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ABSTRACT. 

We developed an index for measuring the achievement of students of Computer Sciences. The index was modeled by a 
regression equation. Different models were developed. Their behavior was evaluated for deciding which equation leaded to more 

accurate forecasting. 
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RESUMEN 

Hemos desarrollado un índex pare medir el aprovechamiento de los estudiantes de  Ciencias de la Computación. Este es 

modelado mediante una  regresión. Diferentes modelos se proponen. Su comportamiento fue  evaluado para decidir que   

ecuación produce las predicciones mas exactas. 
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1. INTRODUCTION 

 

Education is an investment of the students. Hence they are interested in knowing the expected behavior of 

them when going into the labor market. The educational institutions are involved with different projects with 

the industry where students develop professional practice. It is of interest predicting the achievements of 

students using the information on their results up to the first years of college. We consider the development of 

an index for predicting the achievement of students. This index will be used by the students for considering 

their expectations, by the institutions for classifying the students in terms of their potentialities and by the 

industry for recruiting new workers. 

We consider that when finishing the first years at college is possible to predict the degree of achievements of 

each student. The experts considered the variables which should be used, at a college devoted computer 

science, will be the notes obtained at High School, the classification tests and the notes obtained in the first 

years. 

The degree of achievement is given by the criteria of a team of professors and employers. Professors consider 

the successfulness of the students considering their skills and employers give an evaluation after a training 

period.  See recent research in the theme as Chen-Liao  (2013), .Pratiwi et al. (2021), Lee  (2021), Liem 

(2021), Davison (2015), Regenwetter-Ahmed (2022), Incekara  et al., (2017) among others. 

The relationships among achievement and the obtained notes suggest using a regression model. Using the 

information provided by students, that obtained their degrees in the course 2009-2012 we investigated the 

goodness of fitting a regression equation for forecasting the achievement. The normal based models are of 

common use, see Anderson (2003) and Johnson-Wichern. (2002). Due to the characteristic of the involved 

variables we considered not only the usual Normal based model but also the Laplace regression model.  

Considering that the residuals are Laplacians is not commonly studied. Section 2 is devoted to presenting the 

needed theoretical results on the Laplace distribution. Section 3 is concerned with details on multiple 

regression fitting and Section 4 presents the study developed for fitting the regressions. The results of the 

course 2012 were used for evaluating the behavior of the developed models.   
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2. SOME ASPECTS OF LAPLACE DISTRIBUTION 

 

The Laplace or double exponential distribution arises commonly in problems supposedly normal in which the 

tails are heavier. That is the case in economics where the man intervenes in the process that generates random 

variables.  

The classic Laplace density function (CLDF) is given by𝐿(, ) = 𝑓(𝑥|𝜇, 𝜏) =
𝑒−|𝑥−𝜇|/𝜏

2𝜏
, 𝜇, 𝑥 ∈ , 𝜏 ∈ + 

It is worth mentioning that 𝐶𝐿𝐷𝐹 = 𝑋(𝑡) =  
𝑒𝑖𝑡𝜇

1+𝜏2𝑡2
, 𝑡 is the characteristic function and 𝑀𝑋(𝑡) = (1 −

𝑡2)−1,  is the moment generating function. Hence, is easily derived that E(X)=,  V(X)= 22 and the mean 

deviation  is MD(X)=EX-=. Therefore MD(X)/V(X)=/20,71. 

In the special case X L(0,1) we deal with the standard (S)CLDF. Reparametrizing it accordingly with the 

usual normal notation we may write  

𝐿(,) = 𝑓(𝑥|𝜇,) =
𝑒−√2|𝑥−𝜇|/

√2
, 𝜇, 𝑥 ∈ , ∈ + 

L(, ) is identified as “Laplace distribution” (LDF).  

Calculating the moments of a CLDF we have that the coefficient of skewness 

𝛾1 =
𝐸(𝑋−𝐸(𝑋))3

√𝐸(𝑋−𝐸(𝑋))2
3/2 = 0, 𝛾2 =

𝐸(𝑋−𝐸(𝑋))4

𝑉(𝑋)2
− 3 = 3. 

Therefore, this distribution is symmetric and leptokurtic. See Kotz et al. (2001) for a detailed discussion of the 

Laplace distribution. 

The CLDF arouses as the difference of two exponential variables W and W*. Hence the SCLDF is a result of 

the difference of two standard exponentially distributed rv`s. They are also generated by the product of a 

standard normal Z with a standard exponential W0, a Rayleigh, or with T-12, T . Then we have that the 

distribution is the brittle fracture density function𝑓𝑇(𝑥) =
2𝑒

1

𝑥2

𝑥3
.  

It is worth noting that exponential, Rayleigh and bi-fracture distributions are important in modeling the 

behavior of technical devices. As W0 =log P, P a Pareto rv, X=log P/Q is SCLDF, if P and Q are Pareto. The 

same result follows when P and Q are uniform rv. The connection with economical issues is also derived from 

this fact. The CLDF is easily derived from any of these SCLDF`s.  

It is interesting that if we have a geometric rv p with E(p)=1/p, p(0,1), Xi, i=1,…, non-degenerate, 

symmetric and iid rv with common variance 2>0 and holds the distribution equality 𝑝
1

2∑ 𝑋𝑖
p

𝑖=1
=𝑑 𝑋0 

Then X0L(0, 2). When p is independent of the Xi`s and (𝑝
1

2𝛾 + 𝑜(𝑝1/2))∑ 𝑋𝑖 →
𝑑p

𝑖=1
𝑋0. We have that  

𝑋0~𝐿(0, 𝛾
2𝜎2). 

The last two representations of Laplace rv`s will play an important role in the sequel. In the standard bivariate 

case the characteristic function is 

𝑋(𝑡1, 𝑡2) =  
1

1 +½(𝜎1
2𝑡1
2 + 𝜎2

2𝑡2
2) + 𝜌𝜎1 𝑡1 𝜎2 𝑡2

, 𝑋2, 𝜎𝑖 > 0, 𝑖 = 1,2;  𝜌 ∈ [0,1] 

Clearly 

 𝐸(𝑋) = (
0
0
) , 𝑉(𝑋) = 𝐸(𝑋𝑋𝑇) = [

𝜎1
2  𝜌𝜎1 𝜎2
𝜌𝜎1 𝜎2   𝜎2

2
] 

and in the case Xk,  

𝐸(𝑋) = 0⃗ ∈ 𝑘, 𝑉(𝑋) = 𝑘×𝑘 

𝑘×𝑘  is the covariance matrix. 

 

3. MODELING ACHIEVEMENT 

 

The behavior of the achievements depends on a subjective evaluation made by a commission of potential 

employers and professors. They reached a consensus and an evaluation Y was given to each student. The 

control variables were the notes obtained in:  

1. Classification exam in Hard Sciences 

2. Classification exam in Soft Sciences 

3. Overall High School in Hard Sciences 
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4. Overall High School in Soft Sciences 

5. Average in Mathematics matters in the first two years in college 

6. Average Computer Science matters in the first two years in college 

The notes moved within (30, 100). The data provided the vector Yi, Xi1,…,Xi6. The relationship among them 

was supposed to be 

𝑌𝑖 = (𝑋𝑖1, … , 𝑋𝑖6) + 𝜀𝑖 , 𝑖 = 1, … . , 𝑛 

Definition: (𝑋𝑖1, … , 𝑋𝑖6) is an achievement index. 

We consider that the relation holds for some  and i follows a certain distribution. We look for an estimation 

of the index. 

The usual assumption is that  follows a Gaussian distribution. We considered that an alternative is 

considering a Laplacian. The motivation is given by the fact that a Laplacian can be viewed as generated by a 

function of a mixture of random variables, as quoted in the second section. Note that the residuals are 

Standard Laplacians one of the following probabilistic representation is valid that 𝜀~𝐿(0, 𝜎2) 𝑖𝑓   

𝜀 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑍√2𝜖,   𝑍 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝜖 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑍𝑅,   𝑍 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑅 𝑖𝑠 𝑎 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ
𝑍

𝐵
√2  ,   𝑍 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝐵 𝑖𝑠 𝑎 𝑏𝑟𝑖𝑡𝑡𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒

𝜖 −𝑊, 𝜖 𝑎𝑛𝑑 𝑊 𝑎𝑟𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑠
𝐼𝜖, 𝐼 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 + 𝑜𝑟 − 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑙𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑛𝑑  𝜖 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑙𝑜𝑔 (
𝑃

𝑄
) ,   𝑃 𝑎𝑛𝑑 𝑄 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑃𝑎𝑟𝑒𝑡𝑜 𝑡𝑦𝑝𝑒 𝐼

𝑙𝑜𝑔 (
𝑈

𝑄
) ,   𝑈 𝑎𝑛𝑑 𝑄 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑈𝑛𝑖𝑓𝑜𝑚 𝑖𝑛 (0,1)

𝑍1𝑍2 − 𝑍3𝑍4,   𝑍𝑖 , 𝑖 = 1, .2,3,4  𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  

 

Note that in addition,  if we take the geometric RV p with E(p)=1/p, p(0,1), some unknown symmetric non 

degenerate random effects Qi, t=1,…,  with common variance 2>0, we may model the residuals as a sum of 

random effects and using 𝑝
1

2∑ 𝑄𝑡
p

𝑡=1 =𝑑 𝜀. We accept that L(0, 2).  Under the independence of p and the 

random effects 

(𝑝
1
2𝛾 + 𝑜(𝑝1/2))∑𝑄𝑡 →

𝑑

p

𝑡=1

 

and ~𝐿(0, 𝛾2𝜎2). 
Therefore, the variety of mixtures of distributions generating the residuals is larger than considering simply 

that N (0, 2). 

Clearly the evaluators considered the values of the notes and information on the results of the practice in 

institutions of the students during their studies.  is considered as a noise. We considered that the set of 

indexes of achievements is a random vector. Its distribution may be considered as a multivariate normal. The 

justification that we deal with a multivariate Laplacian may come from the assumption that.  

𝑌 =𝑑 𝜇𝜖 + 𝑍√𝜖, 𝜖~ exp(1) , 𝑍~𝑁𝑘(0,);  𝜖 𝑎𝑛𝑑 𝑍 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  

Another justification is to consider that the stability property given by considering the existence of a 

geometrically distributed RV p, independent of the Xi`s such that  

𝑎𝑝∑(𝑋𝑖 + 𝑏𝑝) →
𝑑

p

𝑖=1

𝑌 𝑎𝑠 𝑝 → 0; 𝑎𝑝 > 0, 𝑏𝑝 ∈ 𝑘
 

holds 

The condition for accepting that the regression is linear is identical to those sustaining the model in the 

Gaussian case; see Kotz et al. (2001). The density of Y is 

𝑔 (𝑦) =
exp (𝑦𝑇−1𝜇) (1 +½𝜇𝑇−1𝜇)

𝑑
2−1

(2𝜋)𝑘/2||1/2
∫ exp (−

𝑎2

4𝑧
− 𝑧) 𝑧

−
𝑑−2
2
−1

𝑑𝑧
∞

0

 

𝑎 = √2 + (𝜇𝑇−1𝜇) (𝑦𝑇−1𝑦) 



 151 

p is independent of the Xi`s . 

 

4. PREDICTION OF THE ACHIEVEMENT INDEX 

 

Consider a linear regression model  

(𝑋𝑖1, … , 𝑋𝑖6) = ∑ 𝐵𝑡
𝑇
𝑡=0 𝜑𝑡(𝑋𝑖1, … , 𝑋𝑖6), 𝑖 = 1,… . , 𝑛. 

We consider adjusting the parameters of the model function to best fit a data set. A common assumption is 

that the distribution of the errors is a Normal distribution with zero-expectation, conditional on the 

independent variables, uncorrelated and having equal variances. In such cases the best linear unbiased 

estimator of any linear combination of the observations is obtained solving the L2 optimization problem  

𝑀𝑖𝑛𝐵1,…,𝐵𝑇  {∑
𝑛
𝑖=1 𝜀𝑖

2 = ∑ (𝑌𝑖 −
𝑛
𝑖=1 ∑ 𝐵𝑡

𝑇
𝑡=0 𝜑𝑡(𝑋𝑖1, … , 𝑋𝑖6))

2} = ‖𝑌 − 𝑋 𝐵‖
2
,. 

The solution of this problem leads to the well known least-squares estimators 

�̂�𝑙𝑠𝑁 = (𝑋
𝑇𝑋)

−1
𝑋𝑇𝑌 

See Kotz et al. (2001). 

Under the assumption of normality they are also maximum likelihood estimators. The residual vector is 

𝜀�̂� = 𝑌 − 𝑋 �̂�𝑙𝑠𝑁 

When we deal with Laplace distributed errors the LS problem is essentially the same and 

�̂�𝑙𝑠𝐿 = (𝑋
𝑇𝑋)

−1
𝑋𝑇𝑌 

 is the LS-estimator. 

The hypotheses of Gauss-Markov Theorem are valid in both cases, but the regression parameters estimator 

and the residuals are not independent if they have a Laplace distribution.  

An alternative model  is obtained by considering a L1 optimization problem 

𝑀𝑖𝑛𝐵1,…,𝐵𝑇  {∑ |𝜀𝑖|
𝑛
𝑖=1 = ∑𝑛𝑖=1 |𝑌𝑖 − ∑ 𝐵𝑡

𝑇
𝑡=0 𝜑𝑡(𝑋𝑖1, … , 𝑋𝑖6)|},. 

This is known as least absolute deviations (LAD) or Least Absolute Errors (LAE), Least Absolute Value 

(LAV). Though it is structurally similar to the L2 problem it poses a different computation problem. Its 

solution leads to the maximum likelihood estimate if the errors have a Laplace distribution.  The computation 

of the regression parameters has been studied in detail for decades. The robustness of LAD under certein 

circumstances has been proved, see Thanoon (2015) an Chen-Derezi´nski (2021). Barrodale (1973) has 

pointed out how LAD does not have an analytical solving method and that iterative methods are needed. He 

proposed an algorithm. Osborne (1987) developed another algorithm which was thoroughly used. Nowadays, 

some usual techniques available for solving LAD are: 

• Simplex-based methods 

• Iteratively re-weighted least squares 

• Wesolowsky’s direct descent method 

• Li-Arce’s maximum likelihood approach, Li-Arce (2004). 

Simplex-based methods are commonly used as they are available in standard optimization software packages. 

For LAD there are not inferential results as those available for the LS problem where we may derive 

confidence ellipsoid �̂�𝑙𝑠𝐿for using the F-distribution. In the LS case we have for a confidence coefficient  the 

confidence region 

(𝑏 − �̂�𝑙𝑠𝐿)
𝑇𝑋𝑇𝑋(𝑏 − �̂�𝑙𝑠𝐿) ≤ 𝑘

 𝜀̂𝑇
𝐿
 𝜀�̂�

𝑛 − 𝑘
𝐹𝑘,𝑛−𝑘(1 − 𝛼) 

We are able to forecast the index of achievement of a student with notes  𝑋0 = (𝑋01, … , 𝑋06)
𝑇   using the 

regression equation fitted:  

�̂�0 = 𝑋0
𝑇 �̂�  

As both LS- estimators satisfy the Gauss-Markov hypothesis, for the Normal and the Laplace cases, this 

prediction is the Best Linear Unbiased Estimator of Y0  and 

𝑡0
√(𝑛 − 𝑘)(𝑌0 − 𝑋0

𝑇 �̂� )

√(𝜀̂𝑇  𝜀̂ ) (1 + 𝑋0
𝑇(𝑋𝑇𝑋)−1𝑋0

𝑇)

 

has a T-Student distribution with n-k degrees of freedom. 

In some situations is needed to establish some constraints. A particular study was developed by  of  Shi-Lukas 

(2002). 

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Uncorrelated
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Unbiased
http://en.wikipedia.org/wiki/Maximum_likelihood_estimator
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Laplace_distribution
http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/Iteratively_re-weighted_least_squares
http://en.wikipedia.org/w/index.php?title=Mingren_Shi&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Mark_A._Lukas&action=edit&redlink=1
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Definition. A prediction of the achievement index of a student with note 𝑋0 = (𝑋01, … , 𝑋06)
𝑇  is  �̂�0 =

𝑋0
𝑇 �̂� . 

 

There are 3 ways of assessing to our college: 

1. Public School 

2. Private School 

3. Grant form the government 

We considered a model for each source of High School graduates and for the whole group considered of 319 

students.  The structure is given in the following table 

Table 1. Number of graduate students 

Source 2008 2010 2011 total 

Public School 32 27 44 103 

Private School 29 21 32 82 

Grants 42 48 44 134 

total 103 96 120 319 

 

The initial model considered used as controlled variables 𝑋 = (𝑋1, … , 𝑋6)
𝑇    and the cross products of 

degree up to 4. The regression equations obtained were: 

 

1. LS under the Normal model 

𝑃𝑢𝑏𝑙𝑖𝑐 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 25,1 − 0,94𝑋1 − 0,99𝑋2 − 1,02𝑋3 + 1,64𝑋4 + 2,64√𝑋1𝑋3 −  1,05
𝑋5
𝑋6

 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 38,2 + 0,18𝑋3 + 0,27𝑋4 + 3,72√𝑋4/𝑋3  

𝐺𝑟𝑎𝑛𝑡𝑠: �̂� = 7,88 + 0,29𝑋1 + 0,17𝑋2 + 0,12𝑋3 + 0,09𝑋4 + 0,11√𝑋4𝑋5/𝑋1 

𝑇𝑜𝑡𝑎𝑙: �̂� = 16,3 + 0,26𝑋4 + 0,07𝑋5 + 0,48√𝑋6 

Note that Classification exam in Hard Sciences is unimportant for private Schools and in the population 

model. It works negatively in public schools. A similar behavior is present in Classification exam in Soft 

Sciences. The meaning of the cross variables must motivate further pedagogical research. 

 

2. LS under the Laplace model 

𝑃𝑢𝑏𝑙𝑖𝑐 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 36,6 − 1,02𝑋1 − 1,12𝑋2 + 0,87𝑋3 + 0,23𝑋4 + 1,62√𝑋4/𝑋3 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 59,9 + 0,07𝑋3 + 0,12𝑋4 + 0,29√𝑋6𝑋5  

𝐺𝑟𝑎𝑛𝑡𝑠: �̂� = 11,74 + 0,10𝑋1 + 0,08𝑋2 + 0,11𝑋3 + 0,06𝑋4 + 0,54√𝑋4𝑋5/𝑋1 

𝑇𝑜𝑡𝑎𝑙: �̂� = 9,23 + 0,33𝑋3 + 0,23𝑋4 + 3,34√𝑋5 

It is interesting that Classification exam in Hard Sciences and in Soft Sciences have a behavior similar in 

public and private schools: they have an unimportant role. The notes in Overall High School in Hard Sciences 

and in Soft Sciences play a very important role in predicting the achievement. This fact is particularly 

important in public schools. The interactions between the averages in Mathematics and in Computer Science 

matters, in the first two years in college, have a considerable weigh in the prediction in private schools. The 

direct interaction between Overall High School in Soft Sciences and the Average in Mathematics in the first 

two years in college is modified inversely by the Classification exam in Hard Sciences for the grants. 

3. LAD under the Laplace model 

𝑃𝑢𝑏𝑙𝑖𝑐 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 5,17 + 0,31𝑋1 − 0,08𝑋2 + 0,05𝑋4 + 0,49𝑋5 + 1,62√𝑋6 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑆𝑐ℎ𝑜𝑜𝑙: �̂� = 48,7 + 0,01𝑋3 + 0,28
𝑋3

𝑋4
+ 0,24

𝑋3

𝑋5
  

𝐺𝑟𝑎𝑛𝑡𝑠: �̂� = 22,47 + 0,07𝑋1 + 0,01𝑋3 + 0,26𝑋4 + 0,42√𝑋4𝑋5/𝑋1 
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𝑇𝑜𝑡𝑎𝑙: �̂� = 12,35 + 0,48𝑋3 + 0,14𝑋4 + 0,27√𝑋5/𝑋6 

Classification exam in Hard Sciences and in Soft Sciences play jointly a role only in public schools. 

Classification exam in Hard Sciences is important in the forecasts in public schools and is very low in the 

grants.  The Overall High School note in Hard Sciences is the leading variable in the prediction of 

achievement in private schools, where it appears with a small weigh as a direct variable, but is reduced by the 

values of Overall notes in High School in Soft Sciences and the .Average in Mathematics matters in the first 

two years in college. For the grants the Overall High School in Soft Sciences appears as an important factor 

both linearly and weighted by the ratio of the Average in Mathematics matters in the first two years in college 

and the Classification exam in Hard Sciences. For the total population Overall High School in Hard Sciences 

and Overall High School in Soft Sciences appear with considerably high weights as well as the ratio of the 

Average in Mathematics matters in the first two years in college with respect to the Classification exam in 

Hard Sciences. 

The graduate students of the course 2012 were evaluated and we analyzed the behavior of the predicted 

achievement index �̂�0𝑖  comparing it with the value Y0 assigned by the experts.  

The accuracy was evaluated by computing  

𝐴(𝑀) =
∑ |�̂�0𝑖 − 𝑌0|
𝑟(𝑀)
𝑖=1

𝑟(𝑀)
, 𝑀 = 𝐿𝑆𝑁𝑜𝑟𝑚𝑎𝑙, 𝐿𝑆𝐿𝑎𝑝𝑙𝑎𝑐𝑒, 𝐿𝐴𝐷 

The results obtained are given in the following table 

Table. 2. Mean Absolute error of the predictions 

Source A(LSNormal) A(LSLaplace) A(LAD)l 

Public School 23,07 12,9o 12,16 

Private School 25,15 14,44 14,28 

Grants 26,96 11,52 11,31 

total 43,27 21,10 23,58 

Note that the use of Laplace model is a better choice than the Normal one. LS and LAD had a similar 

behavior. 

The number of graduate students were larger than 25 in all the cases. Then we can use the T-Student tests. We 

considered the hypothesis H0: 𝐸(�̂�0) = 𝑌0 and defined the Bernoulli RV 

𝐼(𝑌0𝑖) = {
1 𝑖𝑓 𝐸(�̂�0𝑖) = 𝑌0𝑖  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Fixing P=1-=0,95 and evaluating a sample of size r(M) we performed test of hypothesis that  

H0: P=0,95 for each M.  

We computed 

𝑝(𝑀) =
∑ 𝐼(𝑌0𝑖)
𝑟(𝑀)
𝑖=1

𝑟(𝑀)
 

And used the fact that ∑ 𝐼(𝑌0𝑖)
𝑟(𝑀)
𝑖=1  

The results are given in the next table is a Binomial RV with parameters r(M) and P(M)=0,95. 

Table. 3. Estimated P(M) and p-value of the hypothesis P(M)0,95 

Source A(LSNormal) A(LSLaplace) A(LAD) 

 p(M) p-value p(M) p-value p(M) p-value 

Public School 0,667 0,048 0,697 0,054 0,737 0,066 

Private School 0,583 0,031 0,546 0,018 0,674 0,056 

Grants 0,734 0,065 0,519 0,012 0,852 0,577 

total 0,747 0,003 0,694 0,001 0,661 0,001 

From the result in the above table we have that: 

1. LS-Laplace and LAD models behave adequately for the prediction in Public Schools. 

2. LAD is the only model behaving adequately for Private Schools. 

3. LS-Normal and LAD behave adequately for Grants. 

4. There is a bad behavior for the prediction of the whole population. 

5. LAD has the best behavior as a whole. 

 

5. CONCLUSIONS 

 

The use of the proposed procedure seems to be good for predicting the achievement of students.  
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The importance of the variables varies considerably in dependence of the model and the kind of institution of 

the students. The prediction must be developed taking into account the type of students.   
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