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ABSTRACT
In this paper, the cubic spline collocation method is implemented to find the numerical solution of the nonlinear

partial differential equations PDEs of a plug flow reactor model. The method is proposed in order to be used

for the operation of numerical simulations. We use the horizontal method of lines to discretize the temporal

variable and the spatial variable by means of a Crank-Nicolson, and a cubic spline collocation method on meshes,

respectively. The method is shown to be unconditionally stable and second order accurate with respect to both the

variables. Numerical results are presented and compared with other collocation methods given in the literature.

KEYWORDS: Partial differential equations, Distributed parameter systems, Plug flow reactors, Cubic Spline

collocation method.
MSC: 65D07.

RESUMEN
En este trabajo se implementa un método de colocación con splines cúbico para resolver numéricamente las

ecuaciones en derivadas parciales que resultan de modelar el flujo de conexión de un reactor. Se discretiza la

variable temporal mediante el método horizontal de lı́neas y las espaciales por el enfoque de Crank-Nicholson

y el método de colocación de splines cúbico. Este enfoque es estable y tiene un grado de precisión de segundo

orden con respecto a ambas variables. Los resultados obtenidos se comparan con otros métodos de este tipo que

aparecen en la literatura.

PALABRAS CLAVE: Ecuaciones en derivadas parciales, sistemas de parámetros distribuidos, flujo de conexión

de un reactor, método de colocación con splines cúbico

1. INTRODUCTION

In recent years much attention has been given to the numerical resolution of ODEs and particular interest has
been given to resolte the nonlinear partial differential equations PDEs of a plug flow reactor models. These
types of problems arise in various fields of science and engineering such as fluid mechanics, physics, chem-
istry, mechanics, chemical reactor theory, convection diffusion processes, optimal control and other branches
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of applied mathematics, The plug flow reactor models are nowadays a necessity in chemical engineering and
different catalytic processes with special needs have been lead to a wide variety of this class of tubular reactor
models, since it reveal more informations about the reactor performance, and they can also be used for simu-
lating steady-state and control operations (see eg., [12], [17]).
A dynamic tubular reactor model consists of PDEs and the practical method to integrate is to reduce them into a
set of ordinary differential equations ODEs by spatial discretization, and to use well-known algorithms to solve
the time-dependent model. This kind of systems are called distributed parameter systems DPSs and can be
found in process control described by PDEs, e.g., robotics, bio-reactors, flexible structures, and vibrations (see
e.g.,[1], [14]). These methods and algorithms are well described in several chemical engineering textbooks,
(for example in [18, 7, 15]). Various numerical techniques have been developed and compared for solving the
ODEs (see [3, 9]). Besides of the lack of knowledge of the connection between the original distributed param-
eter (infinite dimensional) model and its (finite dimensional) discretised version, the approximation methods
may require extensive computation studies in order to try to capture the dynamic behavior of the DPS. For
instance, the number of ODEs required in the finite differences method to obtain satisfactory model approxi-
mation many becomes excessively high (see [3]). Even when the methods of characteristics is able to provide
an exact representation of the original model (see [9]) this attempt requires also a high number of collocation
points which is difficult to implement in practical control and monitoring applications. The cubic B-spline
collocation method is widely used in practice because it is computationally inexpensive, easy to implement and
gives high-order accuracy. In our paper, we consider a cubic spline relative to a vector of multiple knots in
the boundary and collocation points the mid-points of the knots to increase the number of control points and
to avoid peaks at the ends, by against the authors (see [10]) used a cubic spline relative to a vector of knots
simple, shows a series of peaks at the boundary. The main objective of this study is to develop a user friendly,
economical method which can work for solving a perturbed first-order hyperbolic PDEs model by using a cubic
splines collocation method.
Let us consider a chemical or a biological process taking place in a plug flow reactor whose mathematical
model is given by 

∂V

∂t
= −ϑ∂V

∂z
+Kf(V ) + CV + u(t), (z, t) ∈ Ω,

V (z, 0) = α(z), z ∈ Ωz,

V (0, t) = β(t), t ∈ Ωt,

(1.1)

In the above equations, V = V (z, t) ∈ RH is the state vector, f(V ) ∈ RS is the nonlinearities vector and
Lλ-Lipschitz (Lλ ≥ 0), K ∈ RH×S denotes a matrix of known coefficients (e.g. stoichiometric or yield
coefficients), C ∈ RH×H is the state matrix whose elements are known, u(t) ∈ RH is a vector gathering the
process inputs (e.g. mass and/or energy feeding rate vector) and/or other time-varying functions (e.g. gaseous
outflow rate). Besides, t represents the time variable whereas z (z ∈ [0, L]) is the axial position, L is the
reactor length, ϑ is considered as a positive and known constant describing the velocity of the inlet stream,
β(t) is a column vector which is a sufficiently smooth function of time and α(z) ∈ H[(0, L),RH ] where
HH [(0, L),RH ] being the infinite dimensional Hilbert Space of H-dimensional-like vector functions defined
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on the interval [0, L]. The problem (1.1) can be formulated as the following problem
∂V

∂t
+ P

∂V

∂z
− CV = I(V (z, t)), (z, t) ∈ Ω,

V (z, 0) = α(z), z ∈ Ωz,

V (0, t) = β(t), t ∈ Ωt,

(1.2)

where
P = (diag(υ.Ij,j))j=1,...,H ,

I(V ) = Kf(V ) + u(t) ∈ RH ,

with Ci,j ≤ γ̃ < 0 on Ω and f , u, α, β are sufficiently smooth functions.
Here we assume that the problem satisfies sufficient regularity and compatibility conditions which guarantee
that the problem has a unique solution V ∈ C(Ω)

⋂
C2,1(Ω) satisfying (see, [10, 8, 11]):∣∣∣∣∂i+jV (x, t)

∂xi∂tj

∣∣∣∣ ≤ k on Ω; 0 ≤ j ≤ 3 and 0 ≤ i+ j ≤ 4, (1.3)

where k is a constant in RH .

In the present work, we present a numerical method for solving the general dynamical model for a class of plug
flow reactors. The method is based on Crank-Nicolson scheme to discretize the temporal variable and a cubic
spline collocation method for the spatial discretization. The scheme is two-order convergent with respect to the
spatial variable.
The organization of the paper is as follows. In Section 2, we discuss time semi-discretization. Section 3 is
devoted to the spline collocation method for solving the general dynamical model for a class of plug flow
reactors using a cubic spline collocation method and we will give the stability and error analysis of proposed
method. Next, the error bound of the spline solution is analyzed, some numerical results are given in Section
4 to validate monitoring tool and compare the method to the results given in [20]. Finally, the paper is closed
with some concluding remarks and perspectives depicted in Section 5.

2. TIME DISCRETIZATION AND DESCRIPTION OF THE CRANK-NICOLSON SCHEME

The first step in the method is to consider the Crank-Nicolson scheme (CNS) to adequately represent the
original equation. This method provides a precise framework to handel the nonlinearity providing a global
linear behavior of the dynamic.
Let discretize the time variable by setting tm = m∆t for m = 0, 1, ...,M, in which ∆t = T

M and then define

V m(z) = V (z, tm), m = 0, 1, ...,M.

Now by applying the Crank-Nicolson scheme on (1.2), we arrive at the following equation

V m+1 − V m

∆t
− 1

2
L(V m+1 + V m) =

1

2

(
I(V m+1) + I(V m)

)
.

One way is to replace V m+1 with V m in the nonlinear terms. This leads to the following modified system:
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V m+1 − ∆t

2
LV m+1 =

∆t

2
LV m + V m + ∆tI(V m). (2.1)

For m = 0, 1, ...,M . The value of V at time level m will be of the form:
P
∂V m+1

∂z
+RV m+1 = J (V m), ∀z ∈ [0, L],

V 0(z) = α(z), ∀z ∈ [0, L],

V m+1(0) = βm+1, 0 ≤ m < M.

(2.2)

where, for any m ≥ 0 and for any z ∈ [0, L], we have

R =

(
2

∆t
I − C

)
,

J (V m) = LV m +
2

∆t
V m + 2I(V m),

L = −P ∂

∂z
+ CI,

V m+1 is solution of (2.2), at the (m+ 1) th-time level.

The following theorem gives the order of convergence of the solution V m to V (z, t).

Theorem 2.1. Problem (2.2) is second order convergent ie.

‖V (z, tm)− V m‖H ≤ Cte(∆t)2.

Proof. The proof is similar the one of Theorem 2.1 in [20].

For any m ≥ 0, problem (2.2) has a unique solution and can be written on the following form:{
PV ′(z) +RV (z) = f̂(z) ∈ RH , ∀z ∈ [0, L],

V (0) = β.IH ,
(2.3)

The second step will focus on the solution of problem (2.3).
The convenient of using this technique is that it transform the dynamic from a nonlinear distributed parameter
system to a linear ODE system form, using a global linearization in contrast of several methods given until
now. Furthermore, the method is shown to be second order accurate.

3. SPATIAL DISCRETIZATION

In this section we construct the totally discrete scheme by using a cubic spline collocation method in the spatial
direction.

3.1. Description of Cubic spline collocation method

Let ⊗ denotes the notation of Kronecker product, ‖ . ‖ the Euclidean norm on Rn+1+H and S(k) the kth

derivative of a function S.
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In this section we construct a cubic spline which approximates the solution V of problem (2.3), in the interval
[0, L] ⊂ R.

Let Θ = {0 = z−3 = z−2 = z−1 = z0 < z1 < · · · < zn−1 < zn = zn+1 = zn+2 = zn+3 = L} be a

subdivision of the interval [0, L]. Without loss of generality, we put zi = a+ ih, where 0 ≤ i ≤ n and h =
L

n
.

Denote by S4([0, L],Θ) = P2
3([0, L],Θ) the space of piecewise polynomials of degree less than or equal to 3

over the subdivision Θ and of class C2 everywhere on [0, L]. Let Bi, i = −3, · · · , n − 1, be the B-splines of
degree 3 associated with Θ. These B-splines are positives and form a basis of the space S4([0, L],Θ).
Consider the local linear operator Q3 which maps the function V onto a cubic spline space S4([0, L],Θ) and
which has an optimal approximation order. This operator is the discrete C2 cubic quasi-interpolant (see [16])
defined by

Q3V =

n−1∑
i=−3

µi(V )Bi,

where the coefficients µj(V ) are determined by solving a linear system of equations given by the exactness of
Q3 on the space of cubic polynomial functions P3([0, L]). Precisely, these coefficients are defined as follows:

µ−3(V ) = V (z0) = V (0),

µ−2(V ) = 1
18 (7V (z0) + 18V (z1)− 9V (z2) + 2V (z3)),

µj(V ) = 1
6 (−V (zj+1) + 8V (zj+2)− V (zj+3)),−1 ≤ j ≤ n− 3,

µn−2(V ) = 1
18 (2V (zn−3)− 9V (zn−2) + 18V (zn−1) + 7V (zn)),

µn−1(V ) = V (zn) = V (L).

It is well known (see e.g. [6], chapter 5) that there exists constants Ck, k = 0, 1, such that, for any function
V ∈ C2([0, L]),

‖V (k) −Q3V
(k)‖H ≤ Ckh2−k‖V (2−k)‖H , k = 0, 1, (3.1)

By using the boundary conditions of problem (2.3), we obtain µ−3(V ) = Q3V (0) = V (0) = β.IH .
In order to uniquely determine a solution, by differentiating Eq. (2.3) with respect to variable z = 0, we get{

−12Pµ−2(V ) + (P + 3hR)µ−1(V ) = 6h2f̂ ′(z)− (6P − 3hR)β.IH ,

4hRµ−2(V ) + (3P + hR)µ−1(V ) = 6hf̂(z)− (−3P + hR)β.IH .

Hence
Q3V = µ−3(V )B−3IH + µ−2(V )B−3IH + S,

where

S =

 n−1∑
j=−1

µj(V1)Bj , · · · ,
n−1∑
j=−1

µj(VH)Bj

T .
From equation: (3.1), we can easily see that the spline S satisfies the following equation

PS(1)(zj) +RS(0)(zj) = g(zj) +O(h2).IH , j = 0, ..., n (3.2)

with
g(zj) = f̂(zj)− β(PB

(1)
−3(zj) +RB

(0)
−3)− µ−2(PB

(1)
−2(zj) +RB

(0)
−2(zj)),
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is element of RH , for j = 0, ..., n.

The goal of this section is to compute a cubic spline collocation S̃pi =

n−1∑
j=−2

c̃j,iBj , i = 1, ...,H which satisfies

the equation (2.3) at the points τj , j = 0, ..., n+ 2 with τ0 = z0, τj =
zj−1 + zj

2
, j = 1, · · · , n, τn+1 = zn−1

and τn+2 = zn.
Then, it is easy to see that

c̃−3,i = β, for i = 1, ...,H

c̃−2,i = β, for i = 1, ...,H

Hence
S̃pi = βB−3IH + c̃−2,iB−2IH + S̃i,

where S̃i =
∑n−1
j=−1 c̃j,iBj , for i = 1, ...,H and the coefficients c̃j,i, j = −1, ..., n− 1 and i = 1, ...,H satisfy

the following collocation conditions :

PS̃(1)(τj) +RS̃(0)(τj) = g(τj), j = 1, ..., n+ 1, (3.3)

where
S̃ = [S̃1, ..., S̃H ]T ,

g(τj) = f̂(τj)− β(PB
(1)
−2(τj) +RB

(0)
−2(τj))

−c̃−2,i(PB(1)
−2(τj) +RB

(0)
−2(τj)) ∈ RH , j = 1, ..., n+ 1.

Taking
c = [µ−1(V1), ..., µn−1(V1), ..., µ−1(VH), ..., µn−1(VH)]

T ∈ Rn+1+H ,

c̃ = [c̃−1,1, ..., c̃n−1,1, ..., c̃−1,H , ..., c̃n−1,H ]
T ∈ Rn+1+H ,

and using equations (3.2) and (3.3), we get:(
P ⊗A(1)

h +R⊗A(0)
h

)
c = F + E (3.4)

and (
P ⊗A(1)

h +R⊗A(0)
h

)
c̃ = F, (3.5)

with
F = [g1, ..., gn+1]T and gj =

1

∆t
g(τj) ∈ RH ,

E = [O(
h2

∆t
), ..., O(

h2

∆t
)]T ∈ Rn+1+H ,

A
(k)
h = (B

(k)
−2+p(τj))1≤j,p≤n+1, k = 0, 1,

It is well known that A(k)
h =

1

hk
Ak for k = 0, 1 where matrices A0 and A1 are independent of h, with the

matrix A1 is invertible [13].

Then, relations (3.4) and (3.5) can be written in the following form

(P ⊗A1) (I + U) c = hF + hE, (3.6)
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(P ⊗A1) (I + U) c̃ = hF, (3.7)

with
U = h(P ⊗A1)−1(R⊗A0), (3.8)

In order to determine the bounded of ‖ c− c̃ ‖∞, we need the following Lemma.

Lemma 3.1. If h2ρ <
∆t

4
, then I + U is invertible, where ρ = ‖(P ⊗A1)−1‖∞.

Proof. From the relation (3.8) and ‖A0‖∞ ≤ 1, We have

‖U‖∞ ≤ h‖(P ⊗A1)−1‖∞‖(R⊗A0)‖∞
≤ hρ‖(R⊗A0)‖∞
≤ hρ‖R‖∞.

For h sufficiently small, we conclude
‖U‖∞ < 1. (3.9)

Therefore I + U is invertible.

From (3.7), we get c̃ = h(I + U)−1(P ⊗A1)−1F.

Proposition 3.1. If h ≤ 4t
ρ

, then there exists a constant K1 which depends only on the functions p, q, l and g

such that

‖c− c̃‖ ≤ cte h2. (3.10)

Proof. Assume that h ≤ 4t
ρ

. According to Lemma 3.1 and relations (3.6) and (3.7), we have c − c̃ =

h(I + U)−1(P ⊗A1)−1E. Since E = O(
h2

4t
), then there exists a constant K1 such that ‖E‖ ≤ K1

h2

4t
. This

implies that

‖c− c̃‖ ≤ h‖(I + U)−1‖∞‖(P ⊗A1)−1‖∞‖E‖

≤ hρ

4t
‖(I + U)−1‖∞K1h

2

≤ ‖(I + U)−1‖∞K1h
2.

≤ 1

1− ‖U‖∞
K1h

2.

≤ cte h2.

Finally, we deduce that
‖c− c̃‖ ≤ cte h2.
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3.2. Convergence analysis

Proposition 3.2. The cubic-spline approximation S̃p converges quadratically to the exact solution V of prob-

lem (2.3), i.e., ‖V − S̃p‖H = O(h2).

Proof. From the relation (3.1), we have
‖V −Q3(V )‖H = O(h2), so ‖V −Q3(V )‖H ≤ Kh2, where K is a positive constant. On the other hand we
have

Q3(Vi(z))− S̃pi(z) =

n−1∑
j=−1

(µj(Vi)− c̃j,i)Bj(x), for i = 1, ...,H

Therefore, by using (3.10) and
n−1∑
j=−1

Bj(z) ≤ 1, we get

|Q3(Vi(z))− S̃pi(z)| ≤ ‖c− c̃‖
n−1∑
j=−1

Bj(z) ≤ ‖c− c̃‖ ≤ K1h
2, for i = 1, ...,H.

Since ‖Q3(V )− S̃p‖H ≤ ‖V −Q3(V )‖H + ‖Q3(V )− S̃p‖H , we deduce the stated result.

Theorem 3.1. If we assume that the discretization parameters h and ∆t satisfy the following relation

h ≤ 4t
ρ
, (3.11)

and we suppose that V (z, t) is the solution of (1.1) and Vc(z, t) is the approximate solution according to the

proposed method, then we have,

‖V − Vc‖∞ =

 C1(4t2 + h), for quadratic spline (see, [20]),

C2(4t2 + h2), for cubic spline .

where C1 and C2 are finite constants. Therefore for sufficiently small 4t and h, the solution of presented

scheme (3.4-3.5) converges to the solution of initial boundary value problem (1.1) in the discrete L∞-norm

and the rates of convergence are O(4t2 + h) and O(4t2 + h2).

3.3. Stability analysis

We will now show that the fully discretized collocation cubic spline method is stable.
The collocation procedure for solving boundary value problem (2.3) given by (3.7), i.e.,

Ac̃ = G where A = (P ⊗A1) (I + U) and G = hF,

is said to be stable if for a perturbation of the data, i.e.,

(A+ Γ)̃c̃ = G+ δ and ˜̃S(ti) = S̃(ti) + δi for i = 1, ..., n+ 1

there exists positive constants k1, k2 and k3 independent of n and G in Ωx, such that for all sufficiently large n
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(A+ Γ)̃c̃ = G+ δ. (3.12)

The equation (3.12) has a unique solution for ‖Γ‖∞ ≤ k1 and

‖˜̃S − S̃‖∞ ≤ k2‖Γ‖∞ + k3‖δ̃‖∞

where, δ = (δ1, δ2, ..., δn+1) and δ̃ = (δ0, δ1, ..., δn+2).

The functions S̃ and ˜̃S are uniquely determined by c̃j and ˜̃cj , −2 ≤ j ≤ n− 2 in (3.7) and (3.12) respectively.

Theorem 3.2. The collocation procedure (3.7) for solving boundary value problem (2.3) is stable.

Proof. As we know that ‖A−1‖∞ ≤ ‖(P ⊗A1)−1‖∞‖ (I + U)
−1 ‖∞ ≤

ρ

1− ‖U‖∞
= k, for n ≥ n0, where

n0 is sufficiently large positive real number and k is a constant. Choose a positive constant k1 < 1
2k . Then

whenever ‖Γ‖∞ ≤ k1, (A+ Γ)−1 = (I +A−1Γ)−1A−1 exists because

‖A−1Γ‖∞ ≤ ‖A−1‖∞‖Γ‖∞ ≤
1

2
.

and in fact ‖(A+ Γ)−1‖∞ ≤ 2k, for n ≥ n0. After subtracting (3.7) from (3.12), we get

(A+ Γ)̃c̃−Ac̃− Γc̃ = δ − Γc̃,

involving that
‖˜̃c− c̃‖∞ ≤ 2k(‖δ‖∞ + ‖Γ‖∞‖c̃‖∞).

As it is assumed that f, u, α and β are sufficiently smooth on Ω and

|∂
iV (z, t)

∂zi
| ≤ k on Ω for 0 ≤ i ≤ 4,

so fm+1, um+1, αm+1 and βm+1 will be sufficiently smooth on Ω and

|∂
iV m+1

∂zi
| ≤ k on Ω for 0 ≤ i ≤ 4, and m = 0, 1, ...,M − 1.

Further, since V (τi) = S(τi) for all i = 1, ..., n + 1 and the inverse of the collocation matrix is bounded, i.e.,
‖A−1‖∞ ≤ k and ‖c̃‖∞ ≤ r, with r > 0, So

‖˜̃c− c̃‖∞ ≤ 2k(‖δ‖∞ + r‖Γ‖∞). (3.13)

Now, since (3.13) therefore with the help of relation ˜̃S = S̃ + δi for i = 0, .., n+ 2, we have

max
−2≤j≤n−2

| ˜̃cj − c̃j | ≤ 2kr‖Γ‖∞ + (1 + 2k)‖δ‖∞.

Further, ˜̃
S(z)− S̃(z) =

∑
−2≤j≤n−2

( ˜̃cj − c̃j)Bj(z).
So

|˜̃S(τi)− S̃(τi)| ≤ max
−2≤j≤n−2

| ˜̃cj − c̃j | ∑
−2≤j≤n−2

|Bj(τi)|, for i = 1, ..., n+ 1,

and like
∑

−2≤j≤n−2

|Bj(τi)| ≤ 1, therefore

‖˜̃S − S̃‖∞ ≤ k2‖Γ‖∞ + k3‖δ̃‖∞,

where k2 = kr and k3 = 1 + 2k.
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4. NUMERICAL IMPLEMENTATION EXAMPLES

In this section we verify experimentally theoretical results obtained in the previous section. If the exact solution
is known, then at time t ≤ T the maximum error Emax can be calculated as:

Emax = max
z∈[0,L],t∈[0,T ],1≤i≤H

| SM,N
i (z, t)− Vi(z, t) | .

Otherwise it can be estimated by the following double mesh principle:

EmaxM,N = max
z∈[0,L],t∈[0,T ],1≤i≤H

| SM,N
i (z, t)− S2M,2N

i (z, t) |,

where SM,N
i (z, t) is the numerical solution on the M + 1 grids in space and N + 1 grids in time, and

S2M,2N
i (z, t) is the numerical solution on the 2M + 1 grids in space and 2N + 1 grids in time, for 1 ≤ i ≤ H .

As examples, in this parer we are only considering chemical reactor examples in numerical resolution. Never-
theless such technic can be also applied to bio-reactors where biological process are taking place.

4.1. Example 1: isothermal plug flow reactor

Consider the model state equations representing material balances in the isothermal plug flow reactor reactor
with length L = 20m where irreversible consecutive reactions x → y → z take place in liquid phase. If the
volume of the reactor, densities and heat capacities are constants, if the heat losses, diffusion and dispersion
are negligible and under conditions of perfect radial mixing, the model state equations representing material
blances in the reactor (see [19]) exactly match the mathematical model (1.1) with:

Ω = (0, 10)× (0, 1), and ϑ = 2,

V (z, t) = [cx(z, t) cy(z, t)]T ,

f(V (z, t)) = cx(z, t)2,

u(t) = [0 0]T ,

K = [−2.63 0.00109]T ,

α(z) = [−0.1z + 1.5 0.05z + 0.5]T ,

β(t) = [4.10−3t2 − 0.09t+ 1.5 0]T ,

C =

 0 0

0 −0.00109

 .
Where cx(z, t) and cy(z, t) denote the concentration of x and y within the reactor.
We now use the cubic spline collocation method (3.7) in this paper and the quadratic spline collocation method
in (see [20]) to solve the above problem numerically. For comparison, Table 1 lists the maximum error
(max error) obtained in the numerical experiments for different time of ∆t, and spatial h. It is seen from Table
1 that the cubic spline collocation method (3.7) given here is more accurate than the quadratic spline collocation
method in (see [20]) for the same spatial step h. We also see from Table 1 that the cubic spline collocation
method (3.7) in this paper possesses the second order spatial accuracy, whereas the quadratic spline collocation
method in (see [20]) has only the first-order spatial accuracy.
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4.2. Example 2: nonisothermal plug flow reactor

Now; let us consider the mathematical model of a nonisothermal plug flow reactor where a first-order reaction
of the form x→ y takes place in liquid phase (see [2]). The dynamic exactly matches the mathematical model
(1.1) with:

Ω = (0, 10)× (0, 1) and ϑ = 2,

V (z, t) = [cx(z, t) T (z, t)]T ,

f(V (z, t)) = 5.1012cx(z, t),

u(t) = [0.01 74585.07455507456]T ,

K = [−1 − 17065.897]T ,

α(z) = [0.5 300]T ,

β(t) = [0.5 sin(0.1t+ 2000) + 2 0.1625t+ 300]T ,

C =

 −0.1 0

0 −240.6002405002405

 .
As in the previous example, satisfactory results are given in Table 2. In both the examples, the initial and
boundary conditions are considered axial varying and time-varying respectively, but one may reproduce the
simulation results by considering constant values for these conditions.
Table 2 shows values of the maximum error (max error) obtained in the numerical experiments for different
values of N , and M , we note the convergence of the solution S to the function V depends on the discretization
parameters h, and ∆t. Theorem 3.1 is shown the convergence of the method provided that the parameters h and
∆t satisfy the relation (3.11). Moreover, the numerical error estimates behave like which confirms what we are
expecting. Furthermore, it is important to remark that this monitoring tool is also able to handel nonlinearity,
caused by disturbances, providing satisfactory monitoring results.

Table 1: Numerical results for Example 1.

N 10 20 40 80 160

M 5 10 20 40 80

our max error 1.056× 10−3 2.639× 10−4 0.659× 10−4 0.164× 10−4 0.411× 10−5

max error in [20] 2.660× 10−2 1.140× 10−2 5.225× 10−3 2.493× 10−3 1.217× 10−3

Table 2: Numerical results for Example 2.

N 10 20 40 80 160

M 5 10 20 40 80

our max error 1.024× 10−3 0.255× 10−3 0.639× 10−4 1.595× 10−5 0.398× 10−5

max error in [20] 2.100× 10−2 0.900× 10−2 4.125× 10−3 1.968× 10−3 0.960× 10−3
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5. CONCLUSION

In this paper, a cubic spline collocation approach is prosed in the context to be used for reducing a nonlinear PDEs plug flow reactors
models for numerical simulation. Some efforts have been made to handel the nonlinear behaviour. After a brief review of the nonlinear
tubular reactor model in consideration, we present the details of the given monitoring which consists of first discretizing in time (by Crank-
Nicolson scheme) and then collocating in space (by a cubic spline collocation method). In spite of the large number of the discretization
points required by the SCM. The two test problems which are studied in this paper demonstrate that this approach is an efficient alternative
since it is unconditionally stable and confirm the theoretical behavior of the rates of convergence.
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