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ABSTRACT 

This article models a multilevel programming problem with multichoice parameters (MMCP) in which objective functions 

are linear fractional with cost coefficients of the objective functions being multichoice parameters. The multichoice 
parameters are replaced with Lagrange Interpolating polynomial by using transformation technique and the solution is 

determined by fuzzy programming approach to determine a compromise or satisfactory solution of the transformed problem. 

Approximating the objective functions by interpolating polynomials converts MMCP into mixed integer quadratic fractional 
programming problem. Finally, an algorithm based on fuzzy programming is proposed to determine a solution which satisfies 

both decision makers of problem. A numerical example is exhibited to evince the algorithm using Lingo 17.0 software.  
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RESUMEN 

Este articulo  modela un problema de Programación Multinivel con parámetros de  múltiple selección (MMCP) en el que las 

funciones  objetivo son  fraccionales lineales donde los  coeficientes de costo de la función objetivo son de  múltiple selección. 

Los parámetros de múltiple selección son reemplazados por  un polinomio de Interpolación de  Lagrange usando la técnica 
de  transformación y la  solución es determinada mediante un enfoque de  Programación Borrosa para determinar un  

compromiso o una  satisfactoria solución del  transformado problema. Aproximando las funciones  objetivo por polinomios 

de interpolación convierte MMCP en un problema de Programación Entero Mixto  . Finalmente, un algoritmo basado en 
Programación Borrosa es  propuesto pra determinar una solución que satisfaga ambos decisores del problema.  Un ejemplo 

numérico es  exhibido para evidenciar el  algoritmo usando el software Lingo 17.0.  

PALABRAS CLAVE Programación Multinivel; Programación Lineal; Programación Fraccional; Programación Borrosa; 
Lagrange transformación; Solución de Compromiso solución; Parámetros de  Múltiple Selección. 

 

1.INTRODUCTION 

 

For a mathematical programming problem, the parameters which form parametric space of the problem 

are decided by the decision maker (DM) and value of these parameters are tackled by the experts. In 

routine practice, these values are real constants, but in most of real-life situations, these parameters are 

considered as either random variable or fuzzy variable. Multilevel Programming has been drawing 

considerable attention from scientific community in recent years. Many problems need to be modelled 

as multilevel programs as a consequence of which new efficient methods have been evolved. Multilevel 

Programming Problems are characterized by planner at a certain hierarchical level determining his/her 

own objective and constraint space by successive levels partially under cooperation. Multilevel 

organizations consist of interactive decision-making units within a hierarchical structure. The execution 

of decisions is hierarchical/sequential, starting from the top and then moving to lower levels. The 

decision maker at each level tries to maximize its own benefits, but is affected by decisions of decision 

makers at other levels through externalities. The decision maker at first level optimizes his/her decision 

first and for a given choice of the variables under its control, the lower-level decision makers optimize 

their objectives. However, each of the decision makers can influence/control other level decisions to 

achieve his objectives. The hierarchical nature of problem is reflected by the order imposed on the 

choice of decision taken. The leader at first level governs information of followers' objectives and 

constraints, while followers optimize their objectives after Leader's strategy is declared. The decision 

makers at same level execute their decisions cooperatively i.e. For decentralized systems, where there 
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are more than one decision makers at same level, the objectives are given same level of preference for 

given choice of upper-level decision maker.   

A general Multilevel Decentralized Programming Problem (MDPP) is   concerned with decentralized 

systems in a hierarchical organization with two/ more objectives at the same level. There are numerous 

methods available to optimize Multilevel Programming Problems. Multilevel Programs have been 

tackled by many researchers in several fields ranging from economics to transportation engineering. 

MLPP has also been used to model real life problem involving multiple decision makers. These problems 

include genetic algorithms [9,23,24], traffic signal optimization problems [19], structural design 

problems [20]. Applications of almost all of the extreme point algorithms have been applied to determine 

the solution of a linear MLPP. Every linear multilevel programming problem with a finite optimal 

solution possesses an important feature viz. the optimal solution is attained at an extreme point of the 

constraint set. This result was first established by Candler et. al.  [10]. Later on, Bialas et. al.  [8] proved 

the result under the assumption that the constraint region is bounded and convex polyhedron. Although 

this problem is very relevant in practice, there are few methods available and their quality is hard to 

determine. Fractional programming (FP) which has been being used as an important planning tool for 

the past four decades is applied for a lot of disciplines such as engineering, business, finance, economics 

etc. FP is generally used for modeling real life problem which has one or more than one objective as a 

ratio of two functions such as profit/loss, inventory/sales, actual cost/standard cost, output/employee 

etc. Fractional programs arise in various contexts viz in investment problems, the firm wants to select a 

number of projects on which money is to be invested so that the ratio of the profits to the capital invested 

is maximum subject to the total capital available and other economic requirements which may be 

assumed to be linear. If price per unit depends linearly on output and capital is a linear function then 

problem is reduced to a linear fractional program. Example of linear fractional programming was first 

solved by Isbell where algorithm generates a sequence of linear programs whose solutions converge to  

solution of the fractional program in a finite number of iterations. Since then, several methods of 

solutions have been proposed. Charnes et.al. have shown that a solution of the problem can be obtained 

by solving at most two ordinary linear programs. Algorithms based on the parametric form of the 

problem has been developed by Jagannathan. 

There are some real-life problems where these parameters are multi-choice type i.e., there exists a set 

of choices for a given parameter, out of which only one is to be selected in order to optimize the objective 

function. Such mathematical programming problems are known as multichoice programming problems 

(MCP) (Acharya et. al. 2015)[2]. The multichoice programming problem belongs to the non-convex 

mathematical programming problem. MCP problem was introduced by Healey (1964). Multichoices 

can occur for any parameter in a mathematical programming problem. In a MMCP, we find combination 

of values of parameters so that it optimizes the objectives. MMCP is used in real-life decision-making 

problems, e.g., appointing a new security personnel, implementing a new policy for a country or 

community selecting new car, new house etc. However, formulating large and complex systems 

invariably needs decomposing the system into a number of smaller subsystems, each with its own goals 

and constraint parameters. The interconnections among the subsystems might take on many forms, but 

one of the most common form is the hierarchical structure in which a particular level decision-maker 

controls or co-ordinates his/her lower-level DMs. This type of decomposed system is called multi-level 

system. In a decision-making problem, if there are two or more levels present having one DM in each 

level to take decision, then the problem is called multilevel programming problem (MLPP). Multilevel 

optimization problems are described as mathematical programs which possess a subset of variables 

controlled by them to be the optimal solution of other programs which are parametrized by the remaining 

variables. In many decision-making situations, there arise many planning problems that can be 

represented by multilevel programs. 

This methodology presents a multilevel linear fractional programming problem where the cost 

coefficients of the objective functions at each of the levels being multi-choice parameters. The 

multichoice parameters are then replaced by polynomial approximation using Lagrange’s interpolating 

polynomials. The problem under consideration is transformed into a fuzzy programming problem by 

defining the membership functions for the leader, the followers and the variables controlled by the leader. 

A satisfactory solution is obtained after this fuzzy programming problem is solved. Solution procedure 

uses the concepts of interpolating polynomials to tackle the multi-choice parameters of the problem and 

transform the problem into a standard mathematical programming problem. Then the transformed 

multilevel mixed integer programming problem is solved by using fuzzy max-min decision model, 

which generates Pareto optimal solution for the original problem directly. This is the main advantage 

of the proposed approach for solving MMCP problems. Due to the presence of the integer variable and 

interpolating polynomials the transformed model becomes mixed integer nonlinear programming 
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problem. Incorporating the traditional approach for MMCP, size of the problem becomes large and 

complex. But using the above methodology, the problem requires less computational work and efforts. 

 

2. THEORETICAL BACKGROUND 
 
Multilevel linear fractional programs have been used to represent various decision making situations. 

For instance, indices such as inventory/sales, profit/cost output/employees, play a very important role 

in evaluating economic activities. Therefore, models that can effectively handle such fractional 

objectives are preferred for such type of problems. Multilevel linear fractional programming (MLFP) 

problems are studied by a few approaches which have appeared in Kornbluth et. al. (1981); Lai (1996); 

Luhandjula (1984); Sakawa et. al. (1983). Luhandjula (1984) proposed a linguist approach to multi 

objective linear fractional programming by introducing linguistic variables to represent linguistic 

aspirations of the decision makers. The model of the problem constructed with fuzzy data due to FP 

approaches [Luhandjula (1984); Sakawa et. al. (1983)] used to solve MLFP problems have a difficulty 

in computation. In the framework of fuzzy decision, Bellman and Zadeh (1970) ; Sakawa et. al. (1983) 

presented a fuzzy programming approach for solving multi objective linear fractional programming 

problem by combined use of the bisection method and the phase one of simplex methods of linear 

programming. Multi-level multi-objective linear or non-linear programming problems are new 

combination problems in the field of multi-level (or multi- objective) decision making problems. 

Ibrahim (2009) proposed Fuzzy goal programming algorithm for solving decentralized bi-level multi-

objective programming problems. Again, Ibrahim (2010) proposed a fuzzy goal programming approach 

to Solve multilevel multiobjective linear programming problems. Eren et. al.(2013) used fuzzy 

multiobjective linear programming approach for optimizing a closed-loop supply chain network. Some 

of these traditional techniques, which give accurate results are computationally expansive and become 

inefficient for a large domain. 
We consider the following 𝑡-level multilevel linear fractional programming problem (MFPP) [4]:  
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                                      subject to 

                                                                  A1x1+ A2 x2+… + At xt ≤ b   

                                                                       x1, x2, x3…xt    ≥ 0    

                                       where S = {(x1, x2, x3…. xt): A1 x1+ A2 x2+… + At xt ≤ b}  

                                               x1∈  ℛ𝑛1,  x2∈ ℛ𝑛2 ,… xt ∈ ℛ𝑛𝑡           

𝑑11𝑥 + 𝑑12𝑦 + 𝑑13𝑧 + 𝛽1> 0 , 𝑑11𝑥 + 𝑑12𝑦 + 𝑑13𝑧 + 𝛽1 > 0   and     𝑑31𝑥 + 𝑑32𝑦 + 𝑑33𝑧 + 𝛽3> 0   ∀(x,y,z)  ∈    S             

the multilevel linear fractional programming problem considered above, each of the objective functions at 

each level is linear fractional in nature and hence they are both pseudoconcave and pseudoconvex. 

Therefore, it admits of extreme point optimal solution in S. The methodology of fuzzy mathematical 

programming was introduced by Tanaka [20] in the framework of fuzzy decision of Bellman et. al.  [7]. Later 

on, a  different  approach based on fuzzy programming was introduced  to optimize linear programming with 

several objectives at same level was introduced by Zimmermann [24]. Recent studies convey that 

Mohammed [18] analyzed some new fuzzy programming forms by making use of the concept of conventional 

goal programming approach which was further studied by Kamal et. al. [13] as also by Pal et. al.  [19]. Many 

authors studied fractional programming with multichoice parameters [6,8,9,10,11]. Lee et. al. [14] proposed 

an interactive fuzzy approach to multilevel decision making problems. Mohammed [18] proposed a fuzzy 

max-min decision model to tackle the multilevel non-linear multiple objective programming problems. The 
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fixed charge bilevel transportation problem was studied by Arora et. al. [3,4]. The multichoice 

programming problem (MCP) is a special class of non-convex mathematical programming problems which 

was introduced by Healy Jr.[12]. MCPP has many applications in decision making problems in the field of 

combinatorics & integer programming [16]. Acharya et. al.  [2] prepared a case study of a garment 

manufacture company demonstrating applications of MMCP. Liao [15] applied multi-choice model to the 

management systems. 

This article presents a multilevel linear fractional programming problem with multi choice parameters 

(MMCP). The objective functions at each of the levels have multichoice cost coefficients. The methodology 

uses the concept of interpolating polynomials which converts MMCP into a mixed integer quadratic 

fractional programming problem and finally, an algorithm based on fuzzy programming approach is 

proposed to find a solution which satisfies each of the decision makers of the problem. Thereafter, Chang 

[11] and Liao [15] introduced different solution techniques by transforming the problem with multi-choice 

parameters into a mixed integer programming problem. 

           

 3. METHODOLOGY TO SOLVE A MULTICHOICE PROGRAMMING PROBLEM 

 

Multiple choices for a parameter are available to the decision makers in a multichoice programming 

problem. The model presented here accommodates appropriate resources from a given set of multiple 

resources. In this paper, we deal with the objective functions which have multichoice cost coefficients at all 

levels. For this, interpolating polynomial approximation is used and the problem with multichoice 

parameters is reduced to a mixed integer programming problem solution to which is determined by fuzzy 

solution approach to achieve the satisfactory/compromise solution which satisfies all the decision makers. 

The transformed multilevel mixed integer programming problem is solved by using fuzzy max-min 

decision model, which generates Pareto optimal solution for the original problem directly. This is the main 

advantage of the proposed approach for solving MMCP problems. Due to the presence of the integer 

variable and interpolating polynomials the transformed model becomes mixed integer nonlinear 

programming problem. Incorporating the traditional approach for MMCP, size of the problem becomes large 

and complex. But using the above methodology, the problem requires less computational work and efforts. 

 

4. MATHEMATICAL FORMULATION 

 

Mathematically, a multilevel multichoice linear fractional programming (MMCP) problem is formulated as 
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 where X = (x1,x2…xn) ∈ S*. 

Here, S*= {X | AX = b} is non-empty and bounded. 

We have, lj (j = 1, ..., n) are multichoices for the jth parameters 𝑐𝑖
𝑗
and 𝑑𝑖

𝑗
; 

 mk (k =1,...n) are multichoices  for  k-th parameters 𝑐𝑖
𝑘 and 𝑑𝑖

𝑘 and er  (r=1,2,……n) are the multichoices 
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 4.1.  Solution technique 

 

To solve MMCP, we incorporate approximation by Lagrange’s interpolating polynomials [5]. The solutions 

so obtained after solving the upper level and lower level problems are different since the objective function 

at all the levels are conflicting in nature despite of having partial cooperation among them. Since the leader 
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j 

controls the decision variable x, therefore to achieve the satisfactory or compromise solution for all the 

decision makers, the leader has to produce the range for x. Further, it is assumed that for each response of 

the Leader, each of the followers’ have a unique response. 

 

4.1.1. Interpolation  

 

In order to find polynomial Pn(x) for which deg (Pn)≤ n, passing through   the points (x0,y0),(x1,y1) 

…,(xn,yn) , the solution is given by Lagrange's interpolation formula mentioned below: 

Pn (x)= y0 L0 (x)+ y1L1 (x)+........+yn Ln (x) 

where           

Lk(x) = ∏
(𝑥−𝑥𝑖)

(𝑥𝑘−𝑥𝑖)𝑖=𝑘          k = 0, 1,...,n;                                     (4.1) 

Here, in this formula, each such function is a polynomial of degree n. Also, 

                                  Lk (xi )= {
1        ⅈ = 𝑘
0       ⅈ ≠ 𝑘

 

Using these properties, it follows that the formula  

           Pn (x)= y0 L0 (x)+ y1L1 (x)+........+yn Ln (x) 

must satisfy the interpolating problem in order to find a solution to 

 deg(Pn) ≤ n and Pn (xi) = yi ; I = 0,1..,n. 

 

4.1.2.  Approximating by Interpolating polynomial the problem MMCP 

 

Consider the problem MMCP with objective functions having multi-choice cost coefficients at all levels. 

In order to deal with the multichoice parameters   cj (j= 1,2…n) in the numerator at the upper level, we use 

Lagrange’s interpolation. For this, we introduce an integer variable aj which takes a tj number of values (aj 

= 0,1... tj-1).  We formulate a Lagrange’s interpolating polynomial     f (aj) which passes through all the tj 

number of points, as                                 

  𝑓𝑑𝑗
(𝑎�̇�)= 
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Similarly, for the other lower level problems fj(X), for 2≤j ≤ t introducing the integer variables as above, 

one can define the Lagrange interpolating polynomials in the respective manner. On introducing 

interpolating polynomials in the numerator and denominator of the problem MMCP is reduced to the mixed 

integer quadratic fractional programming problem (MIQFP), defined as    
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where X∈ S*, S*= {X | AX≤ b}. Also, 

 0≤ 𝑎𝐽 ≤𝑡𝐽-1, 0 ≤𝑏𝑗 ≤ 𝑡𝐽-1;                                                                           (4.2) 

0≤ 𝑙𝐽 ≤𝑠𝐽-1, 0 ≤𝑚𝑗 ≤ 𝑠𝐽-1; 

:: 

:: 

0≤ 𝑔𝐽≤ 𝑟𝐽- 1, 0≤ℎ𝑗 ≤𝑟𝐽 -1; 

𝑎𝐽, 𝑙𝐽,𝑔𝐽 ∈ Z+U{0}, j =1...n; 𝑏𝑗 , 𝑚𝑗, ℎ𝑗  ∈ Z+, j=1...n. 

Next, we aim to determine the solution of the above-mentioned problem which satisfies all the decision 

makers and to achieve we find a compromise solution which can be obtained using fuzzy programming 

approach. 
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 4.2. Fuzzy programming approach to linear fractional multilevel   programming problem 

 

Let us consider the problem MMCP. Construct the fuzzy membership functions in order to apply fuzzy 

programming to MMCP. Solve f1(X) subject to the constraint (5.2). Let its individual best and worst solution 

be f1
b and f1

w respectively. This data can be used to define the membership function for the upper level 

problem. 

                               1        ,    if     𝑓1(𝑥)>𝑓1
𝑏                         

   μ(f1(x)) =     
𝑓1(𝑥)−𝑓1

𝑤

𝑓1
𝑏−𝑓1

𝑤 ,   ⅈ𝑓𝑓1
𝑤 ≤ 𝑓1(𝑥) ≤ 𝑓1

𝑏 

                               0        if    𝑓1(𝑥) < 𝑓1
𝑤 

Let 𝜆1 be the minimum acceptable degree of satisfaction for the upper level problem f1(x). Again, let 𝑓1
𝑏 

and  𝑓1
𝑤be the best and worst solutions of fj(x); j = 2,3...t. 

Next, let us construct the membership function for fj(x), j=2,3,…..t as 

                       1                 if     𝑓𝑗(𝑥)>𝑓𝑗
𝑏 

μ(fj(x)) =      
𝑓1(𝑥)−𝑓1

𝑤

𝑓1
𝑏−𝑓1

𝑤 ,             ⅈ𝑓  𝑓𝑗
𝑤 ≤ 𝑓𝑗(𝑥) ≤ 𝑓𝑗

𝑏     for j=2,3…t 

                     0                    if    𝑓𝑗(𝑥) < 𝑓𝑗
𝑤 

Let 𝜆𝑗 be the minimum degree of satisfaction acceptable for the follower problems 𝑓𝑗(𝑥); j=2,3,…t. The 

solutions so obtained after solving the upper level and lower level problems are different since the objective 

function at all the levels are conflicting in nature despite of having partial cooperation among them. Since 

the leader controls the decision variable x, therefore to achieve the satisfactory or compromise solution for 

all the decision makers, the leader has to produce the range for x. Let x1 and x2 be the maximum and 

minimum tolerance limits for x. 

Let us now define the membership function for x as 

μ(x)  =    
𝑥−(𝑥𝐹−𝑥2)

𝑥2
      (𝑥𝐹 − 𝑥2) ≤ 𝑥 ≤ 𝑥𝐹                                (4.3) 

(𝑥𝐹+𝑥1)−𝑥

𝑥1
        𝑥𝐹 ≤ 𝑥 ≤ (𝑥𝐹 + 𝑥1) 

Let   𝜆3 be the minimum acceptable degree of satisfaction of the decision variable x.          

Let δ = min {𝜆1, 𝜆2, 𝜆3} 

Let us now generate the satisfactory solution for the problem MMCP which is  a pareto optimal solution too 

with overall satisfaction for all decision makers, solve the following Fuzzy Programming Problem (FPP) 

defined as 

                               max  δ 

             subject to   

                                  μ(f1(X)) ≥ δ  

                                  μ(f2(X)) ≥ δ 

                                  μ(f3(X)) ≥ δ                                                                    (4.4) 

                                  μ(X) ≥ δ 

                                  X ∈ S*. 

                                 0≤ 𝑎𝐽 ≤𝑡𝐽-1, 0 ≤𝑏𝑗 ≤ 𝑡𝐽-1; 

                                 0≤ 𝑙𝐽 ≤𝑠𝐽-1, 0 ≤𝑚𝑗 ≤ 𝑠𝐽-1; 

                                 :: 

                                 :: 

                                 0≤ 𝑔𝐽≤ 𝑟𝐽- 1, 0≤ℎ𝑗 ≤𝑟𝐽 -1; 

                                 𝑎𝐽, 𝑙𝐽,𝑔𝐽 ∈ Z+U{0}, j =1....n; 

                                 𝑏𝑗, 𝑚𝑗 , ℎ𝑗  ∈ Z+, j=1....n; δ∈ [0, 1]. 

 

5. A METHODOLOGY TO SOLVE MULTILEVEL PROGRAMMING PROBLEM WITH 

MULTICHOICE PARAMETERS 

Consider a multilevel linear fractional programming problem with multi-choice parameters (MMCP). In this 

problem, the cost coefficients of the objective functions at both levels are multi-choice. In order to solve 

MMCP, the objective functions at both levels are dealt using interpolating polynomials. Using Lagrange 

interpolation approximation, the MMCP problem is converted to a mixed integer quadratic fractional 

programming problem MIQP. The transformed MIQP problem is solved using fuzzy programming approach 

for which membership functions need to be constructed for the objective functions at all levels. The 

membership function is also defined for the variables controlled by the leader, by constructing membership 
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functions. The fuzzy programming problem FPP is formulated. The FPP problem is solved to obtain a 

satisfactory solution for MMCP. The algorithmic development is presented below with the help of a 

flowchart: 

                                                          

 

  

 

 

                                                                                                                  

                                                                                                                                                                                            

                                                                   

 

                                                                                                                             

 

  

                                                                                                                                 

  

                                                                            

  

                                        

                                  Algorithmic representation using flowchart 

 

6.  NUMERICAL EXAMPLE 

 

Let us consider a company which manufactures three products A, B and C. It transports the products to 

different markets: MKT1, MKT2, MKT3 and MKT4. The production cost consists of the lab our cost, 

material cost, storage, transportation expenses etc. The company targets to invest in one product in a single 

market. To achieve this, the company wants to determine its profit v/s cost ratio and output v/s employee ratio 

for an individual product. For running its production cycle, during production, the company has the 

following requirements: 

Demand P Q R Supply 

Material 1 2 0 1 20 

Material 2 4 5 0 18 

Material 3 1 2 2 15 

                                                         Table 1 

Now, the company is yielding a profit of 32 units on product A in market MKT1, 31 units in MKT2, 34 units 

in MKT3 and 30 units in MKT4. In addition, cost of 8 units for its products in MKT1, 12 units in MKT2, 

10 units in MKT3 and 7 units in MKT4 has been incurred. 

                                                         Table 2 

                 P1                  P2             P3 

          Profit (34,31,32,30) (33, 28, 34) (26, 23, 28) 

          Cost (8, 11, 10, 6)   (7, 7, 6) (8, 11, 10) 

           Production (18,19,20,17) (23, 17, 23) (16, 14, 16) 

           Sale (7, 8, 10, 6)   (8, 5, 3) (8, 12, 11) 

      Inventory  (14,15,17,16) (33,29,31) (16, 14, 16) 

     No. of Labourers (6,12,10,8) (8,11,12) (8, 9, 6 ) 

                                        

Construct membership functions for f1(X), f2(X), f3(X)and x, the variable 
controlled by the leader. 

Formulate the fuzzy programming problem FPP for multilevel Linear 
fractional programming problem with multi-choice parameters 

            Solve the FPP problem 

  The solution so obtained is a satisfactory solution for               
MMCP 

Use Lagrange's Interpolating polynomial 

to convert problem MMCP     to MIQP 

convert problem BLFMCP to 
Find 𝑓1

𝑏,𝑓1
𝑤 ,𝑓2

𝑏,𝑓2
𝑤,𝑓3

𝑏,𝑓3
𝑤 

         Consider the problem MMCP 
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Solution: Let x, y, z be the number of units of products P, Q and R respectively. Let f1 denote the profit/cost 

ratio and by constructing membership functions, f2 be output / employee's ratio and f3 be inventory/sales 

ratio. 

A multilevel linear fractional programming problem with multi-choice parameters is given by 

 𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f1 (x,y,z) =  
(34,31,32,30)

(8,11,10,6)
 x+  

(33,28,34)

(7,7,6)
y + 

(26,23,28)

(8,11,10)
 z 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f2 (x,y,z) =  
(18,19,20,17)

(7,8,10,6)
 x +  

(23,17,23)

(8,5,3)
 y+ 

(16,14,16)

(8,12,11)
  z                                             (6.1) 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f3 (x,y,z) =  
(14,15,17,16)

(6,12,10,8)
 x +  

(33,29,31) 

(8,11,12)
y + 

(16,14,16)

(8,9,6)
z 

 

          subject to   2x+ z  ≤  20 

                           4x +5y ≤ 18  

                               x +2y + 2z  ≤ 15  

                           x ,y, z≥ 0 

Introduce integer variables 𝑎𝐽 (j = 1, 2, 3) and bj (j =1, 2, 3) first level; lj (j =1, 2, 3) and mj (j =1, 2, 3) in the 

second level;  𝑔𝐽and     ℎ𝐽(j = 1, 2, 3) in the third level respectively. Using interpolating polynomial 

approximation, the above problem reduces to 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f1(x,y,z)=[
32−

20

3
𝑎1+

15

2
𝑎1

2−11

6
𝑎1

3

8+
26

3
𝑏1−

11

2
𝑏1

2+
5

6
𝑚1

3
]x+[

33−7𝑎2+3𝑎2
3

7+
9

2
𝑏2−

5

2
𝑏2

2
]y+[

27+
23

2
𝑎3+

3

2
𝑎3

2

9+
7

2
𝑏3−

3

2
𝑏3

2
]z 

 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f2(x,y,z)= [
16+

10

3
𝑙1−

1

3
𝑙1
3

9−
31

6
𝑚1+

11

2
𝑚1

2−
4

3
𝑚1

3
] x+[

23−7𝑙2+3𝑙2
3

8−
11

2
𝑚2+

3

2
𝑚2

2
] 𝑦 + [

17−
17

2
𝑙3

3

2
𝑙3

2

9+
7

2
𝑚3−

3

2
𝑚3

2
] 𝑧 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

  f3(x,y,z)= x+[
33−7𝑔2+3𝑔2

3

9+
7

2
ℎ2−

3

2
ℎ2

2
] 𝑦 +z 

Subject to       

                     2x+ z  ≤  20 

                     4x +5y ≤ 18                                                             

                                      x +2y + 2z   ≤  15  

                                 x ,y, z ≥ 0 

Solve the first level problem f1, second level problem f2, and third level problem f3 individually using 

Lingo 15.0 software subject to the constraints . 

The solution obtained in this way is  

             Max f1 = 51.25 with x = 4.5, y= 0, z= 5.25; 

Max f2 = 31.44 with x = 0, y = 3.6, z = 3.9;  

Max f3 = 25.12 with x = 3.1, y= 0, z= 2.5. 

By using the solutions obtained above, the fuzzy programming problem FPP is defined by 

(FPP):                 max δ 

                    subject to      μ(f1(x))≥δ 

                                          μ(f2(x))≥δ 

                                          μ(f3(x)) ≥δ                                                                                 (6.2) 

                                          μ(y)≥δ 

                                          μ(z)≥δ 

                                             0 ≤a1, l1, g1≤ 3;   0 ≤ a2, l2, g2≤ 2;   0 ≤ a3, l3, g3 ≤ 2; 

                                             0 ≤ b1,m1,h1 ≤ 3; 0 ≤ b2,m2,h2 ≤ 2;  0 ≤ a3,l3,g3 ≤ 2; 

                            𝑎𝐽 , 𝑙𝐽,𝑔𝐽 ∈ Z+U{0}, j =1,....n; 𝑏𝑗 , 𝑚𝑗, ℎ𝑗  ∈ Z+, j=1,....n; δ∈ [0, 1]. 

It can be rewritten as 

                                            max δ 

                      subject to       μ(f1(x))≥ 51.25 δ 

                                            μ(f2(x))≥ 31.44 δ 

                                            μ(f3(x))≥ 25.12δ 

                                                 
3.9−𝑦

3.6
≥ δ 

                                                 
𝑧−3.5

1.35
≥ δ 

                                                  
7.5−𝑧

2.25
≥ δ 

                                                 0≤a1, l1, g1≤3, 0≤a2, l2, g2≤2, 0≤ a3, l3, g3≤2; 
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                                   0 ≤b1,m1,h1 ≤ 3, 0 ≤b2,m2,h2 ≤ 2, 0 ≤a3,l3,g3 ≤ 2; 

                                𝑎𝐽, 𝑙𝐽,𝑔𝐽 ∈ Z+U{0}, j =1,....n; 𝑏𝑗 , 𝑚𝑗 , ℎ𝑗 ∈ Z+, j=1,....n; δ∈ [0, 1]. 

Therefore, we obtain                                   

              (FPP)               max δ 

                          subject to 

                                       [
32−

20

3
𝑎1+

15

2
𝑎1

2−11

6
𝑎1

3

8+
26

3
𝑏1−

11

2
𝑏1

2+
5

6
𝑚1

3
]x + [

33−7𝑎2+3𝑎2
3

7+
9

2
𝑏2−

5

2
𝑏2

2
]y + [

27+
23

2
𝑎3+

3

2
𝑎3

2

9+
7

2
𝑏3−

3

2
𝑏3

2
]z ≥51.25 δ 

                                               

                                   [
16+

10

3
𝑙1−

1

3
𝑙1
3

9−
31

6
𝑚1+

11

2
𝑚1

2−
4

3
𝑚1

3
] x+[

23−7𝑙2+3𝑙2
3

8−
11

2
𝑚2+

3

2
𝑚2

2
] 𝑦 + [

17−
17

2
𝑙3

3

2
𝑙3

2

9+
7

2
𝑚3−

3

2
𝑚3

2
] 𝑧 ≥ 31.44 δ 

                                        

                                    x+[
33−7𝑔2+3𝑔2

3

9+
7

2
ℎ2−

3

2
ℎ2

2
] 𝑦 +z ≥ 25.12 δ 

                                       y + 3.6 δ ≤ 3.9 

                                       z - 1.35 δ ≥ 3.5 

                                       z + 2.25 δ ≤ 7.5 

                                       x , y , z ≥ 0 

              0 ≤  a1, l1, g1  ≤3 , 0 ≤ a2, l2, g2 ≤2 , 0 ≤ a3, l3, g3 ≤ 2 ; 

0 ≤  b1,m1,h1 ≤ 3, 0 ≤ b2, m2, h2 ≤2, 0 ≤ a3 ,l3 ,g3 ≤ 2 ; 

𝑎𝐽, 𝑙𝐽,𝑔𝐽, 𝑏𝑗 , 𝑚𝑗 , ℎ𝑗 ∈ Z, j = 1,..n; δ ∈ [0, 1].  

The optimal solution to the above problem is δ = 0.7272, x = 3.27, y = 0.981 and z = 4.88.  

It must be made sure that the company wants to invest in one product for single market, so that the leader 

and followers can maximize their profitability ratio and output/employee ratio as well as inventory/sales 

ratio in that particular market. 

Now, for the first decision maker(leader), we have 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f1 (x,y,z) = 
(32,31,34,30)

(8,12,10,7)
(3.27) +  

(33,29,31)

(7,9,6)
(0.981) +

(27,25,26)

(9,11,10)
 (4.88)  

                    

                  = (4.258,2.58,3.4,4.286) + (4.714, 3.22, 5.167) + (3, 2.272, 2.6)….                   (6.3) 

and for the two followers we have 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f2 (x,y,z)=
(16,19,20,17)

(9,8,10,7)
(3.27) +  

(23,19,21)

(8,4,3)
(0.981) + 

(17,15,16)

(9,11,10)
(4.88)  

              = (1.778, 2.375, 2, 2.429) + (2.875, 4.75, 7) + (1.889, 1.364, 1.6)                         (6.4) 

𝑚𝑎𝑥
𝑥,𝑦.𝑧

 f3 (x,y,z)=
(14,15,17,19)

(6,12,10,7)
(3.27) +  

(33,29,31)

(9,11,10)
(0.981) + 

(20,15,16)

(7,9,6)
(4.88) 

                     = (2.333, 1.25, 1.7, 2.714) + (3.667, 2.64, 3.1) + (2.86, 1.67, 2.67)                    (6.5)  

From (8.1),(8.2) and (8.3), we observe that the company should invest in market MKT4 for product A, in 

market MKT3 for product B and in market MKT1 for product C. 

 

7. CONCLUSIONS 

 

In this article, we present a multilevel linear fractional programming problem in which the cost coefficients 

of the objective functions at each of the levels are multi-choice parameters. The multi-choice parameters 

are replaced by polynomial approximation using Lagrange’s interpolating polynomials. The problem under 

consideration is transformed into a fuzzy programming problem by defining the membership functions for 

the leader, the followers and the variables controlled by the leader. A satisfactory solution is obtained after 

this fuzzy programming problem is solved. Solution procedure uses the concepts of interpolating 

polynomials to tackle the multi-choice parameters of the problem and transform the problem into a standard 

mathematical programming problem. Then the transformed multilevel mixed integer programming problem 

is solved by using fuzzy max-min decision model, which generates Pareto optimal solution for the original 

problem directly. This is the main advantage of the proposed approach for solving MMCP problems. Due 

to the presence of the integer variable and interpolating polynomials the transformed model becomes mixed 

integer nonlinear programming problem. Incorporating the traditional approach for MMCP, size of the 

problem becomes large and complex. But using the above methodology, the problem requires less 

computational work and efforts. 
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