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ABSTRACT 

In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of 

stochastic optimization algorithm with learning from the structure and parameters of local populations are based on 

independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for 
discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the 

search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better 

performance than them. 
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RESUMEN 

En este documento, se presenta un nuevo algoritmo bayesiano de estimación celular para problemas de optimización discretos.  

Esta clase de algoritmo de optimización estocástica con aprendizaje de la estructura y los parámetros de las poblaciones locales 

se basa en la prueba de independencia y el esquema de poblaciones descentralizadas, lo que puede reducir el número de 
evaluaciones de funciones que resuelven problemas de optimización discretos. Los resultados experimentales mostraron que esta 

propuesta  reduce  el  número  de  evaluaciones  en  la  búsqueda  del  óptimo  para  funciones  discretas  de referencia  con 
respecto  a  otros  enfoques  de  la  literatura.   Además, tuvo mejores resultados con respecto a los algoritmos del estado del arte. 

 

PALABRAS CLAVES: EDA celulares; Redes bayesianas; aprendizaje; algoritmo evolutivo. 

1. INTRODUCTION 

Estimation of Distribution Algorithms (EDAs) are a group of evolutionary algorithms (EAs) for solving 

optimization problems, which allow adjusting the model to the structure of a particular issue, by an estimation 

of probability distributions of the selected solutions [4]. The model bias is reflected by a probability 

distribution. These algorithms are based on meta-heuristics replace operator’s crossover and mutation of 

individuals of genetic algorithms for the estimation and subsequent sampling of  a probability distribution 

learned from the individuals selected from a population [15].For discrete optimization problems, some EDAs 

have been proposed: UMDA [2], PADA [12, 18]and SPADA [14]. Univariate Marginal Distribution 

Algorithm for Continuous Domain (UMDA), assumes in each generation that the variables are independent. 

Algorithm with Factorized Distribution based on Polytrees is published with the name of PADA [12, 18], 

which is named as Polytree Approximation Distribution Algorithm. PADA is an EDA that uses single 

connected models as a model of its distributions. On the other hand, SPADA [14], unlike those based on 

independence tests, requires computing higher-order distributions, as occurs with interconnected networks. 

However, as in the polytrees it is only possible to insert edges and their cost is lower than the interconnected 

networks. The local search algorithm using SPADA is a glutton procedure that checks for the existence of 

non-directed, rather than directed, cycles. On the other hands, cellular evolutionary algorithms [2, 1] are a 

type of evolutionary algorithms discrete groups based on spatial structures, where each individual interacts 
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with its adjacent neighbor.  An overlapped neighborhood helps to the exploration of the search space, while 

the exploitation takes place within a neighborhood by stochastic operators. In addition, a cellular EDA is a 

collection of collaborative and decentralized EDAs, also called members algorithms that develop overlapping 

populations [3]. A distinctive feature of this kind of algorithms is that they are decentralized level algorithms 

and other evolutionary algorithm selection usually occurs at the level of recombination [10, 9, 11].  

 

2. CELLULAR  ESTIMATION BAYESIAN ALGORITHM 

We propose a new method that employs Bayesian Network in estimation and sampling phases in the cellular 

EDAs. Relevant concepts for the proposed algorithm like probabilistic graphics models, Bayesian networks, 

learning strategy, neighborhoods and benchmark discrete functions, are provided below. 

2.1. Probabilistic Graphical Models. 

 

Graphics Models (GM) are tools to represent joint probability distributions. Probabilistic Graphical Models 

(PGMs) [10] are graphs in which nodes represent random variables and arcs represent conditional dependence 

relations. These graphs provide a compact way to represent the probability distribution [5, 8]. PGMs used by 

EDA algorithms vary depending on the domain of the problem variables. If these variables are discrete 

Bayesian networks are used. 

Bayesian network [6] is a type of GM that uses directed acyclic graphs (DAG), which takes into account the 

direction of the arcs. A Bayesian network is defined by  the  pair where G is a graph representing the 

dependency relationships between variables and P is the factorization of the probability distribution 

represented by G. Formally  a Bayesian network on a  set, V = {V1, ...,Vn} of random variables defined. The 

factorization of the joint probability can be expressed as: 

                                                              
 
                                                                     (2.1) 

The expression used to define a Bayesian network status Markov [16], each variable (Vi) is independent of 

any subset of the variables not a descendant of it, conditioned as a whole parent (   ).  
Learning Bayesian Networks, [17] there are two basic techniques: learning based on constraints (constraint 

based learning) or algorithms that detect independence, and learning based on optimization metrics (search-

and-score based learning) known as scoring methods. These models perform two basic tasks: first perform a 

structural learning to identify the topology of the network and from this estimate, the parameters (parametric 

learning) represented by conditional probabilities. 

2.2.  Learning Strategy. 

 

A critical issue in a cellular EDA is using a strategy learning the probabilistic model because they usually are 

not efficient from the point of evaluative view, which can affect the performance of the algorithm, so learning 

the structure and parameters from local populations, it may be one of the alternatives to solve this problem. 

This learning is performed by generating several points, which the dependency graph are constructed in a 

Bayesian Network (learning dependency graph of Bayesian Networks ie. the structure) and then their 

probabilities are estimated from this graph dependence (learning parameters)[2]. 

Neighborhoods is a set of neighbor’s individuals to a given one, ie., that are located next to it in a given 

population according to the grid [7, 13] spatial topology. The neighborhood of 5 individuals, commonly 

called NEWS (North, East, West, South), considered the central individual and immediately top, bottom, left 

and right. There are other neighborhoods, such as One, L9, C9, C13 or compact C25 and C41, using a 

neighborhood of smaller radius makes solutions extend more slowly by the population, leading to a lower 

overall selective pressure and maintaining greater genetic diversity when using larger neighborhoods, as 

shown in figure 1. 
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Figure 1. Representation of different neighborhoods 

2.3. Benchmark discrete function. 

 

In this section, the preliminary experiments on discrete functions can to verify the effectiveness of the 

proposed method. The aim of these benchmark function is tested the performance of the discrete optimization 

algorithms. 

The authors [4] suggest that an optimization problem can be defined as a set of potential solutions to the 

problem and a method for assessing the quality of these solutions. The task is to find a solution from the set of 

potential solutions that maximizes quality defined by the evaluation procedure. An optimization problem can 

be defined as follows: In the above function xi = (x1, x2, ..., xn) denotes a vector of discrete random variables 

domain. For the discrete case, each  xi takes values from 1 to ri, in other words, the variable xi can take ri + 1 

values.  For the continuous, case each xi takes values in a range, the variable xi takes, continuously, all 

possible values in the range. The solution to this problem is to find the maximum (optimal) point of the 

function f (x) => R. From this time, the candidate solutions will be treated as individuals in the population 

with which they work. 

IsoPeak is a non-separable function and it is composed of the bivariate functions Iso1 and Iso2. The solution 

for this function is an n-dimensional vector such that n = 2 β m (the variables are divided into groups of two). 

First, Iso1 and Iso2 auxiliary functions are defined as follows in figure 2. 

 
Figure 2. Iso1 and Iso2 auxiliary functions 

Then IsoPeak function is defined: 

                                        
 
                                                                                      

(2.2) 

The aim is to maximize the IsoPeak function and the global optimum is located at the point (1, 1, 0, 0... 0, 0). 
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FirstPolytree3 function is a separable function that decomposes meditatively with blocks of length three.  In 

each block is valued function   
    

property that Boltzmann distribution with parameter β=2 has a structure 

Polytree the following arcs: x1β x2 and x3β x2.  After the function   
    

 called as F3Poly can define as: 

                            
    

                 
 
                                                                                          

(2.3) 

The aim is to maximize F3Poly, taking the global optimum located at the point 0; 0; 1;. . . ; 0; 0; 1) and the 

function takes the value l*1.047; where: n=3*l. 

FirstPolytree5 function is a separable function that decomposes meditatively with five blocks long. In each 

block is valued function    
    

 . This function has the property that Boltzmann distribution with parameter β= 

2 has a structure Polytree the following arcs: 

x1β x3, x2β x3, x3β x5 and x4β x5. 

After the function, defined F5Poly can define the function as:   

                    
    

                             
 
                                                                    

(2.4) 

The aim is to maximize F5Poly, taking the global optimum located at the point (0; 1; 0; 0; 1. . . ; 0; 1; 0; 0; 1) 

and the function takes the value l*1.723; where n=5*l. 

OneMax discrete target, is a function has (n + 1) different values of fitness, which are distributed polynomial 

where the goal is to maximize the OneMax function. 

                            
 
                                                                                                                      

(2.5) 

Where n is the number of variables and xi is the ith variable in the problem.  The global optimum   is reached 

at the point (1,.....,1) and its value is n. Furthermore, a function additively decomposed where the value of the 

global optimum (1, 1) is equal to the number of variables n. 

Deceptive3 functions of order k are defined as the sum of the most basic functions of variables k Deceptive: 

                      
    

                
               
               
                

                                                                                                             (2.6) 

Where are strings containing k elements in the Deceptive function of order 3 (Deceptive3) which is defined as 

follows: The global optimum is reached at point (1, 1..., 1) where n=3*l. 

 

3. EXPERIMENTAL STUDY 

 

To check the correct operation of the algorithm a series of experiments consistent in carrying out executions 

to different neighborhoods, so that a set of common parameters were chosen, the target population will always 

be 30% of the global population, the selection method used were made was the path where the best 

individuals in the population are selected, in all experiments elitism like we used to 1. For all algorithms 100 

executions were carried out, the stop criterion is to find the optimal or perform a fixed number of iterations in 

the case of discrete functions it is 30. For this study were selected the set of test functions before mentioned. It 

is composed of six problems having many different features. 

3.1. Cellular EDA using different neighborhoods 

 

Table 1. shows the experimental results of executing the algorithm for different neighborhoods, taking into 

account the objective functions: F3Poly, F5Poly and IsoPeak. 

             Table 1. Experimental results of F3Poly, F5Poly and IsoPeak functions 

neighborhood Obj. Func. n τ Generations %Success 

One F3Poly 30 0.3 7.39 29 
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L5    4 100 

C13    5.29 93 

C25    6.20 93 

C41    9.94 76 

C9    4.05 100 

L9    4.86 99 

One F5Poly 30 0.3 28.41 13 

L5    5.01 98 

C13    6.46 90 

C25    7.34 94 

C41    9.42 79 

C9    4.88 100 

L9    5.00 100 

One IsoPeak 30 0.3 23.76 43 

L5    3.85 100 

C13    4.85 96 

C25    6.30 93 

C41    8.32 82 

C9    3.96 100 

L9    4.51 100 
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Figure 3. Results of number of evaluations for F3Poly, F5Poly and IsoPeak functions 

The cellular EDA algorithm with L5, C9 and L9 neighborhoods requires fewer generations to find optimal of 

these function, which had the best percentage of success. 

As shown in Figure 3, the neighborhoods using the cellular EDA with local learning structures and 

parameters, learning the Bayesian Networks, the one with the best result is the L5, C9 and L9 that performs 

less than evaluations for each number of variables. The neighborhood One is the worse efficiency, since for 

these functions it had a high number of evaluations, to find the optimum. In addition, the neighborhoods C13 

and C25 had good evaluative efficiency. 
 

3.2. Cellular EDA using different Grids 

 

Table 2. shows the experimental results of executing the algorithm for different grids, taking into account the 

OneMax objective function. 
Table 2. Experimental results OneMax functions for different grids 

neighborhood Obj. Func. n Generations %Success 

L5(5x5x2x2) OneMax 100 7.71 95 

L5(10x10x2x2)   2.08 100 

L5(20x20x2x2)   2 100 

L5(5x5x4x4)   9.04 77 

L5(10x10x4x4)   3.12 96 

L5(2x2x5x5)   17.24 67 

L5(4x4x5x5)   9.27 77 

L5(2x2x10x10)   10.75 84 

L5(4x4x10x10)   5.83 89 

L5(2x2x20x20)   10.61 88 

 

As can be observed, the cellular EDA algorithm with L5 (5x5x2x2) and (10x10x2x2) neighborhoods requires 

fewer generations to find optimal OneMax function. 

As it can be seen in Figure 4, of the configurations of proposed grids the one of smaller number of evaluations 

for the neighborhood L5, is the configuration 10x10x2x2 and 5x5x2x2, and 2x2x20x20 was worst 

configurations. 
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Figure 4. Results of the number of evaluations for Onemax function 

3.3. Comparison between cellular EDA and other EDA approach 

 

To study the efficacy of this cellular EDAs, several approaches were selected, including PADA, SPADA and 

CUMDA. Algorithm with Factorized Distribution based on Polytrees is published with the name of PADA 

[12, 18], which is named as Polytree Approximation Distribution Algorithm. PADA is an EDA that uses 

simply connected models as a model of its distributions. On the other hand, SPADA [14], unlike those based 

on independence tests, requires computing higher-order distributions, as occurs with interconnected networks. 

However, as in the polytrees it is only possible to insert edges and their cost is lower than the interconnected 

networks. The local search algorithm using SPADA is a glutton procedure that checks for the existence of 

non-directed, rather than directed, cycles. Table 3. show the results of the experiments with these approaches. 

These results suggest that cellular EDA with neighborhoods L9, C9 and C41; and grid 20x20x2x2 had better 

performance that EDA approaches (Simple EDA , PADAp3, PADAp2, PADAt3, PADAt2, SPADA π=1, 

SPADA π=6), taking into account evaluation number and generations. 

Table 3. Experimental results of deceptive function (n=30) 

Algorithm %Success NumEva Generations 

cEDA(L9-20x20x2x2) 100 6397 4 

cEDA(C9-20x20x2x2) 100 6397 4 

cEDA(C41-20x20x2x2) 100 6412.99 4.01 

Simple EDA(2000)[2] 100 10795.60 5.40 

PADAp3(1000)[12, 18] 77 18142.84 18.16 

PADAp2(1000) [12, 18] 72 17613.37 17.63 

PADAt3(1000) [12, 18] 98 10400.59 10.41 

PADAt2(1000) [12, 18] 96 10800.19 10.81 

SPADA π=1(1000) [14] 92 9071.92 9.08 

SPADA π=6(1000) [14] 96 10150.84 10.16 

 

Another study carried out with cellular EDA and the cellular Univariate Marginal Distribution Algorithm 

(CUMDA)[2], where table 4. shows the result of the cellular EDA using different neighborhood versus 

CUMDA, taking into account Isopeak function for thirty variables. 
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Table 4. Experimental results of Isopeak function (n=30) 

Algorithm %Success Generations NumEva 

cEDA(L9-5x5x2x2) 100 4.51 ± 2.33 447.49 ± 231.00 

cEDA(C9-5x5x2x2) 100 3.96 ± 1.92 393.04 ± 190.31 

cEDA(C13-5x5x2x2) 96 4.85 ± 5.31 481.15 ± 525.63 

cEDA(C25-5x5x2x2) 93 6.30 ± 6.93 624.70 ± 685.96 

cEDA(L5-5x5x2x2) 100 3.86 ± 1.20 3.8 ± 1.20 

CUMDA(C9-10x10-2x2)[2] 86.66 9.69 ± 2.26 4085 ± 908 

 

These results suggest that cellular EDA with neighborhoods L9, C9, C13, C25 and L5; and grid 5x5x2x2 had 

better performance that CUMDA with neighborhood C9 and grid 10x10x2x2, despite its grid using minor 

population. Moreover, the better cellular EDA are cEDA with learning and structure of local population (L5 

and C9) with generation (3.86 ± 1.20) and (3.96 ± 1.92); and number of evaluation (382 ± 118.88) and 

(393.04 ± 190.31) respectively. 

4. CONCLUSIONS  

In this work, we made the study of the EDA decentralized with local learning structures and parameters, using 

Bayesian networks for learning based independence tests, which can reduce the number of evaluations in 

solving discrete optimization problems. Moreover, it was shown that cEDA decreases number of the 

evaluations of the fitness functions, compared to other EDAs in the literature for solving discrete optimization 

problems. As future work, adapting cEDA for practical problems where there are dependencies amongst the 

variables and the number of evaluations of the fitness functions is restricted will be an interesting research 

direction. Another interesting work will be compare cEDA with other algorithms like Differential Evolution 

Algorithm, Particle Swarm Optimization and Firefly Algorithm in this kind of problems. 
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