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ABSTRACT

In this paper, we study the oscillatory character of a generalized di-fferential equation of order α

with α ∈ (0, 1]. Generalized criteria are obtained, of type Kamenev, which are extensions of several

known in the literature both integer and fractional.
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RESUMEN

En este art́ıculo se estudia el carácter oscilatorio de una ecuación diferencial generalizada de orden

α con α ∈ (0, 1]. se botienen criterios generalizados tipo Kamenev que son extensiones de resultados

conocidos de la literatura para el caso tanto entero como fraccionario.

PALABRAS CLAVE: operador diferencial ordinario generalizado, oscilación

1. INTRODUCTION

The so-called Fractional Calculus has expanded in multiple directions in recent years, not only from

a theoretical point of view, but also from applications.

It is noteworthy that, in general, they are centered on equations with the classical “global” fractional

derivatives (see [9] and the references cited there), and qualitative research is almost non-existent using

local fractional derivatives (see [20, 21, 22] for attempts in this direction, although the techniques used

will be different from those used in this work).

The continuous extensions of various notions of derivatives in recent years, of non-integer and / or

variable order, are extensions of the classical differential equations, and have different theoretical and

applied fields. (cf. [14], [17], [27] and [28]). More than five decades ago, intensified in recent years, that

different researchers have been studying various qualitative aspects of fractional equation solutions

(local and global) (see [5] and references cited therein). However, we should note that, in general,
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little attention is paid to the study of the oscillatory nature of the solutions, being one of the central

properties in mathematical modeling.

Although certain differential operators that are called local fractional derivatives have appeared since

the 1960s, it is not until in 2014 when a local derivative (conformable) was formalized and in 2018

(non-conformable) with very good properties, what we highlight is that all these operators can be

considered as particular cases (including the ordinary classic) of the following definition of Generalized

Derivative, as discussed below.

Between its own theoretical development and the multiplicity of applications, the field has grown

rapidly in recent years, in such a way that a single definition of “fractional derivative or integral”

does not exist, or at least is not unanimously accepted, in [3] suggests and justifies the idea of a fairly

complete classification of the known operators in non-integer order Calculus, in addition, in the work

[2] some reasons are presented why new operators linked to applications and developments theorists

appear every day. These operators, both classic (global) or local, have been obtained by numerous

mathematicians, some well known and others have not gone far enough (the Sonin derivative is enough

as an example), if to this we add that, for some reason, local differential operators, which we prefer

to call generalized, have been ignored and underestimated by numerous researchers, today they have

been the source of development of new global operators based on their formulations.

In addition, Chapter 1 of [1] presents a history of differential operators, both local and global, from

Newton to Caputo and presents a definition of local derivative with new parameter, providing a large

number of applications, with a difference qualitative between both types of operators, local and global.

Most importantly, Section 1.4 LIMITATIONS ... concludes “We can therefore conclude that both the

Riemann – Liouville and Caputo operators are not derivatives, and then they are not fractional

derivatives, but fractional operators. We agree with the result [34] that, the local fractional operator

is not a fractional derivative” (p.24). As we said before, they are new tools that have demonstrated

their usefulness and potential in the modeling of different processes and phenomena.

For the second order linear equation:

y′′ + b(t)y = 0, (1.1)

We will focus our work using the new Kamenev oscillation criteria, esta-blished in [11], in which

making use of an integral average method, specifically affirms that if

lim
t→∞

sup
1

tn−1

∫ t

t0

(t− s)n−1b(s)ds = +∞, (1.2)

for n > 2, then the differential equation (1.1) is oscillatory.

In this paper we will study a forced generalized nonlinear equation using a Riccatti Transformation

and then formulate two general oscillation criteria of Kamenev type, when q(t) is allowed to take

negative values for sufficiently large values of t. For this we have divided the study into two parts,

first a particular case is studied and subsequently we study the general equation itself.

2. PRELIMINARY RESULTS

In this paper we will consider the following generalized differential equation:
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Nα
F [p(t)f(Nα

F x)] + q(t, x,Nα
F x)g(x(t)) = r(t, x,Nα

F x), (2.1)

where the differential operator Nα
F , 0 < α ≤ 1, will be defined later and the functions considered

satisfy p ∈ C([t0,∞), (0,∞)), q ∈ C([t0,∞)xR2,R), f ∈ C(R,R) such that yf(y) > 0 for y 6= 0,

g ∈ C(R,R), xg(x) > 0 for x 6= 0, with (Nα
F y)g(Nα

F y) > 0 for Nα
F y 6= 0.

Remark 1. Equation (2.1) is not a minor case, for example, if F ≡ 1, then (2.1) contains as a

particular case the equation (1.1) taking p ≡ 1, f(z) = z, q(t, x,Nα
F x) = q(t) and r(t, x,Nα

F x) = 0; if,

instead of the above, we consider q(t, x,Nα
F x) = q(t) and r(t, x,Nα

F x) = r(t, x), then (2.1) becomes to

that studied in [25].

We will say that a nontrivial solution of (2.1) is called oscillatory if it has an infinite number of roots,

that is, if it has infinite zeros. If all solutions of the equation (2.1) are oscillatory, we will say that the

equation is oscillatory.

In [24] a generalized fractional derivative was defined in the following way (see also [23] and [38]).

Definition 1. Let f : [0,+∞) → R be a continuous function. The generalized N-derivative of f of

order α is defined by

Nα
F f(t) = lim

ε→0

f(t+ εF (t, α))− f(t)

ε
(2.2)

for all t > 0, α ∈ (0, 1) being F (α, t) is some function. Here we will use some cases of F defined

in function of Ea,b(.) the classic definition of Mittag-Leffler function with Re(a), Re(b) > 0. Also we

consider Ea,b(t
−α)k is the k-th term of Ea,b(.).

If f is α−differentiable in some (0, α), and lim
t→0+

N
(α)
F f(t) exists, then define N

(α)
F f(0) = lim

t→0+
N

(α)
F f(t),

note that if f is differentiable, then N
(α)
F f(t) = F (t, α)f ′(t) where f ′(t) is the ordinary derivative.

The classic Mittag–Leffler function plays an active role in fractional calculus. It is defined by

Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
, α ∈ C, Re(α) > 0, z ∈ C,

with Γ the classic Gamma function. In 1903 Mittag – Leffler established the original function Eα,1(z) =

Eα(z) as a one-parameter function, see [18, 19]. It is a direct generalization of the exponential function.

Wiman proposed and studied a extension, the bi-parameter Mittag–Leffler function Eα,β(z), (see [35]).

In 1971, Prabhakar in [29] introduced a new generalization Eγα,β(z) defined as

Eγα,β(z) =

∞∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C; Re(α), Re(β), Re(γ) > 0, z ∈ C,

where (γ)k is the Pochhammer symbol (see [30]). Gorenflo et al. (see [6, 7]), and Kilbas and Saigo

(see [13, 31]) investigated several properties and applications of the original Mittag-Leffler function

and its generalizations.

To point out only one particular case of our definition, let us point out that if F (t, α) = tα we obtain

the conformable derivative of [12].

In what follows, the definition of the integral operator related to the diffe-rential operator (2.2) is

presented (see [10] and [38]):
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Definition 2. Let α ∈ (0, 1] and 0 ≤ u ≤ v. We say that a function h : [u, v]→ R is α-integrable on

[u, v], if the integral:

NJ
α
u h(x) =NF J

α
u h(x) =

∫ x

u

h(t)

F (t, α)
dt (2.3)

exists and is finite.

Remark 2. Taking into account the examples of kernels presented above, it is clear that we will have

different integral operators. To name just one case, if F (t, α) ≡ 1 we will have the classic Riemann

integral.

The following theorem is similar to a known result of classical calculus (see [10] and [38]).

Theorem 3. Let f be N -differentiable function in (t0,∞) with α ∈ (0, 1]. Then for all t > t0 we

have:

a) If f is differentiable NF J
α
t0 (Nα

F f(t)) = f(t)− f(t0).

b) Nα
F

(
NF J

α
t0f(t)

)
= f(t).

As in the classic case, we have the well-known Integration by Parts property.

Theorem 4. (Integration by parts) Let u and v be N -differentiable function in (t0,∞) with α ∈ (0, 1].

Then for all t > t0 we have:

NF J
α
t0 ((uNα

F v)(t)) = [uv(t)− uv(t0)]−NF Jαt0 ((vNα
F u)(t)) . (2.4)

Proof. From Theorem 3, part d) of [24] we have Nα
F (uv)(t) = uNα

F (v)(t) + vNα
F (u)(t). Integrating in

both members of t0 a t, and using Proposition 1 of [10] we obtain

NF J
α
t0 (Nα

F (uv)(t)) =NF J
α
t0 ((uNα

F (v))(t)) +NF J
α
t0 ((vNα

F (u))(t))

(uv)(t)− (uv)(t0) =NF J
α
t0 ((uNα

F (v))(t)) +NF J
α
t0 ((vNα

F (u))(t)) .

After ordering, the required equality is obtained without difficulty.

The following definition is a natural extension of the classic case and contains as a particular case

Definition 1 of [16].

Definition 3. Given a real valued function f : Rn → R and −→a = (a1, . . . , an) ∈ Rn a point whose

ith component is positive. Then the non conformable partial N-derivative of f of order α in the point
−→a = (a1, . . . , an) is defined by

Nα
F,xif(−→a ) = lim

ε→0

f(a1, .., ai + εF (ai, α), . . . , an)− f(a1, . . . , an))

ε
(2.5)

if it exists, is denoted Nα
F,xi

f(−→a ), and called the ith generalized partial derivative of f of the order

α ∈ (0, 1] at −→a .
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3. MAIN RESULTS

In this section we will prove results for the equation (2.1) which are a genera-lization of several re-

ported in the literature. For this, we will consider a general function H(t, t0) defined as follows.

Let H : D = {(t, s) : t ≥ s ≥ t0} → R satisfying H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0,

having a continuous and nonpositive partial derivative on D0 = {(t, s) : t > s ≥ t0} with respect to

the variable s. Moreover, let h1, h2 : D0 → R be a continuous functions for which we have

−Nα
F,tH(t, s) = h1(t, s)

√
H(t, s),

−Nα
F,sH(t, s) = h2(t, s)

√
H(t, s),

for all (t, s) ∈ D0. Thus we can state the following result.

Theorem 5. Under the assumptions:

i) There is a differentiable function u : R→ R satisfying xu(x) > 0 for x 6= 0, Nα
F u(x) ≥ c > 0,

ii)
q(t,x,NαF x)g(x)

u(x) ≥ a (t), for x 6= 0,

iii)
r(t,x,NαF x)

u(x) ≤ b (t), for x 6= 0,

iv) There are functions γ and δ such that

lim
t→∞

sup
1

H(t, t0)
NJ

α
t0

[
γ(t)

(
H(t, s)Φ(t)− h21(t, s)a(t)γ(t)

4c

)]
(t) =∞, (3.1)

where

γ(s) = exp
(
−2cNJ

α
t0(δ)(s)

)
(3.2)

and

Φ(t) = cp(t)δ2(t) + a(t)− b(t)−Nα
F (p(t)f (Nα

F x(t)) δ(t)) , (3.3)

then every solution of (2.1) is oscillatory.

Proof. Suppose the contrary that there exists a non-oscillatory solution of the equation (2.1) and (3.1)

is satisfied, and consider, without loss of generality, that x(t) > 0 for t ∈ [τ0,∞) for some τ0 ≥ t0.

Let’s define the function

w(t) = γ(t)

[
p(t)f(Nα

F x)g(x)

u(x)
+ p(t)f(Nα

F x)δ(t)

]
, (3.4)

so, we have

Nα
Fw = −2cδγ(t)

[
p(t)f(Nα

F x)g(x)

u(x)
+ p(t)f(Nα

F x)δ(t)

]
−

−γ(t)

[
Nα
F u(p(t)f(Nα

F x)δ(t))

u2(x)

]
+ γ(t) [(b(t)− a(t)) +Nα

F (p(t)f(Nα
F x)δ(t))] ,
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from here we have

Nα
Fw ≤ −

c

a(t)γ(t)
w2(t)− γ(t)Φ(t), (3.5)

for t ≥ τ0. If, in the previous inequality, we multiply both members by H(t, s) and then integrate

with respect to t, from τ to t, with τ0 ≤ τ we obtain

NJ
α
τ [H(t, s)N

α
Fw] (t) ≤N Jατ

[
−H(t, s)

c

a(t)γ(t)
w2 −H(t, s)γ(t)Φ(t)

]
(t).

From here we obtain

NJ
α
τ [H(t, s)γ(t)Φ(t)] (t) ≤ −NJατ

[
H(t, s)

c

a(t)γ(t)
w2

]
(t)−N Jατ [H(t, s)N

α
Fw] (t). (3.6)

Integrating by parts, in the second integral of the right member of the previous inequality we obtain

NJ
α
τ [H(t, s)γ(t)Φ(t)] (t) ≤ −NJατ

[
H(t, s)

c

a(t)γ(t)
w2

]
(t)

+ H(t, τ)w(τ)−N Jατ

[
h1(t, s)

√
H(t, s)w

]
(t),

from above, after simplifying we obtain

NJ
α
τ

[
γ(t)

(
H(t, s)Φ(t)− h1(t, s)a(t)γ(t)

4c

)]
(t) ≤ H(t, τ)w(τ),

which implies that, for all τ0 ≤ t we have

NJ
α
τ0

[
γ(t)

(
H(t, s)Φ(t)− h21(t, s)a(t)γ(t)

4c

)]
(t) ≤ H(t, τ0)w(τ0) ≤ H(t, t0) |w(τ0)| .

Therefore, taking into account t0 ≤ τ0 ≤ t, is obtained

NJ
α
t0

[
γ(t)

(
H(t, s)Φ(t)− h21(t, s)a(t)γ(t)

4c

)]
(τ0)

+ NJ
α
τ0

[
γ(t)

(
H(t, s)Φ(t)− h21(t, s)a(t)γ(t)

4c

)]
(t)

≤ H(t, t0)NJ
α
t0 [γ(t)Φ(t)] (τ0) +H(t, t0) |w(τ0)|

= H(t, t0)
[
NJ

α
t0 [γ(t)Φ(t)] (τ0) + |w(τ0)|

]
.

Dividing by H(t, t0) and taking an upper limit when t tends to ∞ we have

lim
t→∞

sup
1

H(t, t0)
NJ

α
t0

[
γ(t)

(
H(t, s)Φ(t)− h21(t, s)a(t)γ(t)

4c

)]
(t)

≤
[
NJ

α
t0 [γ(t)Φ(t)] (τ0) + |w(τ0)|

]
<∞.

From where a contradiction is obtained with (3.1). In this way the proof of the Theorem is completed.
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Remark 6. If we consider F ≡ 1, g = g(x) = |x|p−2x, p > 1, f(z) = z, q(t, x,Nα
F ) = q(t) and r ≡ 0

we get Theorem 2 of [15].

Remark 7. The above result contains Theorem 3.1 of [26], with F (x, α) = x1−α, F (Nα
F x) =

φ(x)Tα(x) and q(t, x,Nα
F x)g(x) = P (t, x, Tα(x))

If (3.1) is not fulfilled, we can impose additional conditions as obtained in the following result.

Theorem 8. Assume (i) -(iii) of Theorem 5 and let λ > 1 a real number. Suppose that (3.1) is not

satisfied and that there is a function g of class Cα[[t0,+∞), (0,+∞)] such that

lim
t→+∞

sup
1

tλ N
Jαt0

[
(t− s)λγ(t)Φ(t)− λ2a(t)γ(t)

4c
(t− s)λ−2

]
(t) =∞ (3.7)

where γ (s) and Φ (s) are as Theorem 5. Then every solution of (2.1) is oscillatory.

Proof. As in the previous proof, we can assume that there is a non-oscillatory solution to the equation

(2.1), that satisfies (3.7) and that it is positive in a certain interval [τ0,+∞) with t0 ≤ τ0 . Let’s take

w(t) as in the previous proof. So, if in the (3.5) we multiply both members by (t−s)λ and integrating

between τ and t, we obtain

NJ
α
τ

[
(t− s)λNα

Fw
]

(t)

≤ −NJατ
[
(t− s)λ cw2(t)

a(t)γ(t)

]
(t)−N Jατ

[
(t− s)λγ(t)Φ(t)

]
(t),

Reordering and integrating by parts we obtain

NJ
α
τ

[
(t− s)λγ(t)Φ(t)

]
(t)

≤ (t− τ)
λ
w(τ)−N Jατ

[
(t− s)λ cw2(t)

a(t)γ(t)

]
(t)− λNJατ

[
(t− s)λ−1w

]
(t),

From which it is obtained that, for all t such that t0 ≤ t

lim
t→+∞

sup
1

tλ N
Jαt0

[
(t− s)λγ(t)Φ(t)− λ2a(t)γ(t)

4c
(t− s)λ−2

]
(t) ≤ w(t0) < +∞,

which is a contradiction with (3.7). This completes the proof.

Remark 9. Under assumptions of Remark 7 we obtain the Theorem 3.2 of [26].

A variation of the previous result, we can obtain it as follows.

Theorem 10. Assume that i)− iii) of Theorem 5 and (3.1), (3.2) and (3.3) are not satisfied, and

iv)
(NαF x)N

α
F u(x)

f(NαF x)
≥ k > 0 ≥ k > 0 for x 6= 0.

v) We suppose that for sufficiently large τ ≥ t0, ∃τ1, τ2, τ3 with τ ≤ τ2 < τ1 < τ3.
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vi) Also if there exist γ (t) ∈ Cα [(t0,∞) , (0,∞)] such that

1

H(τ3, τ1)
NJ

α
τ1 [H(τ3, s)γ(t)(a(s)− b(s))] (t)

+
1

4cH(τ1, τ2)
NJ

α
τ2 [H(s, τ2)γ(t)(a(s)− b(s))] (τ1)

>
1

4cH(τ3, τ1)
NJ

α
τ1

[
γ(s)p(s)A2

1(τ3, s)
]

(t)

+
1

4cH(τ1, τ2)
NJ

α
τ2

[
γ(s)p(s)A2

2(s, τ2)
]

(τ1) (3.8)

where

A1 (t, s) = h1 (t, s)− Nα
F γ (s)

γ (s)

√
H (t, s)

A2 (t, s) = h2 (s, t)− Nα
F γ (s)

γ (s)

√
H (s, t)

then every solution of (2.1) is oscillatory.

Proof. Now consider the w function defined as follows w(t) =
γ(t)p(t)f(NαF x)

u(x) . After deriving with

respect to t, we have

γ(t)(a(t)− b(t)) ≤ −Nα
Fw(t)− kw2(t)

γ(t)p(t)
+
Nα
F γ(t)w(t)

γ(t)
(3.9)

reordering, multiplying by H(t, s) and integrating, we get

NJ
α
τ1 [H(t, s)γ(s)(a(s)− b(s))] (t) ≤ H(t, τ1)w(τ1)

− NJ
α
τ1

[
h1(t, s)

√
H(t, s)w

]
(t)− kNJατ1

[
H(t, s)

γ(s)p(s)
w2

]
(t)

+ NJ
α
τ1

[
Nα
F γ(s)H(t, s)

γ(s)
w

]
(t)

Now using function A1

NJ
α
τ1 [H(t, s)γ(t)(a(s)− b(s))] (t) ≤ H(t, τ1)w(τ1) +N Jατ1

[
A1(t, s)γ(s)p(s)

4c

]
(t).

Dividing the previous inequality by H(t, τ1) and taking a limit when t→ τ−3 we obtain

1

H(τ3, τ1)
NJ

α
τ1 [H(τ3, s)γ(t)(a(s)− b(s))] (t)

≤ w(τ1) +
1

4cH(τ3, τ1)
NJ

α
τ1

[
γ(s)p(s)A2

1(τ3, s)
]

(t). (3.10)
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Similarly, from the definition of the function w and using A2, we obtain (with t ∈ [τ1, τ3)):

NJ
α
t [H(t, s)γ(t)(a(s)− b(s))] (τ1) ≤ −H(t, τ1)w(τ1) +N Jαt

[
A2(t, s)γ(s)p(s)

4c

]
(τ1).

From where, as before, we get

1

4cH(τ1, τ2)
NJ

α
τ2 [H(s, τ2)γ(t)(a(s)− b(s))] (τ1)

≤ −w(τ1) +
1

4cH(τ1, τ2)
NJ

α
τ2

[
γ(s)p(s)A2

2(s, τ2)
]

(τ1). (3.11)

Adding the equations (3.10) and (3.11) we obtain a contradiction with (3.8). This completes the

proof.

Remark 11. Under assumptions of Remark 7 we obtain the Theorem 3.3 of [26].

We can extend the above result in the following way, considering the function H(t, s) in a particular

case.

Theorem 12. Under assumptions of Theorem 10 we suppose that the following inequality is fulfilled:

1

(τ3 − τ1)
λ NJ

α
τ1

[
(τ3 − s)λγ(t)(a(s)− b(s))

]
(τ3)

+
1

(τ1 − τ2)
λ NJ

α
τ2

[
(s− τ2)λγ(t)(a(s)− b(s))

]
(τ1) (3.12)

>
1

4c (τ3 − τ1)
λ NJ

α
τ1

[
γ(s)p(s)(τ3 − s)λ−2

(
λ− Nα

F γ(s)

γ(s)
(τ3 − s)

)2
]

(τ3)

+
1

4c (τ2 − τ2)
λ NJ

α
τ1

[
γ(s)p(s)(s− τ2)λ−2

(
λ+

Nα
F γ(s)

γ(s)
(s− τ3)

)2
]

(τ1)

then equation (2.1) is oscillatory.

Proof. The proof is tedious but something similar to previous proof. It is enough to take, in the first

part, instead of H(t, s), the function (t − s)λ, in the second part use (s − t)λ and follow the idea of

the proof.

Remark 13. As in the previous remark, we can obtain the Theorem 3.4 of [26].

Remark 14. As we indicated before, our results are not contradictory with the ordinary case. Thus,

in the case that F ≡ 1, f(z) = g(z) = |z|n−2z with n > 1, q ≡ 1 and r ≡ 0, we obtain Theorem 2 of

[15]. It is clear that Corollaries 3 and 4 of the aforementioned work are still valid. Obviously in this

case, the proof is much simpler.
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Remark 15. Our results complete those obtained in [33] for the equation

Nα
F (p(t)Nα

F y) + b(t)y = 0,

a particular case of (2.1) with g(z) = f(z) = z, q ≡ 1, r ≡ 0 and the kernel F (t, α) = t1−α.

Remark 16. In the case of the kernel F ≡ 1, our results are consistent with those obtained in [32],

which study a second order nonlinear differential equation of the type (p(t)h(x)f(x′))
′
+ q(t)g(x) =

r(t, x, x′), f(z) = |z|n−1z with n > 1.

4. CONCLUSION

In this work we obtained, through a Riccatti transformation, generalized oscillation criteria that

contain as particular cases several reported in the literature, both integer and fractional.

On the other hand, it is noteworthy that in this way we can directly study the oscillatory nature of

generalized differential equations, without the need to use a geometric transformation to reduce it to

an ordinary differential equation, a matter that in the case of fractional differential equations with

global derivatives, classic, it is not possible because there is no Chain Rule.
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