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ABSTRACT 

This paper presents a generalized class of mean estimators under simple random sampling using auxiliary variable. The 

observations on both the study variable and the auxiliary variable are supposed to be recorded with measurement error. The 
mean square error of the proposed class of estimators is derived and studied under measurement errors. Several commonly 

known estimators are shown as special cases of the proposed class of estimators. Simulation and numerical studies are carried 

out to evaluate the performance of the estimators.  
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RESUMEN 

Este artículo presenta una clase generalizada de estimadores de medias bajo muestreo aleatorio simple usando variable 

auxiliar. Se supone que las observaciones tanto en la variable de estudio como en la variable auxiliar deben registrarse con un 
error de medición. El error cuadrado medio de la clase propuesta de estimadores se deriva y estudia bajo errores de medición. 

Varios estimadores conocidos comúnmente se muestran como casos especiales de la clase propuesta de estimadores. Se 

realizan simulaciones y estudios numéricos para evaluar el desempeño de los estimadores. 
 

PALABRAS CLAVE: Error de medición, porcentaje de eficiencia relativa, error cuadrático medio, simulación. 

 

1. INTRODUCTION 

 

In survey sampling literature, auxiliary variable is used at the estimation stage of a parameter when   some 

characteristics of the study variable are closely related to auxiliary variables. Ratio, product and regression 

methods are pioneered methods that use auxiliary variable. Thompson (2012), Sharma et al. (2016), Bouza 

(2016), Singh et al. (2019), etc. have made their good contribution in the estimation of ratio and product 

methods of estimation of population mean.  In the estimation of the population mean, by using the auxiliary 

variable, the ratio estimator is best suited when the study variable and auxiliary variable are strongly 

positively correlated. The product estimator provides a better estimate of mean when study variable and 

auxiliary variable are negatively correlated. Regression estimator is the most efficient estimator except when 

regression line passes through the origin. Srivastva (1971) proposed an efficient method for the estimation of 

population mean in simple random sampling.   

The literature available on survey sampling, it is assumed that the data collected during the survey is the 

actual recorded values of the observation. But the observation under study may be recorded with some error 

called as measurement error. The measurement error is defined as the discrepancy between the actual value of 

the parameter and the observed values of the parameter. Cochran (1968) and Murthy (1967) studied the effect 

of measurement error in the context of survey sampling. The impacts of measurement error commingle with 

data on the statistical properties of estimators of parameters is discussed in the textbooks by Fuller (1987), 

Cheng and Vanness (1994) and Carroll et al. (2006). Measurement error can result in serious misleading 

inference; see Biemer et al. (1991). Estimation of parameters with the use of auxiliary variable in the 

literature is vast and substantial. Ratio, Product and regression estimators are widely used in the estimation of 

parameters.  Shalabh (1997), Maneesha and Singh (2001), Allen and Singh (2003), Sahoo et al. (2006), 

Kumar et al. (2011) have studied the effect of measurement error on ratio and regression estimators in the 

estimation of population mean. Gregoire and Salas (2009) introduced ratio estimation with measurement error 

in the auxiliary variate, Shalabh and Tsai (2017) have proposed ratio and product method of estimation in the 
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presence of correlated measurement error. Singh and Vishwakarma (2019), Vishwakarma et al. (2019) 

present the method for the estimation of mean in the presence of non-response and measurement error.  Singh 

et al. (2019) studied simultaneously effect of measurement error. 

In this paper, we propose a generalized class of estimators of the population mean of study variable under 

measurement error. Since the proposed class of estimators is in functional form, many preexisting estimators 

are a member of this class of estimators. The effect of measurement error on the mean square error of the 

proposed estimators, ratio estimator, product estimator and unbiased mean are shown. Many authors have 

studied the effects of measurement error on ratio, product and regression estimator. Our aim is to show the 

effect of measurement error simultaneously on the proposed, ratio, product and unbiased estimator at the 

different levels of measurement error for the different correlation coefficient.  

Let N be the size of a finite population and n be size of sample drawn from it. In order to obtain the MSE 

under measurement error we consider that each data value is observed with error. It is considered that ( , )i ix y
 

be the observed value and (X , )i iY be the true values for every ( 1,2,..., )thi i n  unit. In such a way, these 

values are expressible in additive form as 
i i iy Y U  , and Xi i ix V  . The errors ( , )U V  are normally 

distributed with mean zero and variance 2 2( , )U V  . Also, the error variables U  and V  are uncorrelated to 

each other and uncorrelated with X and Y . That implies ( , )Cov X Y  0 and ( ,U)Cov X = ( ,V)Cov X =

(Y,V)Cov = (Y,U)Cov = (U,V)Cov =0. Let
Y ,

X  be the population mean and 2

Y , 2

X  be the population 

variance of the study and the auxiliary variables respectively. Further, 
1 1

1 1
,

n n

i ii i
x n x y n y 

 
   be the 

sample mean of the observed data and are unbiased estimators of the population mean 
X  and

Y

respectively. We found that 
2 1 2

1
( 1) (x )  

n

x ii
s n x


   and 

2 1 2

1
( 1) (y )

n

y ii
s n y


   are not an unbiased 

estimator of the population variance 2

X and 2

Y  respectively under measurement error. The expected value of 

2

xs and 2

ys  in the presence of measurement error is given by 2( )xE s = 2

X + 2

V  and 2 2 2(s )y Y UE     where 2

U ,

2

V  are variance of U and V respectively. 

Let define 
X

x
v


 ,  0

Y

Y

y
e






  and 1( 1) 1

X

x
v e



 
    

 
. Also 0E( ) 0e  , 

1E( ) 0e  . Ignoring finite 

population correction (fpc) term we have the following results. 
2

2

0( ) Y

Y

C
E e

n
 , 

1 0( ) X YC C
E e e

n


  and 

2

2

1( ) X

X

C
E e

n
 where Y Y YC   and X X XC    are coefficient of variation of study  and auxiliary 

variable respectively.  
2

2 2

Y
Y

Y U




 



, 

2

2 2

X
X

X V




 



 

are the reliability ratio of study and auxiliary variable 

respectively and always lies between 0 to 1. 
 

is the correlation coefficient between X and Y and 

Y XR  
 
is the ratio of the population mean of study variable to the auxiliary variable. 

The expression for ratio estimator, product estimator and unbiased estimator in the presence of measurement 

error was studied by Shalabh (1997). The expression for ratio, product, and usual unbiased estimator in the 

presence of measurement error is given as 

            
ˆ
R X

y
Y

x
                                                                                                                                       (1) 

The Bias and MSE of (1) are as follows 

            
2

2

ˆ
( ) ( ) VY

R X X Y

X

B Y C C C
n






 
   

 
                                                                                               (2) 

           
2 22 2 2 2

2 2

2 2

2ˆ
( ) U VY X X Y Y X

R Y Y

Y X

C C C C C C
M Y

n n n n n

 
 

 

  
      

   
                                                         (3) 
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where
2 2

2 2Y X X Y

Y

C C C C

n n n




 
  

 
 is the MSE of 

ˆ
RY

 
under no measurement error case and 

2 22 2

2

2 2

U VY X

Y

Y X

C C

n n

 


 

 
 

 
 

is the additional term due to measurement error in MSE of the estimator. 

The product estimator  

              
ˆ
P

X

y
Y x


                                                                                    (4) 

         ˆ Y X YB Y C C                                                                                         (5) 

      
2 22 2 2 2

2 2

2 2

2ˆ U VY X X Y Y X

P Y Y

Y X

C C C C C C
M Y

n n n n n

 
 

 

  
      

   
 

                                                              (6) 

where
2 2

2 2Y X X Y

Y

C C C C

n n n




 
  

 
 is the MSE of 

ˆ
PY

 
under no measurement error and

2 22 2

2

2 2

U VY X

Y

Y X

C C

n n

 


 

 
 

 
 

is 

the additional term due to  measurement error in MSE of the estimator. 

The usual unbiased estimator in the presence of measurement errors is 

               
ˆ
MY  y                                                       

                                                                                  
(7) 

The Variance of y  in the presence of measurement error  

           

22

( ) UYVar y
n n

 
  
 

                                                                                                                      (8) 

where 

2

Y

n



 

is the variance of unbiased estimator and 

2

U

n



 

is the additional variance of measurement errors in 

the variance of the unbiased estimator.  

 

 

2. THE PROPOSED ESTIMATOR 

 

Following Srivastava (1971), we propose a generalized class of estimators for the estimation of population 

mean, when both study, as well as auxiliary variables, are commingled with measurement error as 

                  ˆ
MY y M v                                                                                                                             (9) 

where 
X

x
v


  is such that ( )M v  is continuous and bounded in R also its first and second-order  derivative 

exist and  are continuous and bounded in R. Ratio, Product, unbiased estimator and some other pre-existing 

estimators can be the members of this family. 

To obtain bias and MSE of we can write 
ˆ
MY  in terms of error we have 

              2

1 2

1
1 1 1 1

2
M v M v M v M v     ,                                                                             (10) 

       2

1 1 1 2

1
1 1

2
M v e M e M v   ,                                                                                                      (11) 

Using the value of (11) in (9), we can get  

        2

0 1 1 0 1 1 1 2

1ˆ
1 1 v

2
M Y YY e e M e e M e M   
     

 
.

                                                                    

(12) 

where 11 , 0 1;v e      . 1,M  denotes first order derivatives of  M v  at the point v e . 2M  denotes 

second-order derivatives of  M v  at the point v v  . 

Expanding right-hand side of the equation and neglecting term higher than second degree of e  and by taking 

expectation we have 
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              2

0 1 1 1 2

1ˆ
( ) 1

2
M YB Y e e M e M v

 
   

 
,                                                                                     (13) 

Substituting the value of 2

0( )E e , 
0 1( )E e e  and  

                
2

1 2

ˆ
2 1

2

Y X

M X Y

X

C
B Y C C M M v

n n






 
   

 
                                                                              (14) 

and for the mean square error of 
ˆ
MY  we have 

              
2

0 1 1

ˆ
( ) 1M YM Y e e M  ,                                                                                                       (15) 

               
2 2

22

1 1

ˆ
( ) 1 2 1Y X

M Y X Y

Y X

C C
M Y M C C M

n n
 

 

 
   

 
.                                                                  (16) 

Differentiating partially (16) with respect to 
1M  and equate to zero, we have  1 Y X XM C C   , 

Thus the resulting optimum mean square error of the proposed estimator is 

             
22

2

2

ˆ
( ) 1 UY

M Opt X

Y

M Y
n


 



 
   

 
.                                                                                                (17) 

 

3. THEORETICAL EFFICIENCY COMPARISON 

 

Suppose that the observation for both the variable X  and Y  are recorded without error. In that case, mean 

square error of the proposed class of estimators can be obtained from (17) by substituting 2

U  and 2

V  to zero. 

The MSE of the estimator is similar as the obtained by Sahai (1979) 

              

2

2

1 min

ˆ
( ) (1 )Y

MM Y
n


                                                                                                               (18) 

From (17) and (18) we can infer 
ˆ

( )MM Y has larger MSE then 
1

ˆ
( )MM Y  which follow that the estimator has 

larger MSE when the variables are recorded with measurement error. 

 

Theorem 3.1:  To the first degree of approximation,  

              

22

2

2

ˆ
min. ( ) 1 UY

M X

Y

M Y
n


 



 
   

 
  

with the equality holding if  1 Y X XM C C   . 

The ratio, product and mean estimator are the member of the proposed estimator 
ˆ
MY

 
under measurement 

error. The ratio estimator    

                 
ˆ
R X

y
Y

x
 ,                                                                                                                               (19) 

           
2 22 2 2 2

2 2

2 2

2ˆ
( ) U VY X X Y Y X

R Y Y

Y X

C C C C C C
M Y

n n n n n

 
 

 

  
      

   
                                                        (20) 

Further, from (17) and (20), the MSE of the estimator 
min min

ˆ ˆ
( ) ( )M RM Y M Y provides 

            
2 2 2

2 22Y X Y

X v

RR R

n n n n

   
  

 
      

 
.                                                                              (21) 

            

 
ˆ
P

X

y
Y x


 ,                                                                                                                    (22) 

           
2 22 2 2 2

2 2

2 2

2ˆ
( ) U VY X X Y Y X

P Y Y

Y X

C C C C C C
M Y

n n n n n

 
 

 

  
      

   
                                                       (23) 

From (17) and (23), the MSE of the estimator min min

ˆ ˆ
( ) ( )M PM Y M Y  provide 
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2 2 2

2 22Y X Y

X v

RR R

n n n n

   
  

 
      

 
                                                                                 (24) 

            
ˆ
MY y ,                                                                                               (25) 

            
22

2

ˆ
( ) 1 ( )UY

M

Y

M Y V y
n





 
   

 
.                                                                                                    (26) 

From (17) and (26) for the efficiency comparison  min

ˆ
( ) yMM Y V , which provide 

           

2

2 0Y

X
n


     .                                                                                              (27) 

  

4. EMPIRICAL STUDY 

 

To analyze the merits of the suggested estimator, we have used the data from Gujrati and Sangeetha (2007). 

The descriptions of the data and values of the parameters are given below: 
 

       
iY  = True consumption expenditure,             Xi

= True income, 

       
iy = Measured consumption expenditure,     

ix = Measured income. 

n           N             
X            

Y              2

X             2

Y                             2

V          2

U  

 4           10            170           127            3300          1278          0.964           36            36 

The percentage relative efficiency (PRE) of the proposed and existing estimators with respect to the usual 

unbiased estimator y  are computed using the formula: 

       
 

 
( , ) 100

V y
PRE y

MSE



                                                                                                               (28) 

where ,
ˆ ˆ ˆ

, ,M P RY Y Y y  . 

The MSE with and without measurement error and percent relative efficiency of the estimators is presented in 

Tables 1. 

Table 1:  MSE and PRE of the estimators with and without measurement error for Population 1 

Estimators           MSE without                                 MSE with                                Contribution of   

                        Measurement error    PRE      Measurement error    PRE          Measurement error                                      

     
ˆ
MY                       22.59                 1414.34                 34.79              944.24                    12.20         

     
ˆ
RY                        40.45                   789.86                 54.48              603.00                    14.03  

     
ˆ
PY                    1519.41                     21.02             1533.61                21.42                    14.02 

     y                      319.50                   100.00               328.50              100.00                      9.00 

 

5.  SIMULATION STUDY 

 

For the validation of results, a simulation study has been carried out using R studio. We have adopted the 

following steps in proposed algorithm is summarized The steps of the algorithm are given below 
Step-1: The generated population of size N =1000 of variables are assumed as Y  and X .  Such set of 

four normal variables have been generated using the below mean vector  0 0Y X   and 

covariance matrix   

                        

2

2

2

2

0 0

0 0

0 0 0

0 0 0

Y X Y

X Y X

U

V

  

  





 
 
 
 
  
 

 

The details of the used parameters are given below: 
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X = 30, Y = 20,  2
X =(10) , 2

Y = (10),  = (-0.9, -0.5, -0.1, 0.9, 0.5, 0.1), 2
U = (0, 2), 2

V  = (0, 2).  

 

Step-2:  The two random sub-sample of size n =30 and n =100 have been drawn from the 

population.  Then we computed sample mean, sample variance and coefficient of variation for both 

sub-samples. 

Step-3:  The MSE for the proposed class of estimators, ratio estimator, product estimator and 

unbiased estimator have been obtained by using derived formula.           

Step-4:  We calculated PRE for the proposed class of estimators, ratio estimator, product estimator 

and unbiased estimator by using derived formula. 

Step-5:   The step 3 and step-4 have been repeated for 5000 times using loop. 

Step-6:   We computed the grand mean for MSE and PRE for proposed class of estimators, ratio 

estimator, product estimator and unbiased estimator. 

The results of simulation study are, Table 2 gives the MSE and PRE of the proposed estimator and other 

estimators at different levels of correlation coefficients  0.9, 0.5, 0.1, 0.1, 0.5, 0.9      between study 

and auxiliary variable. The results of simulation study is, Table 2 exhibits that proposed estimator has higher 

efficiency than other estimators for different levels of correlation coefficient under no measurement error. 

Table 3 shows the contamination of measurement error in MSE and PRE in different estimator for ( 2
U =2, 

2
V =2). Table 3, reveals that MSE of proposed estimator and other estimator is higher in the presence of 

measurement error. From table 2 and table 3, it is also revealed that MSE is decreasing and more efficient 

with increase in sample size.  

Table 2: MSE and PRE of various estimators of 
Y for  = {-0.9, -0.5, -0.1, 0.9, 0.5, 0.1) when 

2 2( , 10, 10)Y X   , 2 2( , 0, 0)V U   and 1 2( , 100, 30)n n   
 

2

U  2

V    
Estimator 

1 100n   2 30n   

0         0       -0.9 

MSE PRE MSE PRE 

ˆ
MY  0.019027 526.32 0.063236 526.32 

ˆ
RY  0.291714 34.33 0.968307 34.36 

ˆ
PY  0.021412 469.73 0.072397 466.17 

y  0.100144 100.00 0.332823 100.00 

0         0      - 0.5 

ˆ
MY  0.074947 133.33 0.249849 133.33 

ˆ
RY  0.230857 43.24 0.767704 43.27 

ˆ
PY  0.08149 122.41 0.274166 120.80 

y  0.09993 100.00 0.333131 100.00 

0         0       -0.1 

ˆ
MY  0.099249 101.01 0.331217 101.01 

ˆ
RY  0.171552 58.33 0.572124 58.16 

ˆ
PY  0.141639 70.64 0.473437 70.23 

y  0.100251 100.00 0.334563 100.00 

0          0        0 .9 

ˆ
MY  0.01896 526.32 0.063513 526.32 

ˆ
RY  0.021301 470.36 0.072512 467.04 

ˆ
PY  0.290883 34.30 0.972574 34.34 

y  0.099788 100.00 0.334279 100.00 
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0         0          0.5 

ˆ
MY  0.074975 133.33 0.25035 133.33 

ˆ
RY  0.081465 122.49 0.274055 121.03 

ˆ
PY  0.230713 43.28 0.766892 43.34 

y  0.099966 100.00 0.3338 100.00 

0          0         0.1 

ˆ
MY  0.098688 101.01 0.327991 101.01 

ˆ
RY  0.141125 70.49 0.471027 69.87 

ˆ
PY  0.170957 58.21 0.569392 57.84 

y  0.099685 100.00 0.331304 100.00 

Table 3: MSE and PRE of various estimators of 
Y for  = {-0.9, -0.5, -0.1, 0.9, 0.5, 0.1) when 

2 2( , 10,10)Y X   , 2 2( , 2,2)V U   and 1 2( , 100,30)n n   
 

2

U  2

V    
Estimator 

1 100n   
2 30n   

2          2       -0.9 

MSE PRE MSE PRE 

ˆ
MY  0.026396 454.26 0.090628 444.07 

ˆ
RY  0.297862 40.38 1.001888 40.49 

ˆ
PY  0.027878 432.12 0.096471 423.89 

y  0.12002 100.00 0.402594 100.00 

2         2      - 0.5 

ˆ
MY  0.080262 149.80 0.266311 149.00 

ˆ
RY  0.237511 50.61 0.787067 50.41 

ˆ
PY  0.088074 136.31 0.29598 133.58 

y  0.120123 100.00 0.395844 100.00 

2         2       -0.1 

ˆ
MY  0.10329 116.40 0.344339 116.31 

ˆ
RY  0.177814 67.49 0.593743 67.12 

ˆ
PY  0.147947 81.09 0.495387 80.38 

y  0.120057 100.00 0.398801 100.00 

2         2        0 .9 

ˆ
MY  0.02646 454.28 0.090658 442.99 

ˆ
RY  0.027919 432.53 0.096118 424.25 

ˆ
PY  0.298214 40.42 0.998028 40.54 

y  0.120303 100.00 0.401984 100.00 

2         2        0.5 

ˆ
MY  0.080197 149.84 0.269109 148.85 

ˆ
RY  0.088057 136.25 0.297602 134.03 

ˆ
PY  0.237552 50.57 0.788558 50.77 

y  0.120055 100.00 0.399608 100.00 

2          2        0.1 ˆ
MY  0.103039 116.45 0.342972 116.35 
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ˆ
RY  0.14775 81.07 0.492586 80.51 

ˆ
PY  0.177596 67.46 0.590319 67.24 

y  0.119825 100.00 0.397366 100.00 

 

6. CONCLUSIONS 
 

By the study obtained from numerical and simulation, we can infer that MSE is minimum for the proposed 

estimator and is more efficient than ratio and product estimator for any correlation coefficient. The MSE has 

been always higher when both the variables are recorded with measurement error. Measurement error highly 

affects the MSE as well as PRE of the estimator when its value is high, but the properties of estimators do not 

change in the presence of measurement error. The effect of measurement error cannot be obtained by the PRE 

of the estimator as PRE is the ratio of two parameters, variance of y and MSE of estimators. From the Tables, 

we can also conclude that, with the increase in the size of the sample, the MSE will be less and more efficient. 

The proposed class of estimators more efficient for all possible correlation coefficient than other estimators 

therefore proposed estimators can be used to estimate the population mean under measurement error aspects. 

Since the proposed estimator encompasses four well-known estimator viz. ratio, product, mean and regression 

estimator, thus the proposed class of estimators can be used to obtain the effect of measurement error on the 

proposed, ratio, product and mean estimators simultaneously.   
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