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ABSTRACT

This paper deals with approximate solutions of an optimization problem with interval-valued ob-

jective function. Four types of approximate solution concepts of the problem are proposed by con-

sidering the partial ordering LU on the set of all closed and bounded intervals. We show that

these solutions exist under very weak conditions. Under suitable constraint qualifications, we de-

rive Karush–Kuhn–Tucker necessary and sufficient optimality conditions for convex interval-valued

optimization problems.

KEYWORDS: Interval-valued optimization, Approximate solutions, Existence theorems, KKT

optimality conditions.

MSC: 90C70, 90C25, 90C46, 49J55

RESUMEN

Este art́ıculo trata de soluciones aproximadas de un problema de optimización con función objetivo

con valor-intervalo. Se proponen cuatro tipos de conceptos de solución aproximada del problema al

considerar el pedido parcial LU en el conjunto de todos los intervalos cerrados y acotados. Mostramos

que estas soluciones existen en condiciones muy débiles. Bajo calificaciones de restricción adecuadas,

derivamos las condiciones de optimización necesarias y suficientes de Karush–Kuhn–Tucker para

problemas de optimización convexos con valores-intervalo.

PALABRAS CLAVE: Optimización con valor-intervalo, Soluciones aproximadas, Teoremas de

existencia, Condiciones de optimización de KKT

1. INTRODUCTION

In this paper, we are interested in approximate solutions of the following constrained interval-valued

optimization problem:

min f(x)

s. t. x ∈ X := {x ∈ Rn : gj(x) ≤ 0, j = 1, . . . ,m},
(P)
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where f : Rn → Kc is an interval-valued function defined by f(x) = [fL(x), fU (x)], fL, fU : Rn → R
are real-valued functions satisfying fL(x) ≤ fU (x) for all x ∈ Rn, Kc denote the class of all closed

and bounded intervals in R, i.e.,

Kc = {[aL, aU ] : aL, aU ∈ R, aL ≤ aU},

gj : Rn → R, j ∈ J := {1, . . . ,m}, are real-valued constraint functions.

The interval-valued optimization problems recently have received increasing interest in optimization

community; see, e.g., [7, 11, 17, 18, 19, 24, 25, 27, 28, 29] and references therein. The reason for

this is that many problems in decision making, engineering and economics are affected by risk and

uncertainty; see, e.g., [3, 4, 5, 14, 15, 20]. Hence, we usually cannot determine exactly the coefficients

of objective functions in such problems. If the coefficients of objective functions are taken as closed

intervals, we obtain interval-valued optimization problems of the form (P). These problems may

provide an alternative choice for considering optimization problems with uncertain or imprecise data.

In interval-valued optimization, it is important to compare intervals by means of interval order rela-

tions. There is a variety of interval order relations known in the literature; see, e.g., [1, 7, 11, 14, 15].

The well know lower-upper (LU) interval order relation and center-width (CW ) one are introduced

by Ishibuchi and Tanaka [11]. The lower-spread (LS) interval order relation was proposed by Chalco-

Cano et. al. [7]. For these interval order relations, the corresponding solution concepts for the

optimization problem with interval-valued objective function are introduced and studied.

As a mainstream in the study of interval-valued optimization problems, Karush–Kuhn–Tucker (KKT)

optimality conditions for interval-valued optimization problems have attracted the attention of many

researchers; see, e.g., [7, 17, 18, 19, 24, 25, 26, 27, 28, 29] and the references therein. However, to the

best of our knowledge, so far there have been no papers investigating optimality conditions of KKT-

type for approximate solutions of interval-valued optimization problems. It should be noted that, in

general optimization problems, the study of approximate solutions is very important because, from

the computational point of view, numerical algorithms usually generate only approximate solutions

because they stop after a finite number of steps. Furthermore, approximate solutions exist under very

weak assumptions; see, e.g., [6, 13, 21, 22, 23].

In this paper, we focus for the first time on studying the existence and optimality conditions of KKT-

type for approximate solutions of interval-valued optimization problems. We first introduce in the next

section four kinds of approximate solutions with respect to LU interval order relation of (P). Then we

show that the new concepts of approximate solutions are closed related to the approximate efficient

solutions of multiobjective optimization problems in the sense of Loridan [13]. Section 3. is devoted

to study the existence of proposed approximate solutions. In Section 4., we establish KKT necessary

and sufficient optimality conditions for approximate solutions to convex interval-valued optimization

problems of the form (P) under suitable constraint qualifications.

2. APPROXIMATE SOLUTIONS

We use the following notation and terminology. Fix n ∈ N := {1, 2, . . .}. The space Rn is equipped

with the usual scalar product and Euclidean norm. We denote the nonnegative orthant in Rn by Rn+.
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The topological closure, the topological interior and the convex hull of a subset S of Rn are denoted,

respectively, by clA, intA and convA. The conical hull of A is defined by

coneA := {λx : λ ≥ 0, x ∈ convA}.

Let A = [aL, aU ] and B = [bL, bU ] be two intervals in Kc. Then, by definition, we have

(i) A+B = {a+ b : a ∈ A, b ∈ B} = [aL + bL, aU + bU ];

(ii) A−B = {a− b : a ∈ A, b ∈ B} = [aL − bU , aU − bL].

We also see that

kA = {ka : a ∈ A} =

[kaL, kaU ] if k ≥ 0,

[kaU , kaL] if k < 0,

where k is a real number, see [1, 14, 15] for more details.

Let A ⊂ Rn and B ⊂ Rn. The Hausdorff metric between A and B is defined by

dH(A,B) := max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
.

Let {An} and A be closed and bounded intervals in Rn. We say that the sequence {An} converges to

A, denoted by

lim
n→∞

An = A,

if, for every ε > 0, there exists N ∈ N such that, for every n ≥ N , we have dH(An, A) < ε.

We recall here the definitions of the LU interval order relation in Kc and the corresponding solution

concepts of (P).

Definition 1. (See [11, 27]) Let A = [aL, aU ] and B = [bL, bU ] be two intervals in Kc. We say that:

(i) A �LU B if aL ≤ bL and aU ≤ bU .

(ii) A ≺LU B if A �LU B and A 6= B, or, equivalently, A ≺LU B ifaL < bL

aU ≤ bU ,
or

aL ≤ bLaU < bU ,
or

aL < bL

aU < bU .

(iii) A ≺sLU B if aL < bL and aU < bU .

Definition 2. (See [28]) Let x∗ ∈ X. We say that

(i) x∗ is an LU -solution of (P), if there is no x ∈ X such that

f(x) ≺LU f(x∗).

(ii) x∗ is a weakly LU -solution of (P), if there is no x ∈ X such that

f(x) ≺sLU f(x∗).
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The set of weakly LU -solutions and the set of LU -solutions of (P) are denoted, respectively, by Sw(P)

and S(P). Clearly,

S(P) ⊂ Sw(P).

We now introduce approximate solutions of (P) with respect to LU interval order relation. Let εL

and εU be two real numbers satisfying 0 ≤ εL ≤ εU and put E := [εL, εU ] ∈ Kc.

Definition 3. Let x∗ ∈ X. We say that:

(i) x∗ is an E-LU -solution of (P) if there is no x ∈ X such that

f(x) ≺LU f(x∗)− E .

(ii) x∗ is a weakly E-LU -solution of (P) if there is no x ∈ X such that

f(x) ≺sLU f(x∗)− E .

(iii) x∗ is an E-quasi-LU -solution of (P) if there is no x ∈ X such that

f(x) ≺LU f(x∗)− E‖x− x∗‖.

(iv) x∗ is a weakly E-quasi-LU -solution of (P) if there is no x ∈ X such that

f(x) ≺sLU f(x∗)− E‖x− x∗‖.

We denote the set of E-LU -solutions (resp., weakly E − LU -solutions, E-quasi-LU -solution, weakly

E-quasi-LU -solutions) of (P) by E-S(P) (resp., E-Sw(P), E-quasi-S(P), E-quasi-Sw(P)). Clearly,

E-S(P)⊂ E-Sw(P) and E-quasi-S(P) ⊂ E-quasi-Sw(P).

It is easily seen that, when E = 0, i.e., εL = εU = 0, then the notions of an E-LU -solution and an

E-quasi-LU -solution (resp., a weakly E-LU -solution and a weakly E-quasi-LU -solution) defined above

coincide with the one of an LU -solution (resp., a weakly LU -solution).

The new concepts of approximate solutions of (P) are closed related to the approximate efficient so-

lutions of multiobjective optimization problems. In order to present the relationship between these

solution concepts, we first recall some types of approximate efficient solutions in multiobjective opti-

mization. Consider the following multiobjective optimization problem

Min Rk
+
{F̃ (x) : x ∈ X}, (M̃P)

where F̃ : Rn → Rk is a vector-valued function defined on Rn. Let ε ∈ Rk+ and x∗ ∈ X. We say that:

(i) x∗ is an ε-efficient solution of (M̃P) if there is no x ∈ X such that

F̃ (x) ∈ F̃ (x∗)− ε− Rk+ \ {0}.

(ii) x∗ is a weakly ε-efficient solution of (M̃P) if there is no x ∈ X such that

F̃ (x) ∈ F̃ (x∗)− ε− intRk+.
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(iii) x∗ is an ε-quasi-efficient solution of (M̃P) if there is no x ∈ X such that

F̃ (x) ∈ F̃ (x∗)− ε‖x− x∗‖ − Rk+ \ {0}.

(iv) x∗ is a weakly ε-quasi-efficient solution of (M̃P) if there is no x ∈ X such that

F̃ (x) ∈ F̃ (x∗)− ε‖x− x∗‖ − intRk+.

Lemma 1. Let ε := (εU , εL). A point x∗ is an E-LU -solution of (P) if and only if x∗ is an ε-efficient

solution of the following multiobjective optimization problem:

Min R2
+
{F (x) : x ∈ X}, (MP)

where F (x) := (fL(x), fU (x)) for all x ∈ Rn.

Proof. Let x∗ be an E-LU -solution of (P). Then, there is no x ∈ X satisfying

f(x) ≺LU f(x∗)− E . (2.1)

We claim that x∗ is an ε-efficient solution of (MP). Indeed, if otherwise, then there exists x̄ ∈ X such

that

F (x̄) ∈ F (x∗)− ε− R2
+ \ {0},

or, equivalently, fL(x̄) ≤ fL(x∗)− εU ,

fU (x̄) ≤ fU (x∗)− εL,

with at least one strict inequality. Hence, f(x̄) ≺LU f(x∗)− E , which contradicts to (2.1).

Conversely, let x∗ be an ε-efficient solution of (MP). Then, there is no x ∈ X such that

F (x) ∈ F (x∗)− ε− R2
+ \ {0}.

This means that there is no x ∈ X satisfyingfL(x) ≤ fL(x∗)− εU ,

fU (x) ≤ fU (x∗)− εL,

with at least one strict inequality. This implies that

f(x) ≺LU f(x∗)− E .

Hence, x∗ is an E-LU -solution of (P).

Lemma 2. Let ε := (εU , εL). A point x∗ is a weakly E-LU -solution (resp., an E-quasi-LU -solution,

a weakly E-quasi-LU -solution) of (P) if and only if x∗ is a weakly ε-efficient solution (resp., an

ε-quasi-efficient solution, a weakly ε-quasi-efficient solution) of (MP).

Proof. The proof is quiet similar to that of the proof of Lemma 1, so omitted.
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3. EXISTENCE THEOREMS

In this section, we assume that X is a nonempty and closed subset in Rn.

Definition 4. We say that the function f is LU -bounded from below on X if there exists an interval

B = [bL, bU ] ∈ Kc such that

B �LU f(x), ∀x ∈ X.

By definition, it is easily seen that the interval-valued function f is LU -bounded from below on X if

and only if the function fL is bounded from below on X.

Theorem 1. (Existence of E-LU -solutions) Assume that f is LU -bounded from below on X by an

interval B ∈ Kc. Then, for each E = [εL, εU ] ∈ Kc satisfying 0 ≺LU E, the problem (P) admits at

least one E-LU -solution.

Proof. Let x0 ∈ X and put

[f(X)]f(x0) := {A ∈ f(X) : A �LU f(x0)},

where f(X) := {f(x) : x ∈ X}. We first claim that there exists a point x∗ ∈ f−1([f(X)]f(x0)) such

that

f(x) ⊀LU f(x∗)− E , ∀x ∈ f−1
(
[f(X)]f(x0)

)
, (3.1)

where f−1([f(X)]f(x0)) := {x ∈ X : f(x) ∈ [f(X)]f(x0)}. Indeed, if such a point x∗ does not exist,

we can find a sequence {xk} ⊂ f−1([f(X)]f(x0)) such that

f(xk) ≺LU f(xk−1)− E , ∀k ∈ N.

Summarizing these inequalities up to k, we obtain

f(xk) ≺LU f(x0)− kE , ∀k ∈ N,

or, equivalently,
1

k
f(xk) ≺LU

1

k
f(x0)− E , ∀k ∈ N. (3.2)

Due to the construction of the sequence {xk} and the the LU -boundedness from below on X of f , we

have

B �LU f(xk) ≺LU f(x0), ∀k ∈ N.

Hence, 1
kf(xk) → 0 as k → ∞. Then letting k → ∞ in (3.2), we obtain E �LU 0, which contradicts

to the fact that 0 ≺LU E .

We now prove that (3.1) holds also for x ∈ X \ f−1([f(X)]f(x0)). Indeed, if otherwise, then there

exists x ∈ X \ f−1([f(X)]f(x0)) such that

f(x) ≺LU f(x∗)− E .

Combining this with the fact that f(x∗) �LU f(x0), we obtain f(x) ≺LU f(x0), a contradiction.

Therefore,

f(x) ⊀LU f(x∗)− E , ∀x ∈ X.

This means that x∗ is an E-LU -solution of (P).
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Example 1. Let f : R2 → Kc be an interval-valued function defined by

f(x) = [fL(x), fU (x)] = [x21 + (x1x2 − 1)2, 2x21 + (x1x2 − 1)2]

for all x = (x1, x2) ∈ R2 and let X = R2. Then we have 0 < fL(x) ≤ fU (x) for all x ∈ R2. Hence,

f is bounded from below on X. We claim that the problem (P) has no weakly LU -solution. Indeed,

let x∗ be an arbitrary point in X. Then, 0 < fL(x∗) ≤ fU (x∗). Let {xk} be a sequence defined by

xk = ( 1
k , k) for each k ∈ N. Then we have

lim
k→∞

fL(xk) = lim
k→∞

1

k2
= 0 < fL(x∗),

lim
k→∞

fU (xk) = lim
k→∞

2

k2
= 0 < fU (x∗).

This implies that there exists K ∈ N such that

fL(xk) < fL(x∗),

fU (xk) < fU (x∗),

for all k ≥ K. Hence, x∗ is not a weakly LU -solution of (P). This means that the set Sw(P) is

empty. Consequently, S(P) is empty.

However, by Theorem 1, for all E ∈ Kc, 0 ≺LU E, (P) has at least an E-LU -solution. Consequently,

(P) admits at least one weakly E-LU -solution.

We say that the function f is lower-semicontinuous if fL and fU are lower-semicontinuous functions.

Theorem 2. (Existence of E-quasi-LU -solutions) Assume that f is lower-semicontinuous and LU -

bounded from below on X by an interval B ∈ Kc. Then, for every 0 ≺sLU E, the problem (P) admits

at least one E-quasi-LU -solution.

To prove Theorem 2, we need the following vectorial Ekeland’s variational principle.

Lemma 3. (See [2, Theorem 3.1]) Let (X, d) be a complete metric space and Y a Banach space.

Assume that C ⊂ Y is a closed, convex and pointed cone with intC 6= ∅. Let k0 ∈ intC and let

F : X → Y be a vector-valued function. For every ε > 0 there is an initial point x0 ∈ X such that

F (X) ∩ (F (x0)− εk0 − intC) = ∅ and F satisfies

{x′ ∈ X : F (x′) + d(x′, x)k0 ∈ F (x)− C} is closed for every x ∈ X.

Then there exists x̄ ∈ X such that

(i) F (x̄) ∈ F (x0)− intC,

(ii) d(x0, x̄) ≤ 1

(iii) F (x) /∈ F (x̄)− εd(x, x̄)k0 − C for all x 6= x̄.

Proof of Theorem 2. Let x0 ∈ X. Then, by Theorem 1, the problem (P) has at least an E-LU -solution,

say x∗, satisfying f(x∗) �LU f(x0). By Lemma 1, x∗ is an ε-efficient solution of (MP) and so is a

weakly ε-efficient solution of (MP), where ε = (εU , εL). Consequently,

F (X) ∩ [F (x∗)− ε− intR2
+] = ∅.
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By the lower-semicontinuity of fL, fU and the closedness of X, it is easy to see that for each x ∈ X
the following set

{u ∈ X : F (u) + ε‖u− x‖ ∈ F (x)− R2}

is closed. By Lemma 3, there exists a point x̄ ∈ X such that F (x̄) ∈ F (x∗)− intR2 and

F (x) /∈ F (x̄)− ε‖x− x̄‖ − R2
+, ∀x ∈ X \ {x̄}.

Hence,

F (x) /∈ F (x̄)− ε‖x− x̄‖ − R2
+ \ {0}, ∀x ∈ X,

or, equivalently, x̄ is an ε-quasi-efficient solution of (MP). Thus, x̄ is an E-quasi-LU -solution of (P)

due to Lemma 2. The proof is complete. 2

Example 2. Let f and X be as in Example 1. Then, by Theorem 2, the sets E-quasi-S(P) and

E-quasi-Sw(P) are nonempty for all E ∈ Kc satisfying 0 ≺sLU E.

4. KKT OPTIMALITY CONDITIONS

In this section, we assume that fL, fU , and gj , j = 1, . . . ,m, are convex functions. Since every real-

valued convex function is continuous, the constraint set X is closed and convex. In order to present

optimality conditions for approximate solutions of (P), we recall some notations and basic results

from convex analysis.

4.1. The approximate subdifferential

Let ϕ : Rn → R be a convex function. The conjugate function of ϕ, ϕ∗ : Rn → R, is defined by

ϕ∗(v) := sup{〈v, x〉 − ϕ(x) : x ∈ domϕ}.

For ε ≥ 0 the ε-subdifferential of ϕ at x∗ ∈ domϕ is given by:

∂εϕ(x∗) := {v ∈ Rn : ϕ(x)− ϕ(x∗) ≥ 〈v, x− x∗〉 − ε, ∀x ∈ domϕ}.

When ε = 0, ∂0ϕ(x∗) coincides with ∂ϕ(x∗), the subdifferential of ϕ at x∗ (see, e.g., [16, 9]). It is

well-known that

∂µε(µϕ(x∗)) = µ∂εϕ(x∗), ∀µ > 0.

Lemma 4. (Sum rule [9, Theorem 2.115]) Consider two proper convex functions ϕi : Rn → R, i = 1, 2,

such that ri domϕ1 ∩ ri domϕ2 6= ∅. Then for ε ≥ 0 and x ∈ domϕ1 ∩ domϕ2,

∂ε(ϕ1 + ϕ2)(x) =
⋃

ε1+ε2=ε
ε1, ε2≥0

(
∂ε1ϕ1(x) + ∂ε2ϕ2(x)

)
.

We say that the constrain set X satisfies the Slater constraint qualification if there exists x̂ ∈ Rn such

that gj(x̂) < 0, for all j ∈ J . The following result gives necessary and sufficient optimality conditions

for a feasible point to be an approximate solution of a convex programming problem.
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Theorem 3. (See [9, Theorem 10.9]) Let ϕ : Rn → R be a convex function and let ε ≥ 0. Assume

that X satisfies the Slater constraint qualification. Then x∗ ∈ X is a ε-solution of ϕ on X, i.e.,

ϕ(x) ≥ ϕ(x∗)− ε for all x ∈ X, if and only if there exist ε0 ≥ 0, εj ≥ 0, and λj ≥ 0, j ∈ J , such that

0 ∈ ∂ε0ϕ(x∗) +

m∑
j=1

∂εj (λjgj)(x
∗) and

m∑
j=0

εj − ε ≤
m∑
j=1

λjgj(x
∗).

4.2. KKT conditions for weakly E-LU-solutions

Lemma 5. Let x∗ ∈ X. Then x∗ is a weakly-E-LU -solution of (P) if and only if there exist µL ≥ 0,

µU ≥ 0, µL + µU = 1 such that

µLfL(x) + µUfU (x) ≥ µLfL(x∗) + µUfU (x∗)− µLεU − µU εL, ∀x ∈ X. (4.1)

Proof. By Lemma 2, x∗ is a weakly-E-LU -solution of (P) if and only if x∗ a weakly ε-efficient solution

(MP), where ε := (εU , εL). This is equivalent to the inconsistent of the following system
fL(x) < fL(x∗)− εU ,

fU (x) < fU (x∗)− εL,

x ∈ X.

By [10, Theorem 1], the above system is inconsistent if and only if there exist µL ≥ 0, µU ≥ 0,

µL + µU = 1 such that

µL[fL(x)− fL(x∗) + εU ] + µU [fU (x)− fU (x∗) + εL] ≥ 0, ∀x ∈ X,

or, equivalently, (4.1) is valid.

The following result gives KKT necessary and sufficient optimality conditions for a feasible point to

be a weakly-E-LU -solution of (P).

Theorem 4. Let x∗ ∈ X. Assume that X satisfies the Slater constraint qualification. Then x∗ is a

weakly-E-LU -solution of (P) if and only if there exist µL ≥ 0, µU ≥ 0, µL + µU = 1, ε0 ≥ 0, εj ≥ 0,

and λj ≥ 0, j ∈ J , such that

0 ∈ ∂ε0(µLfL + µUfU )(x∗) +

m∑
j=1

∂εj (λjgj)(x
∗) and

m∑
j=0

εj − µLεU − µU εL ≤
m∑
j=1

λjgj(x
∗).

Proof. The proof is directly from Lemma 2 and Theorem 3, so omitted.

4.3. KKT conditions for E-LU-solutions

For each x∗ ∈ X, denote

X(x∗, E) := {x ∈ Rn : f(x) �LU f(x∗)− E}.

Lemma 6. Let x∗ ∈ X. Then x∗ is an E-LU -solution of (P) if and only if X ∩X(x∗, E) = ∅ or,

fL(x) + fU (x) = fL(x∗) + fU (x∗)− εU − εL, ∀x ∈ X ∩X(x∗, E). (4.2)
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Proof. We will follow the proof scheme of [12, Proposition 8.1] (see also [13, Proposition 3.1]).

(⇒): Let x∗ be an E-LU -solution of (P). Then, by Lemma 1, x∗ is an ε-efficient solution of (MP),

where ε = (εU , εL). This means that there is no x ∈ X such thatfL(x) ≤ fL(x∗)− εU

fU (x) ≤ fU (x∗)− εL

with at least one strict inequality. Hence, X(x∗, E) = ∅ or,fL(x) = fL(x∗)− εU

fU (x) = fU (x∗)− εL

for all x ∈ X ∩X(x∗, E) and we therefore get (4.2).

(⇐): Clearly, if X ∩ X(x∗, E) = ∅, then x∗ is an E-LU -solution of (P). We now assume that

X ∩X(x∗, E) 6= ∅ and (4.2) holds. Suppose to the contrary that x∗ is not an E-LU -solution of (P).

Then, there exists x ∈ X such that fL(x) ≤ fL(x∗)− εU

fU (x) ≤ fU (x∗)− εL

with at least one strict inequality. Hence, x ∈ X ∩X(x∗, E) and

fL(x) + fU (x) < fL(x∗) + fU (x∗)− εU − εL,

contrary to (4.2).

We say the closedness condition (CCx∗) holds at x∗ ∈ X if

cone
( ⋃
j∈J

epi g∗j ∪ epi (f̃L)∗ ∪ epi (f̃U )∗
)

is closed,

where f̃L(x) := fL(x)− fL(x∗) + εU and f̃U (x) := fU (x)− fU (x∗) + εL.

By using Lemma 6 and modifying the proof of Theorem 8.1 in [12], we can obtain the following result.

Theorem 5. Let x∗ ∈ X. Assume that X ∩ X(x∗, E) 6= ∅ and that (CCx∗) holds. Then x∗ is an

E-LU -solution of (P) if and only if there exist ε0 ≥ 0, γ1 ≥ 0, γ2 ≥ 0, εj ≥ 0, µ1 ≥ 0, µ2 ≥ 0, and

λj ≥ 0, j ∈ J , such that

0 ∈ ∂ε0(fL + fU )(x∗) + µ1∂γ1f
L(x∗) + µ2∂γ2f

U (x∗) +

m∑
j=1

∂εj (λjgj)(x
∗)

ε0 + µ1γ1 + µ2γ2 − (1 + µ1)εU − (1 + µ2)εL +

m∑
j=1

λjεj ≤
m∑
j=1

λjgj(x
∗).

Proof. The proof is similar to that of the proof of [12, Theorem 8.1], and we omit it.
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4.4. KKT conditions for E-quasi-LU-solutions

We say that the Mangasarian–Fromovitz constraint qualification (MFCQ) holds at x∗ ∈ X if there

do not exist λj ≥ 0, j ∈ J(x∗) not all zero, such that

0 /∈
∑

j∈J(x∗)

λj∂gj(x
∗),

where J(x∗) := {j ∈ J : gj(x
∗) = 0}.

Theorem 6. Let x∗ ∈ X. Assume that the condition (MFCQ) holds at x∗. Then x∗ is a weakly

E-quasi-LU -solution of (P) if and only if there exist µL ≥ 0, µU ≥ 0, µL + µU > 0, ε0 ≥ 0, εj ≥ 0,

and λj ≥ 0, j ∈ J , such that

0 ∈ µL∂fL(x∗) + µU∂fU (x∗) +

m∑
j=1

λj∂gj(x
∗) + (µLεU + µU εL)BRn .

λjgj(x
∗) = 0, ∀j ∈ J.

(4.3)

Furthermore, if fL and fU are strictly convex, then (4.3) is also sufficient for x∗ is an E-quasi-LU -

solution of (P).

Proof. (⇒): Assume that x∗ is a weakly E-quasi-LU -solution of (P). Then, by Lemma 2, x∗ is a

weakly ε-quasi-efficient solution of (MP), where ε = (εU , εL). Hence, the following system:fL(x) < fL(x∗)− εU‖x− x∗‖,

fU (x) < fU (x∗)− εL‖x− x∗‖,

has no solution x ∈ X. For each x ∈ Rn, put

Φ(x) := max{fL(x)− fL(x∗) + εU‖x− x∗‖, fU (x)− fU (x∗) + εL‖x− x∗‖, g1(x), . . . , gm(x)}.

Then Φ(x∗) = 0 and Φ(x) ≥ 0 for all x ∈ Rn. Clearly, Φ is convex. Hence, by [9, Theorem 2.89], we

have

0 ∈ ∂Φ(x∗).

From this and [9, Theorem 2.96] it follows that there exist µL ≥ 0, µU ≥ 0, λj ≥ 0, j ∈ J(x∗) such

that µL + µU +
∑
j∈J(x∗) λj = 1 and

0 ∈ µL∂(fL(·)− fL(x∗) + εU‖ · −x∗‖)(x∗) + µU∂(fU (·)− fU (x∗) + εL‖ · −x∗‖)(x∗) +
∑

j∈J(x∗)

λj∂gj(x
∗).

Combining this with the Moreau–Rockafellar Sum Rule [9, Theorem 2.91] and the fact that

∂(‖ · −x∗‖)(x∗) = BRn ,

we obtain

0 ∈ µL∂fL(x∗) + µU∂fU (x∗) +
∑

j∈J(x∗)

λj∂gj(x
∗) + (µLεU + µU εL)BRn .

Clearly, the condition (MFCQ) implies that µL + µU > 0. For j /∈ J(x∗), we put λj = 0. Then, (4.3) holds.
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(⇐): Assume that there exist µL ≥ 0, µU ≥ 0, µL + µU > 0, ε0 ≥ 0, εj ≥ 0, and λj ≥ 0, j ∈ J , that satisfy

(4.3). Hence, there exist zL ∈ ∂fL(x∗), zU ∈ ∂fU (x∗), uj ∈ ∂gj(x∗) and b ∈ BRn such that

µLzL + µUzU +

m∑
j=1

λjuj + (µLεU + µU εL)b = 0,

or, equivalently,

µL(zL + εUb) + µU (zU + εLb) +

m∑
j=1

λjuj = 0. (4.4)

Suppose to the contrary that x∗ is not a weakly E-quasi-LU -solution of (P). This implies that there exists

x̂ ∈ X such that f
L(x̂) < fL(x∗)− εU‖x̂− x∗‖,

fU (x̂) < fU (x∗)− εL‖x̂− x∗‖.

Hence,

µL(fL(x̂) + εU‖x̂− x∗‖ − fL(x∗)) + µU (fU (x̂) + εL‖x̂− x∗‖ − fU (x∗)) < 0, (4.5)

due to µL + µU > 0. Since the function fL(·) + εU‖ · −x∗‖ is convex, we have

fL(x̂) + εU‖x̂− x∗‖ − fL(x∗) ≥ z∗(x̂− x∗), ∀z∗ ∈ ∂(fL(·) + εU‖ · −x∗‖)(x∗).

This and the fact that

∂(fL(·) + εU‖ · −x∗‖)(x∗) = ∂fL(x∗) + εUBRn

imply that

fL(x̂) + εU‖x̂− x∗‖ − fL(x∗) ≥ (zL + εUb)(x̂− x∗).

Similarly, we have

fU (x̂) + εL‖x̂− x∗‖ − fU (x∗) ≥ (zU + εLb)(x̂− x∗)

gj(x̂)− gj(x∗) ≥ uj(x̂− x∗), ∀j ∈ J.

From these and (4.5) we deduce that[
µL(zL + εUb) + µU (zU + εLb) +

m∑
j=1

λjuj

]
(x̂− x∗) ≤ µL(fL(x̂) + εU‖x̂− x∗‖ − fL(x∗))

+ µU (fU (x̂) + εL‖x̂− x∗‖ − fU (x∗)) < 0,

contrary to (4.4).

If fL and fU are strictly convex, then so are fL(·) + εU‖ · −x∗‖ and fU (·) + εL‖ · −x∗‖. Now suppose to the

contrary that x∗ is not an E-quasi-LU -solution of (P). Then there exists x̃ ∈ X such thatf
L(x̃) ≤ fL(x∗)− εU‖x̃− x∗‖,

fU (x̃) ≤ fU (x∗)− εL‖x̃− x∗‖,

with at least one strict inequality. Without loss of generality we assume that

fL(x̃) < fL(x∗)− εU‖x̃− x∗‖.

This imply that x̃ 6= x∗. By the strictly convexity of fL and fU we obtain

fL(x̃) + εU‖x̃− x∗‖ − fL(x∗) > (zL + εUb)(x̃− x∗),

fU (x̃) + εL‖x̃− x∗‖ − fU (x∗) > (zU + εLb)(x̃− x∗).
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Hence,

0 =
[
µL(zL + εUb) + µU (zU + εLb) +

m∑
j=1

λjuj

]
(x̃− x∗) < µL(fL(x̃) + εU‖x̃− x∗‖ − fL(x∗))

+ µU (fU (x̃) + εL‖x̃− x∗‖ − fU (x∗)) ≤ 0,

a contradiction. The proof is complete.

5. CONCLUSIONS

In this work, we propose some kinds of approximate solutions of interval optimization problems with

respect to LU interval order relation. We show that these approximate solutions exist under very weak

assumptions. By establishing the relationships of approximate solutions between interval optimization

problems and multiobjective optimization problems and using suitable constraint qualifications, we

derive some KKT necessary and sufficient optimality conditions for approximate solutions of convex

interval-valued optimization problems. As shown in Lemmas 1 and 2, approximate solutions of in-

terval optimization problems are closed related to the approximate efficient ones of multiobjective

optimization problems. Accordingly, we may use the schemes in [8, 21, 22] to present new results on

KKT necessary and sufficient optimality conditions by virtue of the Clarke subdifferentials (or the

limiting subdifferentials) for nonconvex and nonsmooth interval optimization problems in our further

research.
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[23] TAMMER, C. AND ZĂLINESCU, C. (2012): Vector variational principles for set-valued func-

tions. En: ANSARI, Q. H. AND YAO, J. -C. Recent Developments in Vector Optimiza-

tion, Vector Optimization, vol. 1, pp. 367–415. Springer, Berlin.

[24] TUNG, L. T. (2019): Karush–Kuhn–Tucker optimality conditions and duality for semi-infinite

programming with multiple interval-valued objective functions. J. Nonlinear Funct. Anal.,

2019, 21 pages.

[25] TUNG, L. T. (2020): Karush–Kuhn–Tucker optimality conditions and duality for convex semi-

infinite programming with multiple interval-valued objective functions. J. Appl. Math. Com-

put., 62, 67–91.

[26] TUYEN, N. V., XIAO, Y. -B., AND SON, T. Q. (2020): On approximate KKT optimality

conditions for cone-constrained vector optimization problems. J. Nonlinear Convex Anal.,

21, 105–117.

[27] WU, H. C. (2007): The Karush–Kuhn–Tuker optimality conditions in an optimization problem

with interval valued objective functions. Eur. J. Oper. Res., 176, 46–59.

[28] WU, H. C. (2009): The Karush–Kuhn–Tucker optimality conditions in multiobjective program-

ming problems with interval-valued objective functions. Eur. J. Oper. Res., 196, 49–60.

[29] WU, H. C. (2009): The Karush–Kuhn–Tucker optimality conditions for multi-objective pro-

gramming problems with fuzzy-valued objective functions. Fuzzy Optim. Decis. Mak., 8,

1–28.

237


