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ABSTRACT
Different deep learning models have recently emerged as a popular method to apply machine learning

in a variety of domains including remote sensing, where several approaches for the classification of

land cover and use have been proposed. However, acquiring a suitably large data set with labelled

samples for training such models is often a significant challenge to tackle, that leads to suboptimal

models not being able to generalize well over different types of land cover. In this paper, we present

an approach to perform land cover classification on a small dataset of high-resolution imagery from

an area in the Andes of Ecuador using deep convolutional neural networks and techniques such as

transfer learning, data augmentation, and some fine-tuning considerations. Results demonstrated

that this method can achieve good classification accuracies if it is backed with good strategies to

increase the number of samples in an imbalanced dataset.
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RESUMEN
Recientemente, ha surgido el uso de modelos de aprendizaje profundo o Deep Learning como un

método popular para aplicar modelos de aprendizaje automático en una variedad de dominios, como

la detección remota, donde se han propuesto varios enfoques para la clasificación de cobertura y uso

de la tierra. Sin embargo, la adquisición de un conjunto de datos suficientemente grande con muestras

etiquetadas dificulta el entrenamiento de dichos algoritmos, lo que conlleva a obtener modelos sub-

óptimos que no pueden generalizarse bien en diferentes tipos de cobertura de la tierra. Este escenario

se presenta a menudo por lo que es considerado como un desaf́ıo importante que debe abordarse. En

este documento, presentamos un enfoque para realizar la clasificación de la cobertura terrestre en un

pequeño conjunto de datos de imágenes de alta resolución perteneciente a una área en los Andes de

Ecuador utilizando redes neuronales convolucionales profundas y técnicas como el aprendizaje por

transferencia, el aumento de datos, entre otros ajustes a los parámetros del modelo. Los resultados
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demostraron que este método es capaz de alcanzar una buena precisión de clasificación si está respal-

dado por buenas estrategias para aumentar el número de muestras en un conjunto de datos desequi-

librado.

PALABRAS CLAVE: Teledetección, Aprendizaje por transferencia, Aumento de datos

1. INTRODUCTION

The application of Deep Learning (DL) techniques under different scenarios have started to become

very popular in recent years, as they have been reported to tackle many pattern recognition and ma-

chine learning challenges that were considered difficult to solve with traditional models [5]. Moreover,

their ability to learn and develop hierarchical feature representations from raw data have motivated

remote sensing researchers to deliver more accurate state-of-the-art models. Kussul et. al, in [4]

showed that a Convolutional Neural Network (CNN) model outperforms other methods, getting accu-

racies over 85% when classifying crop types using multi-spectral and multi-temporal remote sensing

images. Castelluccio et. al in [1] demonstrated that a pre-trained CNN model can be fine-tuned using

a satellite imagery dataset (a different domain and visual perspective), and it is able to obtain even

better accuracy values (around 6% improvement) when performing semantic classification of remote

sensing scenes than training a model from scratch.

In this work, we present an approach to perform land cover classification of high spatial resolution

images from an area of the Andes of Ecuador using transfer learning and data augmentation techniques

to train CNN models on a small dataset obtained from aerial photography, together with a subset of

satellite imagery from Planet1 to tackle the lack of imagery data in the area. The rest of the article is

organized as follows. Section 2. describes the study area and datasets used under this work. Section 3.

gives an introduction of deep CNNs for land cover classification, and describes useful techniques and

fine-tuning considerations for training such models on small datasets. Section 4. provides an overview

of the experimental setup to test the performance of our method. In Section 5. demonstrates and

discusses the experimental results, whereas in Section 6. we provide some conclusions and future lines

derived from this work.

2. STUDY AREA AND DATASETS

A land cover study was carried out in a local area from the Ecuadorian Andes with a geographic

extension of 5.09Km2, altitude ranges between 2702.72m-3096.83m a.s.l., and mainly covered by

agricultural lands with nearby edification. To create the UC Dataset we used an existing RGB

orthoimage captured using an aerophotogrametric flight with a pixel resolution of 9cm. Then, we

generated png tiles of 256x256 pixels each, while scene labelling was performed using a crowdsourcing

session with university students and professionals in agricultural photo-interpretation with previous

experience in the study zone. The final dataset contained 12 Level-II2 standard land cover types, as

shown in Table 1.

1https://www.planet.com
2Ecuador Ministry of Agriculture (MAGAP) states four standard levels of land cover classification. Documentation

about the agreement can be found at http://sipa.agricultura.gob.ec/index.php/documentos
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Table 1: Dataset summary of land cover types

UC dataset Planet dataset

Land cover class No. samples Land cover class No. samples

Agricultural Land (TA) 1336

agriculture 12338
Pasture Land (P) 826

Semi-permanent Cultivation (CLS) 15

Permanent Cultivation (CLP) 3

Native Forest (BN) 221

primary 37840Plantation Forestry (PF) 168

Shrub Vegetation (VA) 676

Annual Crop Land (CLA) 120
cultivation 4477

Agricultural Mosaic (MA) 46

Degraded Area (AD) 327 bare ground 859

Building & Infrastructure (IE) 66 habitation 3662

Roads (IV) 29 road 8076

Total 3833 Total 67252

Nevertheless, the generated dataset neither provides enough data samples to use it for training a deep

neural network model, nor contains a balanced amount of samples per class, which can impact in a

model’s ability to be generalizable. In order to overcome the lack of data samples on the UC Dataset

and still be able obtain a good model performance for discriminating land cover images we applied two

strategies. First, we make use of a bigger public dataset published by Planet, which contains images

of 3m pixel resolution and 13 types of land cover scenes from different Latin American Countries with

Amazon territory including Ecuador, so prior using our dataset for training, we bootstrapped a CNN

model using a subset of jpg tiles from this dataset. Table 1 shows an overview of the subset of Planet

dataset we used and the underlying class mappings between both data sources. Finally, we made

image copies of rare scenes in the UC Dataset to achieve a minimum ratio of 10:1 between classes.

3. DEEP LEARNING FOR LAND COVER CLASSIFICATION

The application of convolutional neural networks (CNNs) under different scenarios have started to

become very popular in recent years. One of the most popular datasets for experimenting with deep

learning models for image analysis was introduced in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [9], whose dataset consists of around 15M labelled images from 22K classes. Such

big data data sources allowed deep architectures to characterize the diversity and variability of the

training data and to leverage great power in normal image analysis tasks such as classification, object

detection, and segmentation. However, there is still a lack of labelled remote sensing data to allow DL

models to generalize well over different types of land cover around the world, and more specifically in

areas from the Andean region.
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3.1. Convolutional Neural Networks

Recent breakthrough developments in the field of deep learning for computer vision can be summarized

in a handful of CNN architectures. The earlier AlexNet from 2012 [3], together with the VGG networks

[10], follow the now archetypal layout of basic convolutional neural nets. Later, the GoogLeNet [12]

stated the idea that CNN layers did not always have to be stacked up sequentially, but rather a

horizontal growth of layers leads to wide networks with improved performance and efficiency. He et.

al.[2] introduced the ResNet architecture that aims to learn residual functions with reference to the

layer inputs, and thus distribute the gradient effectively when training deeper networks. Lastly, Xie

et. al. [13] proposed a simpler design with a highly modularized architecture of stacked residual blocks

called ResNeXt, that maintains the same complexity as ResNet, and is more effective than building

deeper or wider neural networks.

Figure 1: Illustrative image transformations generated during training

3.2. Transfer Learning

Training a Deep Neural Network (DNN) usually requires of a significant amount of training data to

obtain a model that both achieve good classification accuracies and does not overfit. Nevertheless,

when working on real world image classification problems, it is common to have small data sets, which

makes it difficult to train a CNN from scratch. Instead, there already exist some pre-trained CNN

models3 on very large data sets that can be used either as an initialization network for fine-tuning or

as a fixed feature extractor. This technique, called Transfer Learning (TL), aims to apply knowledge

previously learned to another domain and still obtain good accuracy scores without the need of a large

number of training samples. Pan et. al. presented in [7] a survey of how TL can save a significant

amount of training effort. Penatti et. al. [8] applied transfer learning on remote sensing problems and

concluded that pre-trained CNNs can generalize well even in domains considerably different from the

ones they were trained for.

3https://pytorch.org/docs/master/torchvision/models
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3.3. Data Augmentation

In addition to TL, it is also recommended to use a strategy to augment the limited amount of training

samples on limited image datasets. Data augmentation is a technique that allows a model to make

the most when there is only a few training examples by increasing them via a number of random

transformations, so that a model would never see the exact same picture during training. Due to

aerial imagery is generally captured from a viewpoint significantly high above the regions and/or

objects of interest, it is possible to apply various types of transforms to the seed images. Figure

1 shows an example of augmented images that were randomly generated during training. In our

experiments, we empirically applied the following set of image transformations:

1. Random Scaling : scale an image using the parameter zoommax = 1.05;

2. Random Rotation: applies a rotation of 10 degrees with probability ρ ≥ 0.75;

3. Random Lighting : uses balance b = 0.05 and contrast c = 0.05 parameters to randomly adjust

the lighting of an image;

4. Random Dihedral4: rotates an image by random multiples of 90 degrees, and then randomly

apply a reflection (or flip) in the left-to-right direction;

5. Center Crop: crops an image if it is not squared;

6. Image Normalization: normalizes the image pixels using ImageNet statistics.

3.4. Fine-Tuning Considerations

Learning rate (LR) is one of the most important and difficult hyper-parameters to tune when training

a DNN model as it determines how quickly or slowly to update the network parameters, which can

significantly affect a model performance. Smith [11] described a novel method for finding the optimal

learning rate, called cyclical learning rates (CLR) that eliminates the need to use grid search for

hyper-parameter tuning. This method, usually run for one iteration before model training, lets LR

to cyclically vary between a reasonable boundary of values until the loss stops decreasing. Finally,

optimal LR value is picked within a range where the loss curve decreases, allowing us to achieve better

classification accuracies in fewer iterations.

Then, model optimization is performed using a technique called stochastic gradient descent with

restarts (SGDR) [6], which gradually decreases the LR value as training progresses. This is considered

helpful because as a model gets closer to the optimal weights, it should take smaller updates. However,

there might be case when small changes to the weights may result in big changes in the loss. So, to

encourage a model to find parts of the weight space that are both accurate and stable, from time to

time this method increases the learning rate and forces the model to jump to a different part of the

weight space in case it is falling under a local minima.

Finally, when fine-tuning a pre-trained DNN, it is common to use a smaller learning rate on those

network layers that have already been trained (i.e. to recognize ImageNet features) in comparison to

4Based on Dihedral group definition: https://en.wikipedia.org/wiki/Dihedral group
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the last (fully connected) layers that find features associations and computes the class scores for the

new dataset. Therefore, we will use different LR values over three equally-sized set of layers, so the

earlier group of layers will get to 3x-10x lower LR than next. This technique is often referenced as

differential learning rate annealing.

4. EXPERIMENTAL SETTINGS

With the aim to evaluate the effectiveness of transfer learning and data augmentation techniques when

training a deep learning model for land cover classification, we design two experiments using different

CNN architectures: a 50-layer ResNet and a 101-layer ResNeXt, both pre-trained on the ILSVRC

dataset. Table 2 presents the hyper-parameter configuration used to train each model. While the LR

value for each experiment was found using the CLR method described in Section 3.4., we empirically

set the differential learning rates used to fine-tune the pre-trained models. Finally, batch size was

chosen based on dataset size and memory availability.

Table 2: Hyper-parameter configuration for each experiment
Model Dataset Learning Rate

(lr) Diff. Learning Rate Batch Size Iter. Cycle length for

SGDR Dropout

ResNet-50
Planet

0.2
[lr/1000, lr/100, lr] 64

3 x2 0.2
UC [lr/100, lr/10, lr] 18

ResNeXt-101
Planet

0.05 [lr/9, lr/3, lr]
28

UC 18

Due to the characteristics of the Planet dataset, we treated our learning algorithm as a multi-label

classification problem. Therefore, the softmax activation function at the last layer was replaced with

the sigmod to represent the probability of an image scene to have a certain type of land cover and

atmospheric condition. Experiments were carried out on a computing node with an 8-core Intel Xeon

2.4Ghz CPU, 94GB RAM, and a 12GB NVIDIA Tesla K40m GPU. In general, our training process

performed the following steps: (1) Load the Planet dataset and split it on 80% for training and 20%

for validation; (2) Resize image tiles to 64x64 pixels; (3) Freeze all CNN layers except for the last

fully connected layers (TL), and train the model using SGDR with optimal learning rate and data

augmentation for 3 cycles. The number of epochs that will be run before LR is restarted is set by

the cycle length multiplier (see Table 2), so after each iteration we doubled the number of epochs

the model will be trained. Overall, this step runs 7 training iterations; (4) Unfreeze all layers and

set differential learning rates on early layers; (5) Fine-tune the full neural network using SGDR; (6)

Repeat steps 2 to 5 using different image sizes: 128x128 and 256x256 pixels. This process is done to

avoid overfitting; and (7) Repeat steps 1 to 6 using the UC dataset. Overall, each experiment trained

its model using 42 iterations in total.

Models were optimized using a dropout value of 0.2 and a multi-class log loss function, while classifi-

cation accuracy was measured using the F2 score, which weights recall higher than precision.
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Figure 2: Land cover accuracy evaluation of the validation set. (Left) F2 scores obtained during model

training. (Right) Per-class land cover classification accuracies on the UC dataset

5. RESULTS

We evaluated the land cover classification performance of each setup using both Planet and UC

datasets. Figure 2 shows the learning curve during training (left) and the per-class accuracy (right)

554



obtained by each experiment. As can be seen, the ResNeXt model slightly outperformed the ResNet

in terms of F2 score on both the model trained using the Planet dataset only, and the subsequently

fine-tuned CNN with the UC dataset. However, training behaviour was not very stable when using

the latter mainly due to the lack of samples on certain types of land cover. An evaluation on the

validation set was performed using a technique called Test Time Augmentation (TTA), which not

only makes predictions on the original image scene, but also on four randomly augmented versions of

it, to then take the average as the actual result. Table 3 tables summarizes the classification results

for both datasets, where the ResNeXt-101 model achieved a maximum score of 94.15% on the UC

dataset.

Table 3: Land cover classification accuracies (F2 score) obtained by the ResNet-50 and ResNeXt-101

CNN architectures
Planet Dataset UC Dataset

ResNet-50 92.88% ResNet-50 93.82%

ResNeXt-101 93.13% ResNeXt-101 94.15%

On the other hand, the per-class breakdown analysis showed that both models achieved accuracy

scores above 80% in almost every land cover type except for bare ground. ResNeXt produced better

accuracy values (2.6% in average) in habitation, primary, agriculture, cultivation, and bare ground

classes, but ResNet performed better when classifying roads. Finally, is it worth to mention that

even if the ResNeXt has doubled the number of layers than the ResNet, both CNN architectures used

almost the same amount of GPU memory during training, showing the effectiveness of ResNeXt to

build deeper networks.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to perform land cover classification of high-resolution images

from a small area of the Andes of Ecuador using deep convolutional neural networks, together with

transfer learning and data augmentation techniques. In order to overcome the lack of data samples in

certain classes, we bootstrapped a pre-trained CNN model using a subset of satellite images from the

Planet dataset. However, we had to sacrifice a level of detail in land cover classification in favour of

model accuracy. Then, fine-tuning was performed using SGDR method and differential learning rate

annealing to finally achieve promising accuracy scores of 94.15% and 93.82% with a ResNeXt-101 and

ResNet-50 respectively.

As a future work, we plan to capture more imagery data with an additional colour infrared band from

a larger area in order to obtain a more balanced dataset and be able to obtain a more detailed level of

agricultural land cover classification. Additionally, we will experiment with other DNN models such

as sparse autoencoders for semisupervised feature learning, as well as semantic image segmentation

approaches to automate the generation of land cover maps.
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