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ABSTRACT

In this paper, we introduce a new generalized form of Rayleigh distribution which offers a more
flexible and reliable model for lifetime data. Several statistical properties of the new distribution
are explored. Density expansion, moments, order statistics, information measures, Bonferroni and
Lorenz curves, hazard and reverse hazard functions are studied. Furthermore, we obtain model
parameters estimation using the maximum likelihood and real data applications which illustrate the
performance of the distribution and its excellence over other distributions based on some information
criterion are also given.
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RESUMEN
En este trabajo se introduce una nueva forma generalizada de la distribución de Rayleigh que ofrece
un modelo más flexible y confiable para describir datos del tipo tiempo de vida. Se exploran las
propiedades estad́ısticas de esta nueva distribución como son la expansión de densidad, los momentos,
estad́ısticos de orden, medidas de información las curvas de Bonferroni y de Lorenz, y las funciones
de riesgo y de riesgo reverso. Además se obtienen los modelos de estimación de parámetros usando
máxima verosimilitud. Se muestran los resultados correspondientes a datos que surgen de aplica-
ciones reales. Los resultados obtenidos ilustran como la nueva distribución supera las existentes de
acuerdo a ciertos criterios de información
PALABRAS CLAVE: Distribución de Rayleigh, función de riesgo, estad́ıstico de orden, estimación

máximo verośımil, medidas de información.

1. INTRODUCTION

The amount of data available for analysis has been growing increasingly, requiring new statistical
distributions that enables us to better describe each phenomenon or experiment under study. Defining
these new distributions is a very significant problem in statistics when a researcher aims to predict
more accurate future behaviors of the data based on an observed set of data. Many attempts have
been made by several authors to define new distributions or new families of distributions to provide
more flexibility in modeling data under investigation. One such example is a family of univariate
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distributions generated by Stacy’s generalized gamma variable proposed by Zografos and Balakrishnan
(2008) [38].
The Rayleigh distribution was introduced by Rayleigh in 1880 whose probability density function
(pdf) of the Rayleigh distribution has the form

h(x;α) =
x

α2
e−

x2

2α2 , x > 0, (1.1)

where α > 0 is a scale parameter. The cumulative distribution function (cdf) of Rayleigh distribution
is

H(x) = 1− e−
x2

2α2 . (1.2)

Rayleigh distribution has several desirable properties and nice physical interpretations. It is commonly
used to analyze lifetime data, the reader is referred to Johnson et al. (1994) [18], for more details.
The origin and other aspects of this distribution can be found in Siddiqui (1962) [33], and Miller
and Sackrowttz (1967) [26]. Unfortunately, Rayleigh distribution has an increasing failure rate and
hence many authors are interested in defining new generalized families of Rayleigh distributions. This
provides greater flexibility in modeling skewed lifetime data. Adding parameters to a well established
distribution is an effective way for obtaining more flexible new distributions. Kumaraswamy (1980) [19]
has introduced a generalization of Beta distribution, where he has found that the new one was much
better suited than Beta distribution. Later in 1997, a new method has been proposed by Marshall
and Olkin [25], their idea of obtaining a new distribution has based on adding a new parameter
to the original distribution. The new family of distributions includes the original distribution as a
special case, and it gives more flexibility to the original model. Eugene et al. (2002) [12], Zografos
and Balakrishnan (2009) [38], Bdair (2012) [5], Ristic and Balakrishnan (2011) [31], Cordeiro and
de Castro (2011) [9], Cordeiro et al. (2013) [10], Bdair and Haj Ahmad (2019) [6], Andrade et al.
(2015) [4] and Haj Ahmad et al. (2017) [16] are some authors who have studied families of generalized
distributions.
Some earlier studies have considered general forms of Rayleigh distribution, Surles and Padgett (2001,
2004) [35, 36] have introduced two parameter generalized Rayleigh distribution, which was a partic-
ular member of the exponentiated Weibull distribution. Kundu and Raqab (2005) [20] have studied
different estimation methods for a generalized Rayleigh distribution. Abu Awwad et al. (2018) [2]
have studied the prediction of progressively censored Rayleigh distribution.
Our work is based on introducing a generalized form of Rayleigh distribution by replacing x with(
G(x;ξ)

G(x;ξ)

)β
in the cdf formula, where ξ is the vector of parameters of the baseline distribution with

cdf G, and survival function G = 1 − G. By using a suitable baseline distribution, we improve the
original distribution and make it more flexible and reliable to some real life data. Bourguignon et
al.(2014) [8] have used a special case of this generalization method, they introduced a new family
of univariate distributions with two additional parameters using the Weibull generator applied to
the odds ratio G(x)/(1 − G(x)). For more details about different methods in generating families of
continuous distributions, the reader may refer to Lee et al. (2013) [21]. In our study, without loss of
generality, we consider β = 1 and hence the cdf for the new Rayleigh generalization is:

FRG(x;α, ξ) =

G(x;ξ)

G(x;ξ)∫
0

t

α2
e−

t2

2α2 dt

= 1− exp

[
−1

2α2

(
G(x; ξ)

G(x; ξ)

)2
]
. (1.3)
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The pdf of this new generalization is

fRG(x;α, ξ) =
1

α2

G(x; ξ)

G
3
(x; ξ)

g(x; ξ) exp

[
−1

2α2

(
G(x; ξ)

G(x; ξ)

)2
]
, (1.4)

where g(x; ξ) is the pdf of the baseline distribution. Equation (1.4) can be more tractable when G(x; ξ)
and g(x; ξ) have simple analytic expressions. The random variable X with density function (1.4) is
denoted by X ∼ RG(α, ξ). To define this mixed distribution, we consider Lindley distribution as
a baseline distribution. Although Lindley distribution has an increasing failure rate, our suggested
mixture between Rayleigh and Lindley distributions has also an increasing hazard rate function with
increasing-decreasing density.
The rest of the paper is organized as follows. In Section 2, Rayleigh-Lindley distribution is defined,
expansion formula for its density function is obtained and its monotonicity property is studied and
hazard and reverse hazard rate are derived. Moments are obtained in Section 3 and Reliability is
presented in Section 4. In Section 5, we derive the quantile function of the new proposed distribution
and an algorithm to generate the random data is presented. In Section 6, we discuss the maximum
likelihood estimation and the use a Monte Carlo simulation experiment to evaluate the maximum
likelihood estimates (MLEs) of the model parameters. Benferroni and Lorenz curves are studied in
Section 7. Order statistics and measures of uncertainty are discussed in Section 8. Section 9 presents
two real life examples which are used as applications on Rayleigh-Lindley distribution. Finally, some
concluding remarks are made in Section 10.

2. RAYLEIGH-LINDLEY DISTRIBUTION

Lindley distribution is a well known distribution that can be used in a wide variety of fields, including
biology, engineering and medicine; see Ghitany et al. (2008) [14]. Lindley distribution is a mixture of
exponential (θ) and gamma (2, θ) distributions. Although the survival function of gamma distribution
can not be expressed in closed form, and the hazard rate of exponential distribution is constant, Lindley
distribution has an advantage since its hazard rate is increasing.
Lindley distribution has been generalized, extended, and its applications in reliability and other fields
of science have been introduced by several authors. One may refer to Hussain (2006) [17], Zakerzadeh
and Dolati (2009) [37], Nadarajah et al. (2011) [27], Deniz and Ojeda (2011) [11], Ghitany et al.
(2013) [14], Oluyede and Yang (2015) [29], Alkarni (2015) [3] and Abouammoh et al. (2015) [1] and
the references therein.
Even though many researchers have used Lindley distribution to model lifetime data, such as Hussain
(2006) [17], who has showed that the Lindley distribution is important for studying stress-strength
reliability modeling, there are many situations in the modeling of real lifetime data where the Lindley
distribution may not be suitable from a theoretical or applied point of view. Therefore, it is neces-
sary to obtain a new distribution which is more flexible than the Lindley distribution for modeling
lifetime data. Here we introduce a new distribution by considering a mixture of Rayleigh and Lindley
distributions. In this section we assume that the baseline distribution is Lindley distribution given to
be Equation (1.4) whose pdf and cdf are

g(x; θ) =
θ2

(1 + θ)
(1 + x)e−θx, x > 0, (2.1)

G(x; θ) = 1− (1 + θ + θx)

1 + θ
e−θx, (2.2)

respectively, where θ > 0 is a scale parameter.

207



Using g(x; θ) and G(x; θ) defined in Equations (2.1) and (2.2) and substituting them in Equation
(1.4), we obtain the density of Rayleigh-Lindley distribution (RL)

fRL(x;α, θ) =
θ2

α2
(θ + 1)(x+ 1)eθx

[
eθx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3

]
× exp

[
−1

2α2
(

(1 + θ)eθx

(1 + θ + θx)
− 1)2

]
, x > 0, (2.3)

where α > 0, θ > 0. The cdf of RL distribution is given by

FRL(x;α, θ) = 1− exp

[
−1

2α2
(

(1 + θ)eθx

(1 + θ + θx)
− 1)2

]
. (2.4)

Our suggested new distribution has some privileges over the original distributions and many other
distributions in fitting some data sets. We present in Section 9 two types of real data where the RL
distribution fits these data better than other distributions. In fact, we have noticed during our study
that RL distribution is better in dealing with data which have small values than large values data.
Now, we study some properties of the new RL distribution with its hazard and reverse hazard rate
functions.

2.1. Expansion of density

Using some series expansion techniques such as binomial and power series expansion we obtain the
following:

1

G
3
(x; ξ)

=
1

(1−G(x; ξ))3
=

∞∑
k=0

Γ(k + 3)

Γ(3)k!
Gk(x; ξ), (2.5)

exp{ −1

2α2

(
G(x; ξ)

G(x; ξ)

)2

} =

∞∑
j=0

(−1)j( 1
2α2 )j

j!

(
G(x; ξ)

G(x; ξ)

)2j

, (2.6)

1

G
2j

(x; ξ)
=

1

(1−G(x; ξ))2j
=

∞∑
i=0

Γ(i+ 2j)

Γ(2j)i!
Gi(x; ξ), j 6= 0, (2.7)

where Γ is the gamma function. Using Equation ((2.5), (2.6) and (2.7)) we can rewrite Equation (1.4)
as

fRG(x;α, ξ) = g(x; ξ)

∞∑
j=1

∞∑
i,k=0

pijk(G(x; ξ))i+2j+k+1, (2.8)

where the coefficient pijk is defined by:

pijk =
(k + 2)(k + 1)(−1)jΓ(i+ 2j)

i!k!Γ(2j)(2α2)j+1
.

The series representation of the pdf of RL distribution is given by

fRL(x;α, θ) =
θ2

(1 + θ)
(1 + x)e−θx

∞∑
j=1

∞∑
i,k=0

pijk(1− (1 + θ + θx)

1 + θ
e−θx)

i+2j+k+1

. (2.9)

Series representation of RL is useful in finding moments, reliability, Benferroni and Lorenz curves and
Rényi entropy.
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2.2. Monotonicity of RL distribution

In this section, we study the monotonicity of RL distribution, for that purpose let V (x) = G(x; θ) =

1− (1+θ+θx)
1+θ e−θx, then Equation (2.2) can be written as

fRL(x;α, θ) =
θ2

α2(1 + θ)
V (x)(1− V (x))−3(x+ 1)e−θx exp{ −1

2α2
(

V (x)

1− V (x)
)2}, (2.10)

where x > 0, α > 0, θ > 0. Applying the logarithmic function of both sides leads to

log fRL(x;α, θ) = 2 log

(
θ2

α2(1 + θ)

)
+ log V (x)− 3 log(1− V (x))

+ log(x+ 1)− θx− 1

2α2
(

V (x)

1− V (x)
)2.

Then,

d

dx
log fRL(x;α, θ) =

V ′(x)

V (x)
+ 3

V ′(x)

1− V (x)
+

1

x+ 1
− θ

− 1

α2
(

V (x)

1− V (x)
){ (1− V (x))V ′(x) + V (x)V ′(x)

(1− V (x))2
}

=
1

x+ 1
− θ + V ′(x)

(
(1− V (x))2 − 1

α2V
2(x)

V (x)(1− V (x))3

)
. (2.11)

Let us now discuss the quantities appeared in Eq. (2.11); V ′(x) = (θ2/1 + θ)(1 + x)e−θx > 0,∀x > 0,
V (x) is monotonically increasing from 0 to 1, V ′(x) is decreasing form θ2/1 + θ to 0, 0 < V (x) < 1,
0 < 1− V (x) < 1 and 0 < 1/1 + x < 1.

If θ < (1/1 + x) < 1 and α2 > ( V (x)
1−V (x) )

2, then d
dx log fRL(x;α, θ) > 0 and hence fRL(x;α, θ) is

increasing.

If θ > ((1+
√

5)/2), then V ′(x) > 1 which yields V ′(x)/(V (x)(1−V (x))3) > 1. Now, if α2 < ( V (x)
1−V (x) )

2

and θ > (1/1 + x), then d
dx log fRL(x;α, θ) < 0 and hence fRL(x;α, θ) is decreasing.

If 0 < θ < ((1 +
√

5)/2), then V ′(x) < 1 which yields V ′(x)/(V (x)(1 − V (x))3) < 1. Now, if

( V (x)
1+(1−V (x))2 ) < α2 < ( V (x)

1−V (x) )
2 and θ > (1/1+x), then d

dx log fRL(x;α, θ) < 0 and hence fRL(x;α, θ)

is decreasing.
Figure 1 illustrates the shape of the density function for some selected parameters’ values.

2.3. Hazard rate and reverse hazard rate functions

In this section, we provide the hazard rate (failure rate) and the reverse hazard rate functions of RL
distribution. We also present some graphs of these functions for some values of parameters α and θ
that illustrates their properties. The hazard and reverse hazard functions of RL distribution are:

rRL(x;α, θ) =
θ2

α2
(θ + 1)(x+ 1)eθx{e

θx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3
},

and

ρRL =

θ2

α2 (θ + 1)(x+ 1)eθx{ e
θx(θ+1)−(1+θ+θx)

(1+θ+θx)3 }

(exp{ 1
2α2 ( (1+θ)eθx

(1+θ+θx) − 1)2} − 1)
,

for x > 0, α > 0, θ > 0, respectively.
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Figure 1: Density Plots of RL distribution.

In order to determine the monotonicity of the hazard function rRL(x;α, θ), it’s enough to determine
the monotonicity of log rRL(x;α, θ). The first derivative of log rRL(x;α, θ) with respect to x is given
by

∂

∂x
log rRL(x;α, θ) =

1

x+ 1
+ θ +

θ(θ + 1)eθx − θ
(θ + 1)eθx − (1 + θ + θx)

− 3θ

1 + θ + θx
. (2.12)

After some mathematical simplifications, Eq. (2.12) can be written as

∂

∂x
log rRL(x;α, θ) =

1

x+ 1
+ θ − 2 + (1 + θx)

(
1

(θ + 1)eθx − (1 + θ + θx)
+

3

1 + θ + θx

)
. (2.13)

Using the Taylor series expansion of eθx, we can insure that the term (θ + 1)eθx − (1 + θ + θx) is
strictly positive. And after some mathematical manipulation, Eq. (2.13) is positive and consequently
the hazard rate function is always increasing.
Figure 2 gives the graphs of the first derivative of the hazard function and also the hazard function,
it can be easily noticed that the first derivative is always positive and as a result the hazard function
is increasing function.
The time plot of the hazard function of RL distribution for different values of α and θ are illustrated
in Figure 3, where it is clear that the hazard rate is increasing.
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Figure 2: Plots of first derivative of hazard function (left) and the hazard function (right) for different
values of θ.
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Figure 3: Plots of the hazard function for different values of α and θ.

3. MOMENTS

Using the pdf form of the RG distribution given in Equation (2.8), the sth moment is written as

µ′s =

∫ ∞
0

xsfRG(x;α, ξ)dx

=

∞∑
j=1

∞∑
i,k=0

pijk

∫ ∞
0

xs(G(x; ξ))i+2j+k+1g(x; ξ)dx.
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Consider the Lindley distribution as a baseline function, the sth moment can readily be

µ′s =
θ2

(1 + θ)

∞∑
j=1

∞∑
i,k=0

pijk

∫ ∞
0

xs(1 + x)e−θx(1− (1 + θ + θx)

1 + θ
e−θx)tdx,

where t = i+2j+k+1. Using the series representations of (1− (1+θ+θx)
1+θ e−θx)t and (1− (1+θ+θx)

1+θ e−θx)k+1,

the sth moment for the RL distribution is given by

µ′s =

∞∑
j=1

∞∑
i,k=0

pijk

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−s−w+1

(1 + θ)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(s+ w + 1)

(l + 1)s+w+1
.

Table 1 lists the first five moments, variance, skewness and kurtosis for selected values of the parameters
of RL distribution.

Table 1: Moments, variance, skewness and kurtosis for (α, θ) = (0.5, 1.5), (1.5, 1.5), (1.5, 2.5), (2.5, 1.5)
µ′s α = 0.5, θ = 1.5 α = 1.5, θ = 1.5 α = 1.5, θ = 2.5 α = 2.5, θ = 1.5
µ′1 0.4761 0.9658 0.5253 1.2616
µ′2 0.2632 1.0309 0.3070 1.7240
µ′3 0.1606 1.1762 0.1926 2.4867
µ′4 0.1053 1.4102 0.1273 3.7362
µ′5 0.0731 1.7588 0.0876 5.7999
Variance 0.0366 0.0981 0.0310 0.1322
Skewness 22.9047 38.2677 35.1994 51.7429
Kurtosis 78.4811 146.475 132.026 213.828

4. RELIABILITY

Since reliability plays an important role in industry and life testing experiments, in this section we
derive the reliability (R) when X and Y have independent RL distributions. Assume X ∼ RL(α1, θ1)
and Y ∼ RL(α2, θ2), in order to define reliability we proceed as follow:

R = P (X > Y ) =

∫ ∞
0

fX(x;α1, θ1)FY (x;α2, θ2)dx

=

∫ ∞
0

θ21
(1 + θ1)

(1 + x)e−θ1x
∞∑

i,j,k=0

p1ijk(1− (1 + θ1 + θ1x)

1 + θ1
e−θ1x)

i+2j+k+1

×(1− exp{ −1

2α2
2

(
(1 + θ2)eθ2x

(1 + θ2 + θ2x)
− 1)2})dx

=
θ21

(1 + θ1)

∞∑
i,j,k=0

p1ijk

∫ ∞
0

(A(x)−B(x))dx,

where

A(x) = (1 + x)e−θ1x(1− (1 + θ1 + θ1x)

1 + θ1
e−θ1x)

i+2j+k+1

,

B(x) = (1 + x)e−θ1x(1− (1 + θ1 + θ1x)

1 + θ1
e−θ1x)

i+2j+k+1

e
−1

2α2
2
(
(1+θ2)eθ2x

(1+θ2+θ2x)
−1)2

,
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and

p1ijk =
(k + 2)(k + 1)(−1)jΓ(i+ 2j)

i!j!Γ(2j)(2α2
1)j+1

.

To simplify the above integral, we use some series representation and algebraic manipulations, so we
have ∫ ∞

0

A(x)dx =

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w−11

(1 + θ1)l

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 1)

(l + 1)w+1∫ ∞
0

B(x)dx =

i+2j+k+1∑
l=0

l∑
r=0

r+1∑
w=0

∞∑
s,t=0

2t+s∑
u=0

u∑
p=0

p∑
z=0

(−1)l+t+u
(
t

l

)(
l

r

)(
r + 1

w

)(
2t+ s− 1

s

)

×
( 1
2α2

2
)t

t!

(
2t+ s

u

)(
u

p

)(
p

z

)
θr1θ

p
2

(1 + θ1)l(1 + θ2)u
Γ(w + z + 1)

(θ1(l + 1) + θ2u)w+z+1
,

where t = i+ 2j + k + 1. Hence the reliability R can be written as:

R =

∞∑
i,j,k=0

p1ijk{
t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w+1
1

(1 + θ1)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 1)

(l + 1)w+1

−
i+2j+k+1∑

l=0

l∑
r=0

r+1∑
w=0

∞∑
s,t=0

2t+s∑
u=0

u∑
p=0

p∑
z=0

(−1)l+t+u
(
t

l

)(
l

r

)(
r + 1

w

)(
2t+ s− 1

s

)

×
( 1
2α2

2
)t

t!

(
2t+ s

u

)(
u

p

)(
p

z

)
θr+2
1 θp2

(1 + θ1)l+1(1 + θ2)u
Γ(w + z + 1)

(θ1(l + 1) + θ2u)w+z+1
}.

5. QUANTILE FUNCTION AND GENERATION ALGORITHM

Based on Equation (1.3), the inverse of the new Rayleigh generalization is given by

G(x; ξ) = 1− 1

1 +
√
−2α2 log(1− u)

, 0 < u < 1, (5.1)

where G(x; ξ) is the cdf of Lindely distribution given in (2.2). Jodra (2010) has showed that the
quantile function of the Lindley distribution is given by

G−1(u) = −1− 1

θ
− 1

θ
W−1

(
−θ + 1

eθ+1
(1− u)

)
, (5.2)

where W−1(.) denotes the negative branch of the Lambert W function (i.e., the solution of the equation
W (z)eW (z) = z). Since − 1

e < −
θ+1
eθ+1 (1−u) < 0, then W−1(.) is unique and this implies that G−1(u) is

also unique. Using Eq.’s (5.1) and (5.2), it readily follows that the quantile function of the Rayleigh-
Lindley distribution is given by

F−1RL(u) = −1− 1

θ
− 1

θ
W−1

(
−θ + 1

eθ+1
(1− s)

)
, (5.3)

where

s = 1− 1

1 +
√
−2α2 log(1− u)

, 0 < u < 1.

Now, we generating random data from the inverse CDF in (2.4) of the Rayleigh-Lindley distribution
according to the following algorithm
Algorithm 1:
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Step 1: Generate Ui ∼ Uniform(0, 1), i = 1, ..., n;

Step 2: Compute Si = 1− 1

1+
√
−2α2 log(1−Ui)

;

Step 3: Set

Xi = −1− 1

θ
− 1

θ
W−1

(
−θ + 1

eθ+1
(1− Si)

)
.

We use Algorithm 1 to generate data from the Rayleigh-Lindley distribution.

6. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we obtain the maximum likelihood estimations (MLEs) of the parameters of RL
distribution. Numerical methods are used to solve the nonlinear systems of equations obtained.
Consider the pdf of RL distribution written by Equation (1.3), then its log likelihood function denoted
by `(x;α, θ) is given by

`(x;α, θ) = 2n log
θ

α
+ n log(θ + 1) +

n∑
i=1

log(xi + 1) + θ

n∑
i=1

xi − 3

n∑
i=1

log(1 + θ + θxi)

+

n∑
i=1

log(eθxi(θ + 1)− (1 + θ + θxi))−
1

2α2

n∑
i=1

(
(1 + θ)eθxi

1 + θ + θxi
− 1)2.

The first derivatives with respect to the parameters α and θ are:

∂`(x;α, θ)

∂α
= −2n

α
+

1

α3

n∑
i=1

(
(1 + θ)eθxi

1 + θ + θxi
− 1)2, (6.1)

and

∂`(x;α, θ)

∂θ
=

2n

θ
+

n

1 + θ
+

n∑
i=1

xi − 3

n∑
i=1

1 + xi
1 + θ + θxi

+

n∑
i=1

eθxi(1 + (1 + θ)xi)− (1 + xi)

eθxi(θ + 1)− (1 + θ + θxi)

− 1

α2

n∑
i=1

(
(1 + θ)eθxi

1 + θ + θxi
− 1)(

θeθxixi(1 + (1 + xi)(1 + θ))

(1 + θ + θxi)2
). (6.2)

Equating the above two equations to zero and solving them with respect to α and θ we have:

α̂2 =

∑n
i=1( (1+θ)eθxi

1+θ+θxi
− 1)2

2n
, (6.3)

substituting Equation (6.3) in Equation (6.2) and using numerical methods we can obtain the MLE

of θ, denoted by θ̂.
The normal approximation of the MLE of vector parameter δ = (α, θ) can be used to construct
approximate confidence intervals and for testing hypotheses on the parameters α and θ. From the
asymptotic property of the MLE we have

√
n(δ̂ − δ) d−→ N2(0,K−1(δ)), where K(δ) is the unit ex-

pected information matrix, and K(δ) = limn→∞
1
nIn(δ), here In(δ) is the observed information matrix

evaluated at δ̂. The observed information matrix is given by

In(δ) = −
[
E(`αα) E(`αθ)
E(`θα) E(`θθ)

]
,

The expected values of the second derivatives can be found by using some integration techniques.
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7. BENFERRONI AND LORENZ CURVES

An important application of the first incomplete moment is to determine Bonferroni and Lorenz
curves, see Bonferroni (1930) [7], Lorenz (1905) [23] and Gastwirth (1971) [13]. They are commonly
used in applied works areas such as economics, reliability, demography, insurance, medicine and others.
Benferroni and Lorenz curves are defined by

B(p) =
1

pµ

∫ q

0

xf(x)dx and L(p) =
1

µ

∫ q

0

xf(x)dx,

respectively, where µ = E(X) and q = F−1(p).

Theorem 1. Benferroni and Lorenz curves for the RL distribution is given by

B(p) =
1

p
− 1

pµ

∞∑
j=1

∞∑
i,k=0

pijk

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w

(1 + θ)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 2, q)

(l + 1)w+2
,

and

L(p) = 1− 1

µ

∞∑
j=1

∞∑
i,k=0

pijk

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w

(1 + θ)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 2, q)

(l + 1)w+2
,

respectively.

Proof. We use Equation (11), with s = 1, so that

µ =

∞∑
j=1

∞∑
i,k=0

pijk

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w

(1 + θ)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 2)

(l + 1)w+2
,

and∫ ∞
q

xfRL(x;α, β)dx =

∞∑
j=1

∞∑
i,k=0

pijk

t∑
l=0

l∑
r=0

r+1∑
w=0

θr−w

(1 + θ)l+1

(
t

l

)(
l

r

)(
r + 1

w

)
(−1)l

Γ(w + 2, q)

(l + 1)w+2

where Γ(w + 2, q) is the upper incomplete gamma function. So the Benferroni and Lorenz curves are
obtained directly.

8. ORDER STATISTICS, MEASURES OF UNCERTAINTY AND INFORMATION

In this section we present an explicit expression for the density function of order statistic Xk:n in a
random sample of size n with RL distribution. Rényi Measure of uncertainty and information for the
RL distribution is also given.

8.1. Distribution of Order Statistics

Let X1, ..., Xn be a random sample of size n from continuous pdf f(x). Let X1:n < X2:n < ... < Xn:n

denote the corresponding order statistics. If X1, ..., Xn is a random sample of RL distribution, it
follows from Equations (1.3) and (1.4) that the pdf of the kth order statistics Yk = Xk:n is given by

fk(yk) =
n!

(k − 1)!(n− k)!

θ2

α2
(θ + 1)(1− exp{ −1

2α2
(

(1 + θ)eθyk

(1 + θ + θyk)
− 1)2})k−1

× exp{−(n− k + 1)

2α2
(

(1 + θ)eθyk

(1 + θ + θyk)
− 1)2}(yk + 1)eθyk{e

θyk(θ + 1)− (1 + θ + θyk)

(1 + θ + θyk)3
},
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and the corresponding cdf of Yk is

Fk(yk) =

n∑
j=k

(
n

j

)
(1− exp{ −1

2α2
(

(1 + θ)eθyk

(1 + θ + θyk)
− 1)2})j exp{−(n− j)

2α2
(

(1 + θ)eθyk

(1 + θ + θyk)
− 1)2}

8.2. Rényi entropy

Rényi entropy is an extension of shannon entropy, see Rényi (1961) [30]. Rényi entropy is defined as

Hγ(fRL(x;α, θ)) =
1

1− γ
log

∫ ∞
0

fγRL(x;α, θ)dx,

where γ > 0 and γ 6= 1. Rényi entropy becomes shannon entropy when γ → 1. To find Rényi entropy
for RL distribution we proceed as follow∫ ∞

0

fγRL(x;α, θ)dx = (
θ

α
)2γ(θ + 1)−γ

∫ ∞
0

(x+ 1)γe−θγxV γ(x)(1− V (x))−3γ

× exp{ −γ
2α2

(
V (x)

1− V (x)
)2}dx, (8.1)

where V (x) = G(x; θ) = 1− (1+θ+θx)
1+θ e−θx. Note that

V γ(x) =

γ∑
k=0

(−1)k
(
γ

k

)
(1 + θ + θx)k

(1 + θ)k
e−θkx

=

γ∑
k=0

(−1)k
(
γ

k

)∑k
j=0

(
k
j

)
θj(1 + x)j

(1 + θ)k
e−θkx, (8.2)

(1− V (x))−3γ =

∞∑
m=0

(
3γ +m− 1

m

)
V m(x)

=

∞∑
m=0

(
3γ +m− 1

m

) m∑
n=0

(
m

n

)
(−1)n

(1 + θ + θx)n

(1 + θ)n
e−θnx

=

∞∑
m=0

(
3γ +m− 1

m

) m∑
n=0

(
m

n

)
(−1)n

∑n
z=0

(
n
t

)
θz(1 + x)z

(1 + θ)n
e−θnx, (8.3)
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and

exp{ −γ
2α2

(
V (x)

1− V (x)
)2} =

∞∑
r=0

(−1)r( γ
2α2 )r

r!

(
V (x)

1− V (x)

)2r

=

∞∑
r=0

(−1)r( γ
2α2 )r

r!

2r∑
s=0

(
2r

s

)
(−1)s

(1 + θ + θx)s

(1 + θ)s
e−θsx

×
∞∑
v=0

(
2r + v − 1

v

) v∑
w=0

(
v

w

)
(−1)w

(1 + θ + θx)w

(1 + θ)w
e−θwx

=

∞∑
r=0

2r∑
s=0

∞∑
v=0

v∑
w=0

(−1)r+s+w( γ
2α2 )r

r!

(
2r

s

)(
2r + v − 1

v

)(
v

w

)
× (1 + θ + θx)s+w

(1 + θ)s+w
e−θ(s+w)x

=

∞∑
r=0

2r∑
s=0

∞∑
v=0

v∑
w=0

(−1)r+s+w( γ
2α2 )r

r!

(
2r

s

)(
2r + v − 1

v

)(
v

w

)

×
∑s+w
u=0

(
s+w
u

)
θu(1 + x)u

(1 + θ)s+w
e−θ(s+w)x

=

∞∑
r=0

2r∑
s=0

∞∑
v=0

v∑
w=0

s+w∑
u=0

(−1)r+s+w( γ
2α2 )r

r!

(
2r

s

)(
2r + v − 1

v

)
×
(
v

w

)(
s+ w

u

)
θu(1 + x)u

(1 + θ)s+w
e−θ(s+w)x (8.4)

Substituting Equations (8.2), (8.3) and (8.4) into Equation (8.1), we obtain∫ ∞
0

fγRL(x;α, θ)dx = (
θ

α
)2γ(θ + 1)−γ

∞∑
k,m,r,v=0

k∑
j=0

m∑
n=0

n∑
z=0

2r∑
s=0

v∑
w=0

s+w∑
u=0

(−1)k+n+r+s+wθj+z+u

(θ + 1)k+n+s+w
( γ
2α2 )r

r!

×
(
γ

k

)(
k

j

)(
3γ +m− 1

m

)(
m

n

)(
n

z

)(
2r

s

)(
2r + v − 1

v

)(
v

w

)(
s+ w

u

)
×
∫ ∞
0

(1 + x)z+j+γ+ue−θ(k+γ+n+s+w)xdx

= (
θ

α
)2γ(θ + 1)−γ

∞∑
k,m,r,v=0

k∑
j=0

m∑
n=0

n∑
z=0

2r∑
s=0

v∑
w=0

s+w∑
u=0

z+j+γ+u∑
a=0

(−1)k+n+r+s+wθj+z+u

(θ + 1)k+n+s+w

×
( γ
2α2 )r

r!

(
γ

k

)(
k

j

)(
3γ +m− 1

m

)(
m

n

)(
n

z

)(
2r

s

)(
2r + v − 1

v

)(
v

w

)
×
(
s+ w

u

)(
z + j + γ + u

a

)
Γ(a+ 1)

(θ(k + γ + n+ s+ w))a+1
.
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Consequently, Rényi entropy for RL distribution is

Hγ(fRL(x;α, θ)) =
1

1− γ
log

(
(
θ

α
)2γ(θ + 1)−γ

)
+

1

1− γ
log{

∞∑
k,m,r,v=0

k∑
j=0

m∑
n=0

n∑
z=0

2r∑
s=0

v∑
w=0

s+w∑
u=0

z+j+γ+u∑
a=0

(−1)k+n+r+s+wθj+z+u

(θ + 1)k+n+s+w

×
( γ
2α2 )r

r!

(
γ

k

)(
k

j

)(
3γ +m− 1

m

)(
m

n

)(
n

z

)(
2r

s

)(
2r + v − 1

v

)(
v

w

)
×
(
s+ w

u

)(
z + j + γ + u

a

)
Γ(a+ 1)

(θ(k + γ + n+ s+ w))a+1
}.

9. APPLICATIONS

In this section, applications of the RL distribution including the estimation of the parameters via
the method of maximum likelihood estimation for the comparison of the RL distribution with other
models for given data sets are presented. We provide examples to illustrate the flexibility of the RL
distribution in contrast to other models for data modelling purposes.
The MLEs of the parameters α and θ are computed by maximizing the objective function via the R
package (bbmle). The estimated values of the parameters, standard error, -2log-likelihood statistic,
Akaike Information Criterion; AIC = 2p− 2 ln(L), Bayesian Information Criterion; BIC = p ln(n)−
2 ln(L) and the corresponding second order Information Criterion; AICC = AIC + 2(p(p + 1)/(n −
p− 1)), where L = L(Θ̂) is the value of the likelihood function evaluated at the parameter estimates,
n is the number of observations and p is the number of estimated parameters are presented in Tables
2 and 3, for the RL distribution and other models including the Weibull, Lindley, Rayeigh, Burr X
(generalized Rayleigh) and power Lindley distributions. Kolmogorov–Smirnov (K − S) test and the
p-value of all mentioned distributions are also computed to complete the comparison process.
Example 1: Let us consider the real life data representing the uncensored data set from Nichols and
Padgett (2006) [28] on the breaking stress of carbon fibres (in Gba).
The data are recorded as follows:

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 3.56

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 1.57

2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85

1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03

1.89 2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96

2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08 2.56 1.80 2.53

The MLEs of the parameters with standard errors and the values of the statistics (−2ln(L), AIC,
AICC, BIC, K−S and the p-value) are given in Table 2. The starting points of the iterative processes
for the data set for the RL distribution are (0.64, 0.414). Many authors in the literature used this
data set to show the privilege of some new distributions over other distributions, for example Oluyede
and Yang (2015) [29] used this data set to show that beta-generalized Lindley (BGL) distribution is
significantly better than other models and sub-models used in their paper. From the values of the
statistics for the carbon fibre data, we note that the RL model is better than the Weibull, Lindley,
Rayeigh, Burr X, power Lindley and BGL models in terms of fitting this set of data.
Example 2: The second real life data representing the strength of 1.5cm glass fibers, measured at
National physical laboratory, England (see Smith and Naylor (1978) [34]). The data are recorded as
follows:

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64
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Table 2: Goodness of fit tests for the real data set in Example 1

(α̂, θ̂) Std. Error -2 ln L AIC AICc BIC K-S p-value
RL (0.622, 0.411) (0.031, 0.045) 172.052 176.053 176.243 180.433 0.086 0.924
Weibull (3.441, 3.062) (0.330, 0.115) 172.134 176.135 176.325 180.515 0.082 0.761
Lindley (- , 0.590) (- , 0.053) 244.768 246.768 246.958 248.957 0.297 0.0
Rayleigh (- , 2.049) (- , 0.126) 196.416 198.417 198.607 200.607 0.227 0.002
Burr X (2.349, 0.438) (0.431,0.028) 177.272 181.273 181.463 185.653 0.120 0.293
Power
Lindley

(2.510, 0.124) (0.208,0.031) 171.610 175.611 175.801 179.990 0.079 0.806

1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49

1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11

1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84

0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66

1.77 1.84 0.84 1.24 1.30 1.48 1.51 1.55 1.61

1.70 1.78 1.89 1.67 1.53 1.28 2.24 1.70 1.63

The MLEs of the parameters with standard errors and the values of the statistics (−2ln(L), AIC,
AICC, BIC, K−S and the p-value) are given in Table 3. The starting points of the iterative processes
for the data set for the RL distribution are (0.52, 0.058). From the values of the statistics for the glass
fibre data, we note that the RL model is better than Weibull, Lindley, Rayeigh, Burr X and power
Lindley distributions in terms of fitting this set of data.

Table 3: Goodness of fit tests for the real data set in Example 2

(α̂, θ̂) Std. Error -2 ln L AIC AICc BIC K-S p-value
RL (8.057, 1.975) (3.114, 0.211) 14.560 33.121 33.321 37.406 0.124 0.596
Weibull (5.781, 1.628) (0.576, 0.037) 15.207 34.414 34.614 38.700 0.152 0.108
Lindley (- , 0.996) (- , 0.095) 81.278 164.55 164.75 166.7 0.386 0.0
Rayleigh (- , 1.089) (- , 0.069) 49.791 101.582 101.782 103.725 0.334 0.0
Burr X (5.487, 0.987) (1.185,0.054) 23.929 51.858 52.058 56.144 0.215 0.006
Power
Lindley

(4.457, 0.223) (0.387,0.047) 14.690 33.380 33.58 37.666 0.386 0.146

10. CONCLUSION

We have introduced the Rayleigh-Lindley distribution by replacing x with the odds ratio G(x)/(1 −
G(x)) in the cdf formula of Rayleigh distribution using Lindley distribution as a baseline distribution.
Many statistical properties of the proposed Rayleigh-Lindley distribution like monotonicity, hazard
rate, moments, reliability, quantile function, generating algorithm, order statistics and Rényi entropy
have been discussed. The estimation of the model parameters has been carried out using the maximum
likelihood estimation. The privilege of the proposed model over some related other models has been
discussed in consideration of −2 ln(L), AIC, AICC, BIC, K−S test and the p-value in two different
real life examples. Based on our finding, we recommend to use the RL distribution over the Rayleigh
and Lindley distributions when the numerical values of the data under study are small. Finally, a
future research direction may include the study of the proposed model under some types of censored
data, mainly the estimation of the model parameters and the prediction of the unobserved or future
data. Work in this direction is currently under progress and we hope to report these findings in a
future paper.
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