17.45 18.19 21.01 20.06 19.66 20.1 

2 10 9.02 18.36 15.57 15.57 9.3 9.29 9.65 9.65 9.43 8.64 

3 6 6.13 10.35 9.05 9.06 5.68 5.49 5.24 5.52 5.43 4.66 

4 4 4.31 5.53 5.27 5.28 3.73 3.52 3.17 3.49 3.46 2.86 

5 2 3.08 2.86 3.06 3.07 2.56 2.39 2.06 2.34 2.35 1.92 

6 2 2.23 1.44 1.78 1.79 1.82 1.69 1.42 1.65 1.66 1.37 

7 2 1.61 0.71 1.04 1.04 1.32 1.23 1.02 1.19 1.21 1.02 

8 1 1.17 0.35 0.6 0.61 0.98 0.92 0.76 0.89 0.9 0.79 

9 1 0.85 0.17 0.35 0.35 0.74 0.7 0.58 0.67 0.68 0.62 

10 1 0.62 0.08 0.2 0.21 0.57 0.55 0.46 0.52 0.52 0.5 

11 2 1.57 0.07 0.28 0.28 2.21 2.71 2.74 2.08 1.91 4.33 

Total 110 110 110 110 110 110 110 110 110 110 110 

-LL 166.95 189.10 178.80 178.800 167.90 168.80 170.50 168.80 168.56 171.72 

MLE 

0.673 0.436 0.581 0.582 0.421 0.003 0.150 0.874 0.80 0.780 

0.236 - 0.001 - 0.629 12.75 1.390 - 0.188 1.208 

- - - - - 0.720 - - - - 

AIC 337.90 380.20 361.50 359.50 339.90 343.50 344.90 339.79 341.11 347.43 

CAIC 338.01 380.30 361.60 359.60 340.10 343.80 345.10 339.83 341.23 347.55 

BIC 343.30 382.90 366.90 362.20 345.40 351.60 350.40 342.49 346.51 352.835 

HQIC 340.09 381.30 363.70 360.60 342.20 346.80 347.20 340.89 343.30 349.63 

χ2 0.146 43.480 22.890 22.840 1.040 2.469 3.316 2.613 2.461 2.830 

DF 3 4 3 4 3 3 3 4 3 3 

P-value 0.986 <0.01 <0.01 <0.01 0.792 0.48 0.345 0.625 0.482 0.419 

Dataset III: The third dataset (Ridout and Besbeas, 2004) contains the number of strikes in the UK coal 

mining industries (156 observations) over four consecutive week periods from 1948 to 1959.  The values 

of fitting measures with MLEs for the ExDLi model and other rival models are given in Table 14. 

Table 14: The MLEs and goodness of fit statistics for different models under dataset III. 

X O.Fr. 

E.Fr. 

ExDLi Binomial DGE2 DQX1 DQX2 DW 
DGOL-
W 

DGR DB 

0 46 46.19 46.78 46.08 46.0551 46.028 48.50 46.7 47.50 47.89 

1 76 74.82 65.81 75.75 74.0515 74.9294 68.70 73.27 69.32 80.87 

2 24 26.90 32.62 26.11 28.2635 26.9609 31.10 28.06 31.82 18.28 

3 9 6.42 7.19 6.50 6.3074 6.5022 6.84 6.65 6.67 6.07 

4 1 1.67 3.60 1.56 1.3225 1.5795 0.86 1.32 0.69 2.89 

Total 156 156 156 156 156 156 156 156 156 156 

-LL 
187.486

3 

188.957

0 

187.534

0 
187.56 187.395 

188.183

2 
187.3904 

188.329

0 

192.210

0 

MLE 0.16447 4.0000 4.7994 0.1758 -0.1097 1.9017 55.3489 0.9415 4.6543 



 180 

 

Dataset IV: This dataset represents 40 observations of time-to-failure (103h) of the turbocharger of one 

type of engine (Xu et al., 2003). Table 15 shows the values of fitting measures using MLEs for the ExDLi 

and other competing models. 

Table 15: The MLEs and goodness of fit statistics for different models under dataset IV. 

X O.Fr. 
E.Fr. 

ExDLi Binomial DGE2 PX TNDL NDL DPL 

0 0 0.00 0.01 0.00 3.88 2.31 3.26 3.39 

1 0 0.02 0.08 0.01 3.71 3.51 3.80 3.82 

2 2 0.49 0.46 0.46 3.67 4.00 3.93 3.89 

3 2 2.52 1.68 2.62 3.59 4.05 3.82 3.76 

4 2 5.54 4.08 5.72 3.43 3.85 3.56 3.49 

5 7 7.35 7.07 7.37 3.20 3.51 3.23 3.17 

6 6 7.16 8.94 7.00 2.91 3.11 2.86 2.81 

7 8 5.76 8.30 5.57 2.59 2.70 2.50 2.47 

8 9 4.12 5.61 3.99 2.26 2.31 2.16 2.14 

9 4 7.04 3.77 7.26 10.76 10.67 10.89 11.07 

Total 40 40.00 40.00 40.00 40.00 40.00 40.00 40.00 

-LL 87.172 -81.9223 87.890 107.762 105.574 108.369 108.939 

MLE 
0.54280 12.1662 0.608 0.3962 2.402e-01 0.22319 0.27906 

9.15391 0.5199 17.317 - 4.358e+05 - - 

AIC 178.344 167.8447 179.780 217.524 215.149 218.738 219.879 

CAIC 178.668 171.2225 180.110 217.630 215.473 218.843 219.984 

BIC 181.722 168.1690 183.160 219.213 218.527 220.427 221.568 

HQIC 179.565 169.0660 181.010 218.135 216.370 219.349 220.490 

χ2 2.149 2.3859 2.380 53.055 19.780 23.485 24.173 

DF 2 2 2 3 2 3 3 

P-value 0.341 0.3033 0.304 0.000 0.000 0.000 0.000 

 

It is clear from these examples of real datasets that, in contrast to the distributions shown in Table 11, the 

suggested model not only provides high P-values but also the lowest AIC, CAIC, BIC, HQIC, and χ2 

values. As a result, it demonstrates that, compared to the considered rival distributions, the suggested 

model suffers from the least amount of information loss.  

 

7.2 Bayesian analysis 

 

3.38659 0.2484 0.2247 2.3016 2.1335 0.3109 5.5369 0.7172 0.5941 

- - - - - - 3.0603 - - 

- - - - - - 0.2562 - - 

AIC 
378.972

7 

381.914

0 

379.068

0 
379.12 378.79 

380.366

4 
382.7808 

380.658

0 

388.420

0 

CAIC 
379.051
1 

381.992
4 

379.146
4 

379.198
4 

378.868
4 

380.444
8 

394.9802 
380.736
4 

388.498
4 

BIC 
385.072

4 

388.013

7 

385.167

7 
385.22 384.89 

386.466

1 
383.0457 

386.757

7 

394.519

7 

HQIC 
381.450
1 

384.391
4 

381.545
4 

381.597
4 

381.267
4 

382.843
8 

387.7357 
383.135
4 

390.897
4 

χ2 0.7832 6.2021 1.3347 1.92 1.51 3.2495 1.2167 3.5623 4.8160 

DF 1 2 1 2 2 3 1 1 1 

P-value 0.3762 0.1022 0.8555 0.383 0.47 0.3547 0.2700 0.4685 0.3067 
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In this sub-section, we perform a Bayesian analysis for the considered datasets. In this estimation method, 

as we have no prior information regarding the unknown parameters, we use non-informative priors for the 

unknown parameters. Using the same procedure as we did in the simulations (see Section 6), we calculate 

the Bayes estimates with PSE, along with their standard errors (SEs). These results are summarized in 

Table 16. We also report the 95% ACI and HPD intervals for the unknown parameters in Table 17. From 

these tables (Tables 16 and 17), we obtain similar conclusions as we have observed in Section 6. 

Table 16: The classical and Bayes estimates with their SEs for all the datasets under ExDLi distribution. 

Dataset No. 

MLE and SE Bayes Estimate and PSE 

        

MLE SE MLE SE Bayes PSE Bayes PSE 

Dataset I 0.3730 0.0650 0.4850 0.1420 0.3764 0.06561 0.4994 0.1496 

Dataset II 0.6732 0.0498 0.2355 0.0499 0.6752 0.0488 0.2362 0.0510 

Dataset III 0.1645 0.0263 3.3866 0.7506 0.1666 0.0259 3.4297 0.7522 

Dataset IV 0.5428 0.0376 9.1539 3.2568 0.5534 0.0369 8.6245 2.9981 

Table 17: The classical and HPD confidence intervals with their width for all the datasets under the 

ExDLi distribution. 

Dataset No. 

ACI and Width HPD interval and Width 

        

ACI Width ACI Width HPD Interval Width HPD Interval Width 

Dataset I 
[0.2648, 

0.526] 
0.2612 

[0.2735, 

0.8594] 
0.5859 [0.2630, 0.5130] 0.2499 [0.2360, 0.7933] 0.5572 

Dataset II 
[0.5836, 
0.7766] 

0.1930 
[0.1555, 
0.3567] 

0.2012 [0.5763, 0.7689] 0.1925 [0.1438, 0.3381] 0.1943 

Dataset III 
[0.1205, 

0.2245] 
0.1040 

[2.2013, 

5.2101] 
3.0088 [0.1169, 0.2171] 

0.1001 

 
[2.0056, 4.8629] 2.8572 

Dataset IV 
[0.4739, 
0.6217] 

0.1478 
[4.5624, 
18.365] 

13.8029 [0.4792, 0.6233] 0.1440 [3.6360, 14.5558] 10.9198 

 

8. CONCLUSIONS 

 

In this article, a new discrete distribution named the exponentiated discrete Lindley distribution was 

elaborated and studied in depth. We have observed that the proposed distribution has great flexibility in 

terms of fitting, as it is capable of modelling equi-, over-, under-dispersed, positively skewed, and 

leptokurtic data. In addition, the ExDLi distribution can be used quite effectively for modelling a wide 

variety of failure data because its hazard rate function can take diverse shapes such as increasing, 

decreasing, increasing–decreasing–increasing, unimodal, bathtub, and J-shaped. In this study, several 

important statistical properties of the ExDLi distribution were discussed and numerically examined. In 

both classical and non-classical setups, the method of maximum likelihood and the Bayesian approach 

were utilized to estimate the unknown parameters of the proposed model. An extensive Monte Carlo 

simulation analysis was conducted to evaluate the behavior of the above-stated estimation methods. The 

results of simulation studies show that these two estimation procedures perform quite satisfactorily in 

estimating unknown parameters of the model. The flexibility of the ExDLi distribution was also 

exemplified by using four distinctive and well-referenced real datasets, showing that it outperforms 

valuable competitors. Hence, it is reasonable to apply it for the modelling count or failure data in various 

fields, including reliability, insurance, medicine, economics, demography, etc. Possible extensions of this 

work include bivariate count modelling, mixture distributions involving the ExDLi distribution, and other 

count regression models. These perspectives need more investigation, which we will consider in future 

work. 
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