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ABSTRACT  

We consider applying simultaneously two methods for bias reduction for a family of ratio-type estimators with order 𝑂(𝑛−2),  where n
is the sample size. The methods considered are (a) a linear transformation to the auxiliary variable, and (b) use of Beale (1962) and Tin 
(1965) techniques. Expressions for the biases and variances have been derived. Numerical experiments serve as illustrations of the 

behavior of biases and efficiencies. The results concerning transformed ratio estimators are extended to stratified random sampling with 

applications to real life populations.  
KEYWORDS: Bias; Efficiency; Simple Random Sampling, Stratified Random Sampling, Ratio Estimator, Almost Unbiased Ratio 

Estimator.  
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RESUMEN  

Consideramos aplicar simultáneamente dos métodos para reducir el sesgo de una familia de estimadores del  tipo-razón con orden 

𝑂(𝑛−2), n  es el tamaño de la muestra. Los métodos considerados son (a) una transformación lineal de la variable auxiliar, y (b) usar las 

técnicas de Beale (1962) y Tin (1965). Expresiones para sesgos y varianzas han sido derivados. Experimentos numéricos son ilustrativos 
de cómo se comportan sesgos y varianzas.  También derivamos un nuevo estimador de tipo razón compuesto que reduce el sesgo del 

estimador y se hace una comparación de los existentes métodos.  Modelos muestreo simple y estratificado son propuestos. 

 

PALABRAS CLAVE:Sesgo; Eficiencia; Muestreo Simple Aleatorio, Muestreo Estratificado, Muestreo  Aleatorio Simple, Estimador de 

Razón, Estimadores Casi Insesgados, Estimador de Razón Compuesto. 

 

1. INTRODUCTION 

Commonly sample surveys are conducted to assess development in different sectors of economy. It is a common 

practice to collect information on correlated auxiliary variables along with the study variable. Including them in the 

modeling increase the precision of the estimation of the finite population parameters.  The correlation between the 

study variable with an auxiliary variable plays a key role. In the case of  estimating the finite population mean/total, 

the correlation  being positive, the  use of the ratio method of estimation may be appropriate when looking for 

increasing the precision of the estimator.  

The classical ratio estimator is biased, having first order bias of 𝑂(1/𝑛),𝑛 being the sample size. However, the bias 

may be substantially large for small sample sizes.  The use of stratification with the ratio method of estimation in 

each stratum commonly deals with no large small sample sizes.  Hence, the accumulation of the bias over strata may 

be large. To avoid such discerning feature of the ratio estimator the researchers in sampling theory have developed 

some bias reduction techniques.  They make the bias of the ratio estimator completely removed or diminished. 

Recently, Lui (2020) has examined the bias reduction in a composite ratio estimator. The proposal used a weighted 

combination of the sample mean and the classic ratio estimator of the population mean with known optimal weight. 

An estimation of the optimal weight was obtained using simulations and natural populations. 

Hartley-Ross (1954) used a novel technique to form an unbiased ratio estimator of the population mean/total/ratio by 

subtracting the estimate of bias from the mean of the ratio estimator which has constant bias. Goodman and Hartley 

(1958) and Robson (1957) have derived results for the variance of the Hartley-Ross unbiased ratio estimator. 
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Quenouille (1956) reduced the bias of the ratio estimator to the order 𝑂 (
1

𝑛2)through the use of half-sample 

estimators. Different papers have dealt with this problem. Recently Rao and Swain (2014) constructed an alternative 

Hartley-Ross unbiased ratio estimator when related auxiliary variable is available. Kadilar and Cingi (2004,2006 ), 

Gupta and Shabbir (2008),Singh and Tailor (2003) and Khoshnevisan et al.(2007), among many others,have 

constructed transformed ratio-type estimators. These improved ratio-type estimators are less biased and more 

efficient than the usual ratio estimator in certain zones of preference. However, the possibility of having asignificant 

bias in these estimators in case of small samples still exists. As the Hartley-Ross type unbiased estimator happens to 

be less efficient than simple ratio estimator of the population mean under certain situations, many researchers have 

innovated several almost unbiased ratio estimators, whose first order biases were removed. Singh et al. (2014) 

derived Hartley-Ross type estimators for the population mean of the study variable, using known population 

parameters of auxiliary variable. Cekim and Kadilar (2016) also suggested Hartley-Ross type estimators for 

Khoshnevisan et al. (2007) family of estimators. Cekim and Kadilar (2017) discussed the Hartley-Ross type unbiased 

estimation when using stratified random sampling. For large samples, these estimators having very little bias, which 

may be safely ignored for practical purposes. 

In this paper a family of transformed almost unbiased ratio-type  estimators is derived, following  both the 

transformation  and almost unbiased ratio estimator techniques,  proposed by Beale (1962) and Tin (1965) 

simultaneously. They reduce the bias to a lower order, that is, to 𝑂(1/𝑛2). The results are extended to stratified 

sampling. 

2. PRELIMINARIES AND NOTATIONS 

 

Consider a finite population𝑈 = {𝑢1, 𝑢2, … . . 𝑢} with 𝑁 distinct and identifiable units indexed by the values of 

characteristic   𝑦 (study variable) and   𝑥  (auxiliary variable) as {𝑌𝑖 , 𝑋𝑖}, 𝑖 = 1,2, … , 𝑁. Consider the selection of  a 

simple random sample without replacement𝑠 = {𝑢∗1, 𝑢∗2, … . , 𝑢∗𝑛} of size 𝑛. Denote the observed values of the 

characteristics on the sample units by {𝑦𝑖 , 𝑥𝑖}, 𝑖 = 1,2, … , 𝑛. 
The involved population parameters are: 

�̄� =
1

𝑁
∑ 𝑌𝑖

𝑁
1 =population mean of𝑦,  �̄� =

1

𝑁
∑ 𝑋𝑖

𝑁
1 =population mean of 𝑥;𝑅 =

�̄�

�̄�
Population Ratio; 

𝑆𝑦
2 =

1

𝑁−1
∑ (𝑌𝑖

𝑁
1 − �̄�)2=finite population variance of y, 𝑆𝑥

2 =
1

𝑁−1
∑ (𝑋𝑖

𝑁
1 − �̄�)2=finite population variance of 𝑥. 

𝑆𝑥𝑦 =
1

𝑁−1
∑ (𝑋𝑖

𝑁
1 − �̄�)(𝑌𝑖 − �̄�) = finite population covariance between x  and y, 𝐶𝑥𝑦 =

𝑆𝑥𝑦

�̄��̄�
=𝜌𝑥𝑦𝐶𝑥𝐶𝑦=Relative 

covariance of y and x, 𝐶𝑦 =
𝑆𝑦

�̄�
=coefficient of variation of y,  𝐶𝑥 =

𝑆𝑥

�̄�
=coefficient of variation of 𝑥, 𝜌𝑥𝑦 =correlation 

coefficient between 𝑥 and 𝑦, 𝛽 =
𝑆𝑥𝑦

𝑆𝑥
2 =population regression coefficient of𝑦 on 𝑥. 

The involved sample measures are: 

�̄� =
1

𝑛
∑ 𝑦𝑖

𝑛
1 =sample mean of y, �̄� =

1

𝑛
∑ 𝑥𝑖

𝑛
1 =sample mean of 𝑥, 𝑟 =

�̄�

�̄�
= sample ratio  

𝑠𝑦
2 =

1

𝑛−1
∑ (𝑦𝑖

𝑛
1 − �̄�)2=sample variance of 𝑦, 𝑠𝑥

2 =
1

𝑛−1
∑ (𝑥𝑖

𝑛
1 − �̄�)2=sample variance of 𝑥, 

𝑠𝑥𝑦 =
1

𝑛−1
∑ (𝑥𝑖

𝑛
1 − �̄�)(𝑦𝑖 − �̄�) =sample covariance between 𝑥 and  𝑦;  

𝑐𝑦 =
𝑠𝑦

�̄�
= sample coefficient of variation of y;  𝑐𝑥 =

𝑠𝑥

�̄�
= sample coefficient of variation of x; 𝑐𝑥𝑦 =

𝑠𝑥𝑦

�̄��̄�
=

sample relative covariance of y and x. 

The classical ratio estimator of the population mean �̄� is given by  

�̂̄�𝑟 =
�̄�

�̄�
�̄�,            (1) 

where �̄� is known in advance.   

Expanding (1) in power series (see any standard book on sampling as Sukhatme et al.,1984), keeping terms up to 

second degree and denoting 𝜃 = (
1

𝑛
−

1

𝑁
) ,using the results 𝑉(�̄�) = 𝜃𝐶𝑦

2  , 𝑉(�̄�) = 𝜃𝐶𝑥
2  , and 𝐶𝑜𝑣(�̄�, �̄�) = 𝜃𝐶𝑥𝑦, 

We have to 𝑂(1/𝑛),  

𝐸(�̂̄�𝑟) = �̄�[1 + 𝜃(𝐶𝑥
2 − 𝐶𝑥𝑦)]        (2) 

Hence , to 𝑂 (
1

𝑛
)  𝑡ℎ𝑒 bias is given by  

𝐵(�̂̄�𝑟) = 𝜃�̄�(𝐶𝑥
2 − 𝐶𝑥𝑦) 

�̂̄�𝑟is a biased but consistent estimator of �̄�and its  biasis negligible in large samples. 

Alternatively, we may write 



𝐸(�̂̄�𝑟) = �̄� + �̄�𝜃1(𝐶20 − 𝐶11),             (3) 

Where𝐶𝑖𝑗 =
𝜇𝑖𝑗

�̄�𝑖�̄�𝑗 =
1

𝑁
∑(𝑋𝑖−�̄�)𝑖(𝑌𝑖−𝑌)𝑗

�̄�𝑖�̄�𝑗  , and 𝜃1 =
𝑁−𝑛

(𝑁−1)𝑛
 

For very large𝑁, 𝜃1 ≈ 𝜃,  and the  variance of  �̂̄�𝑟 , when is valid that the order is 𝑂(1/𝑛) 

𝑉(�̂̄�𝑟) = 𝜃�̄�2(𝐶𝑦
2 + 𝐶𝑥

2 − 2𝐶𝑥𝑦)          (4) 

Alternatively is possible to write 

𝑉(�̂̄�𝑟) = 𝜃�̄�2(𝐶02 + 𝐶20 − 2𝐶11)        (5)
 

�̂̄�𝑟is more efficient than the sample mean �̄� if  

𝜌𝑥𝑦 >
1

2

𝐶𝑥

𝐶𝑦
,              (6) 

 

3. MODIFIED RATIO TYPE ESTIMATORS (ALMOST UNBIASED) 

 

Bias reduction methods due to Beale(1962) and Tin (1965) are widely discussed in sampling theory literature. Their 

methods remove the bias up to𝑂(1/𝑛) and the ultimate bias is reduced to 𝑂(1/𝑛2). 

Beale (1962) suggested estimator  

�̂̄�𝑟𝑏 = �̂̄�𝑟 [
1+𝜃𝑠𝑥𝑦/�̄��̄�

1+𝜃𝑠𝑥
2/�̄�2 ]

         

(7) 

reduces the bias to 𝑂(1/𝑛2). 

Assuming the validity of having a positive correlation between flux and flow, Richards and Holloway(1987) and 

Richards (1998) used Beale’s estimator for flux in different  parts of U.S. Their results showed that Beale’s estimator 

generally exhibited greater estimation accuracy and lower bias. 

Tin(1965) derived another method of obtaining an almost unbiased estimator by subtracting the  estimate of  first 

order bias of 𝑂(1/𝑛) from the estimator �̂̄�𝑟  to  get an estimator whose bias of 𝑂(1/𝑛) is removed, Thus , Tin’s 

estimator is given by  

�̂̄�𝑟𝑡 = �̂̄�𝑟 [1 + 𝜃(
𝑠𝑥𝑦

�̄��̄�
−

𝑠𝑥
2

�̄�2)]         (8)  

Note that Beale’s estimator is reduced to Tin’s form after obtaining its asymptotic expansion and  retaining terms up 

to 𝑂(1/𝑛).Considering terms up to𝑂(1/𝑛2)
,
 Tin (1965) has shown that Beale’s estimator is less biased and equally 

efficient when compared to his estimator.Unlike Beale’s estimator, Tin’s estimator is dominated by 𝑠𝑥
2/�̄�2,which is 

extremely large when �̄� is small, resulting in an inflated value for the estimator.  On rare occasions it may take 

negative values for a positive population ratio (Tin, 1965). Empirically, Tin(1965) found that Beale’s estimator 

performs better in terms of the  reduction of bias .  In large samples seems that there is a marginal loss of efficiency 

compared to his estimator. 

Linear transformations of the auxiliary variable x are often used to construct transformed ratio estimators which are 

less biased and more efficient than the simple ratio estimator in certain zones of preference. 

Let 𝑧𝑖 = 𝐴𝑥𝑖 + 𝐵, where 𝐴 and 𝐵 are constants or known parameters of the auxiliary variable such 

as 𝐶𝑥, 𝑆𝑥 , 𝜌, among others, see Singh et al. (2014). 

The transformed ratio estimator of �̄� 

�̂̄�𝑡𝑟 = �̄�
𝐴�̄� + 𝐵

𝐴�̄� + 𝐵
= �̄�(

�̄�

�̄�
) 

and the transformed Hartley-Ross ratio estimator 

�̂̄�𝑡ℎ𝑟 = �̄�𝑡�̄� +
𝑛(𝑁−1)

𝑁(𝑛−1)
(�̄� − �̄�𝑡�̄�), 

where 𝑧 ̄ and�̄� are the sample mean and population mean of 𝑧 respectively; 

�̄�𝑡 =
1

𝑛
∑

𝑦𝑖

𝐴𝑥𝑖+𝐵

𝑛
𝑖=1 =

1

𝑛
∑

𝑦𝑖

𝑧𝑖

𝑛
𝑖=1 . 

Some other transformations are stated as follows: 

𝑡𝑠 = �̄�(
�̄�

�̄�
)𝑔, where𝑔 is a suitably chosen real number, (Srivastava,1967). 

𝑡𝑤 = �̄�
�̄�

𝛼�̄�+(1−𝛼)𝑋 ̄
where𝛼 is real positive fraction, (Walsh,1970) 

𝑡𝑟𝑒𝑑 = �̄�
�̄�

�̄�+𝛼(�̄�−�̄�)
where𝛼  is a positive real number, (Reddy,1974). 



𝑡𝑘ℎ = �̄� [
𝐴�̄�+𝐵

𝛼(𝐴�̄�+𝐵)+(1−𝛼)(𝐴�̄�+𝐵)]

𝑔

(Khoshnevisan et al.,2007),where 𝛼 is a real positive fraction and 𝑔 is a real number;𝐴 

and 𝐵 are real constants and may be known functions of population parameters of the auxiliary variable. 

Remark 3.1. �̂̄�𝑡𝑟,𝑡𝑠, 𝑡𝑤, and 𝑡𝑟𝑒𝑑 are special cases of 𝑡𝑘ℎfor suitable choices for 𝐴, 𝐵, 𝛼 and𝑔. 

 

4. A PROPOSED FAMILY OF ALMOST UNBIASED RATIO-TYPE ESTIMATORS 

 

Consider a family of transformed ratio-type estimators suggested by Khoshnevisan, et al. (2007) given by 

𝑡𝑘ℎ = �̄� [
𝐴�̄�+𝐵

𝛼(𝐴�̄�+𝐵)+(1−𝛼)(𝐴�̄�+𝐵)]

𝑔

,                           (9) 

where 𝛼, 𝐴, 𝐵 and 𝑔 are defined earlier. This estimator incorporates both linear and exponential transformations. 

Let us determine the expected value and variance of the family of ratio-type estimators with kernel 𝑡𝑘ℎ and their 

almost unbiased ratio-type estimators 

Define 

�̄� = �̄�(1 + 𝑒𝑜), �̄� = �̄�(1 + 𝑒1), 𝑠𝑥𝑦 = 𝑆𝑥𝑦(1 + 𝑒2), 𝑠𝑥
2 = 𝑆𝑥

2(1 + 𝑒3);  𝐸(𝑒𝑖) = 0, 𝑖 = 0,1,2,3
 

�̂̄�𝑟𝑏 = �̂̄�𝑟 [
1 + 𝜃𝑠𝑥𝑦/�̄��̄�

1 + 𝜃𝑠𝑥
2/�̄�2

]
 

Assume that for all  possible samples

   

 
|𝑒𝑖| < 1, 𝑖 = 0,1,2,3

 
Expanding   𝑡𝑘ℎ  in power series and retaining terms up to degree four, we have   

𝑡𝑘ℎ = �̄�(1 − 𝛿𝛼𝑔𝑒1 + (𝛿𝛼)2
𝑔(𝑔 + 1)

2
𝑒1

2 − (𝛿𝛼)3
𝑔(𝑔 + 1)(𝑔 + 2)

6
𝑒1

3 + (𝛿𝛼)4
𝑔(𝑔 + 1)(𝑔 + 2)(𝑔 + 3)

24
𝑒1

4 

+𝑒0 − (𝛿𝛼)𝑔𝑒1𝑒0 + (𝛿𝛼)2
𝑔(𝑔 + 1)

2
𝑒1

2𝑒0 − (𝛿𝛼)3
𝑔(𝑔 + 1)(𝑔 + 2)

6
𝑒1

3𝑒0+. . . . . . ) 

= �̄�(1 − 𝜆1𝑒1 + 𝜆2𝑒1
2 − 𝜆3𝑒1

3 + 𝜆4𝑒1
4 + 𝑒0 − 𝜆1𝑒1𝑒0 + 𝜆2𝑒1

2𝑒0 − 𝜆3𝑒1
3𝑒0+. . . . . . . ),     

Where 

𝜆1 = (𝛿𝛼)𝑔, 𝜆2 = (𝛿𝛼)2
𝑔(𝑔 + 1)

2
, 𝜆3 = (𝛿𝛼)3

𝑔(𝑔 + 1)(𝑔 + 2)

6
, 𝜆4 = (𝛿𝛼)4

𝑔(𝑔 + 1)(𝑔 + 2)(𝑔 + 3)

24
 

and 𝛿 =
𝐴�̄�

𝐴�̄�+𝐵
. 

Take the classic asymptotic expansion of the ratio estimator and approximating the finite population correction 

factors for large 𝑁:𝜃, we have to 𝑂(1/𝑛2) 

𝐸(𝑡𝑘ℎ) = �̄� + �̄�[𝜃(𝜆2𝐶20 − 𝜆1𝐶11) + 𝜃2(−𝜆3𝐶30 + 3𝜆4𝐶20
2 + 𝜆2𝐶21 − 3𝜆3𝐶20𝐶11)] (10)

 Now, 

𝐸(𝑡𝑘ℎ
2 ) = �̄�2 + �̄�2𝜃[(2𝜆2 + 𝜆1

2)𝐶20 − 4𝜆1𝐶11 + 𝐶02] + �̄�2𝜃2[(4𝜆2 + 2𝜆1
2)𝐶21 − (2𝜆3 + 2𝜆1𝜆2)𝐶30 − 2𝜆1𝐶12]

+ �̄�2𝜃2[3(2𝜆4 + 𝜆2
2 + 2𝜆1𝜆3)𝐶20

2 − (12𝜆3 + 10𝜆1𝜆2)𝐶20𝐶11 + (4𝜆2 + 2𝜆1
2)𝐶11

2 + (2𝜆2

+ 𝜆1
2)𝐶20𝐶02]

 
𝑉(𝑡𝑘ℎ) = �̄�2𝜃(𝜆1

2𝐶20 − 2𝜆1𝐶11 + 𝐶02

+ �̄�2𝜃2{𝐶20
2 (2𝜆2

2 + 6𝜆1𝜆3) + 𝐶11
2 (𝜆1

2 + 4𝜆2) + 𝐶20𝐶02(𝜆1
2 + 2𝜆2) +  𝐶30(−2𝜆1𝜆2)} 

+�̄�2𝜃2{𝐶21(2𝜆1
2 + 2𝜆2) + 𝐶20𝐶11(−6𝜆3 − 10𝜆1𝜆2) − 2𝜆1𝐶12}  (11) 

when  𝜆𝑖 = 1 for 𝑖 = 1,2,3,4,

 
𝐸(�̂̄�𝑟) = �̄� + �̄�[𝜃(𝐶20 − 𝐶11) + 𝜃2(𝐶30 + 3𝐶20

2 + 𝐶21 − 3𝐶20𝐶11)]         (12)
 

𝑉(�̂̄�𝑟) = �̄�2𝜃{𝐶20 − 2𝐶11 + 𝐶02} + �̄�2𝜃2{8𝐶20
2 + 5𝐶11

2 + 3𝐶20𝐶02 − 2𝐶30 + 4𝐶21 − 16𝐶20𝐶11 − 2𝐶12}(13) 

The expressions for 𝐸(�̂̄�𝑟)and 𝑉(�̂̄�𝑟) are the same as those derived by Tin(1965) . 

Beale-type (1962 ) almost unbiased ratio estimator of �̄� using  𝑡𝑘ℎ is given by  

𝑡𝑘ℎ𝑏 = 𝑡𝑘ℎ [
1+𝜆1𝜃

𝑠𝑥𝑦

�̄��̄�

1+𝜆2𝜃
𝑠𝑥

2

�̄�2

]

         

(14) 

After expanding  𝑡𝑘ℎ𝑏 in power series with the assumptions|𝑒𝑖| < 1, 𝑖 = 1,2,3,4 for all possible samples  and some 

mathematical simplifications, we write the expressions for the expected value and variance of 𝑡𝑘ℎ𝐵 to𝑂(1/𝑛2) as   

correcting the  small b in place of B 

𝐸(𝑡𝑘ℎ𝑏) = �̄� + �̄�𝜃2[(−𝜆1 − 𝜆1
2)𝐶21 + (−𝜆3 + 2𝜆2 + 𝜆1𝜆2)𝐶30] + �̄�𝜃2[(3𝜆4 − 2𝜆1𝜆2 − 3𝜆2)𝐶20

2 + (−3𝜆3 + 𝜆1𝜆2 +
2𝜆2 + 𝜆1 + 𝜆1

2)𝐶20𝐶11]       (15) 



𝐸(𝑡𝑘ℎ𝑏
2 ) = �̄�2 + �̄�2𝜃(𝜆1

2𝐶20 − 2𝜆1𝐶11 + 𝐶02) + �̄�2𝜃2[2(−𝜆3 + 𝜆1𝜆2 + 2𝜆2)𝐶30 − 2(𝜆1
2 + 𝜆1)𝐶21]

+ �̄�2𝜃2[(4𝜆2 − 2𝜆1 − 𝜆1
2)𝐶11

2 + 𝜆1
2𝐶20𝐶02 + (6𝜆4 + 6𝜆1𝜆3 + 2𝜆2

2 − 8𝜆1𝜆2 − 6𝜆2 − 2𝜆1
2𝜆2)𝐶20

2 ] 
+�̄�2𝜃2(−12𝜆3 − 4𝜆1𝜆2 + 4𝜆1

2 + 2𝜆1 + 8𝜆2 + 2𝜆1
3)𝐶20𝐶11 

V(tkhb) = Ȳ2θ(λ1
2C20 − 2λ1C11 + C02) + Ȳ2θ2[(4λ2 − 2λ1 − λ1

2)C11
2 + λ1

2C20C02] + Ȳ2θ2[(6λ1λ3 − 4λ1λ2 + 2λ2
2 −

2λ1
2λ2)C20

2 + (2λ1
3 + 2λ1

2 + 4λ2 − 6λ3 − 6λ1λ2)C20C11]   (16)
 Substituting,  

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 1,
 𝐸(�̂̄�𝑟𝑏) = �̄� + �̄�𝜃2{2𝐶30 − 2𝐶20

2 + 2𝐶20𝐶11 − 2𝐶21}             (17)
 𝑉(�̂̄�𝑟𝑏) = �̄�2[𝜃(𝐶20 − 2𝐶11 + 𝐶02) + 𝜃2(𝐶11

2 + 𝐶20𝐶02 + 2𝐶20
2 − 4𝐶20𝐶11)]          (18) 

which are given in Tin(1965). 

Further, following Tin (1965) another almost unbiased ratio-type estimator is 

𝑡𝑘ℎ𝑡 = 𝑡𝑘ℎ(1 + 𝜆1𝜃
𝑠𝑥𝑦

�̄��̄�
− 𝜆2𝜃

𝑠𝑥
2

�̄�2
= 𝑡𝑘ℎ[1 + 𝜆1𝜃𝐶11(1 + 𝑒0)−1(1 + 𝑒1)−1(1 + 𝑒2) − 𝜆2𝜃𝐶20(1 + 𝑒3)(1 + 𝑒1)−2] 

= 𝑡𝑘ℎ[1 + 𝜆1𝜃𝐶11(1 − 𝑒1 + 𝑒1
2 − 𝑒0 + 𝑒1𝑒0 + 𝑒0

2 + 𝑒2 − 𝑒1𝑒2 − 𝑒0𝑒2) − 𝜆2𝜃𝐶20(1 − 2𝑒1  + 3𝑒1
2 − 4𝑒1

3 + 𝑒3 −
2𝑒1𝑒3)]                 (19)

 𝐸(𝑡𝑘ℎ𝑡) = �̄� + �̄�𝜃2[(−𝜆1 − 𝜆1
2)𝐶21 + (−𝜆3 + 2𝜆2 + 𝜆1𝜆2)𝐶30] + �̄�𝜃2[(3𝜆4 − 𝜆2

2 − 2𝜆1𝜆2 − 3𝜆2)𝐶20
2 + (−3𝜆3 +

2𝜆1𝜆2 + 2𝜆2 + 𝜆1 + 𝜆1
2)𝐶20𝐶11]              (20) 

𝐸(𝑡𝑘ℎ𝑡
2 ) = �̄�2 + �̄�2𝜃(𝜆1

2𝐶20 − 2𝜆1𝐶11 + 𝐶02)  + �̄�2𝜃2[2(−𝜆3 + 𝜆1𝜆2 + 2𝜆2)𝐶30 − 2(𝜆1
2 + 𝜆1)𝐶21]

+ �̄�2𝜃2[(4𝜆2 − 2𝜆1 − 𝜆1
2)𝐶11

2 +  𝜆1
2𝐶20𝐶02 + (6𝜆4 + 6𝜆1𝜆3 − 6𝜆2 − 8𝜆1𝜆2 − 2𝜆1

2𝜆2)𝐶20
2 ] 

+�̄�2𝜃2(−12𝜆3 − 2𝜆1𝜆2 + 4𝜆1
2 + 2𝜆1 + 8𝜆2 + 2𝜆1

3)𝐶20𝐶11 
𝑉(𝑡𝑘ℎ𝑡) = �̄�2𝜃(𝜆1

2𝐶20 − 2𝜆1𝐶11 + 𝐶02) + �̄�2𝜃2[(4𝜆2 − 2𝜆1 − 𝜆1
2)𝐶11

2 + 𝜆1
2𝐶20𝐶02] + �̄�2𝜃2[(6𝜆1𝜆3 − 4𝜆1𝜆2 +

2𝜆2
2 − 2𝜆1

2𝜆2)𝐶20
2 + (2𝜆1

3 + 2𝜆1
2 + 4𝜆2 − 6𝜆3 − 6𝜆1𝜆2)𝐶20𝐶11]      

                    (21)
 

when
𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 1

 

𝐸(�̂̄�𝑟𝑡) = �̄� + �̄�𝜃2(2𝐶30 − 3𝐶20
2 + 3𝐶20𝐶11 − 2𝐶21)            (22)

  𝑉(�̂̄�𝑟𝑡) = 𝑉(�̂̄�𝑟𝑏)                (23) 

SeeTin (1965). 

Remark 4.2: The expressions for 𝐸(�̂̄�𝑟𝑏),𝐸(�̂̄�𝑟𝑡), 𝑉(�̂̄�𝑟𝑏) and 𝑉(�̂̄�𝑟𝑡)are derived by Tin (1965) using bivariate 

cumulants  and  by De-Graft Johnson (1969) using bivariate moments.  

Some of the higher order bivariate moments neglecting finite population correction factor for large finite population   

mentioned by De-Graft Johnson (1969) are given below: 

𝐸(𝑒1
2𝑒0

2) =
1

𝑛2 (2𝐶11
2 + 𝐶20𝐶02); 𝐸(𝑒1

4) =
3𝐶20

2

𝑛2 ; 𝐸(𝑒1
3𝑒0) =

1

𝑛2 3𝐶20𝐶11;𝐸(𝑒1𝑒2) =
1

𝑛

𝐶21

𝐶11
;𝐸(𝑒1𝑒3) =

1

𝑛

𝐶30

𝐶20
;𝐸(𝑒0𝑒2) =

1

𝑛

𝐶12

𝐶11
. 

 

4.2   Comparison of bias and variance of the class of Beale type and Tin type almost unbiased ratio-type 

estimators. 

 

Consider the situation when both 𝑦 and 𝑥 follow a bivariate symmetric distribution with zero-odd order moments We 

have: 

𝐵(𝑡𝑘ℎ𝑏) = �̄�𝜃2[(3𝜆4 − 2𝜆1𝜆2 − 3𝜆2)𝐶20
2 + (−3𝜆3 + 𝜆1𝜆2 + 2𝜆2 + 𝜆1 + 𝜆1

2)𝐶20𝐶11] = �̄�𝜃2(𝐵1𝐶20
2 +

𝐵2𝐶20𝐶11)where 1B =(3𝜆4 − 2𝜆1𝜆2 − 3𝜆2)  and 2B = (−3𝜆3 + 𝜆1𝜆2 + 2𝜆2 + 𝜆1 + 𝜆1
2) 

𝐵(𝑡𝑘ℎ𝑡) = �̄�𝜃2[(3𝜆4 − 𝜆2
2 − 2𝜆1𝜆2 − 3𝜆2)𝐶20

2 + (−3𝜆3 + 2𝜆1𝜆2 + 2𝜆2 + 𝜆1 + 𝜆1
2)𝐶20𝐶11] = �̄�𝜃2(𝑇1𝐶20

2 +
𝑇2𝐶20𝐶11), 

where 1T =(3𝜆4 − 𝜆2
2 − 2𝜆1𝜆2 − 3𝜆2)  and 2T =(−3𝜆3 + 2𝜆1𝜆2 + 2𝜆2 + 𝜆1 + 𝜆1

2) 

Hence, 𝑡𝑘ℎ𝑏 will be less biased than  𝑡𝑘ℎ𝑡if 

|𝐵1 + 𝐵2
𝛽

𝑅
|<|𝑇1 + 𝑇2

𝛽

𝑅
|            (24)

 
Further, 

𝑉(𝑡𝑘ℎ𝑏) = 𝑉(𝑡𝑘ℎ𝑡)             (25)
 

 



4.3 Comparison of transformed and untransformed ratio estimators: 

 

Accepting the validity of the assumed first order of approximation, 

𝐸(�̂̄�𝑟) = �̄� + �̄�[𝜃(𝐶20 − 𝐶11)]
 𝐸(𝑡𝑘ℎ) = �̄� + �̄�[𝜃(𝜆2𝐶20 − 𝜆1𝐶11)],

 Therefore, transformed ratio estimator is less biased than simple ratio estimator if 

|𝜆2 − 𝜆1
𝛽

𝑅
| < |1 −

𝛽

𝑅
|         (26)

 
Further, the transformed ratio estimator is more efficient than both the untransformed simple ratio estimator and the 

simple mean per unit estimator if 

1

2
𝜆1 <

𝐶11

𝐶20
<

1

2
(𝜆1 + 1)or 

1

2
𝜆1√

𝐶20

𝐶02
< 𝜌𝑥𝑦 <

1

2
(𝜆1 + 1)√

𝐶20

𝐶02
     (27) 

 

4.4  Special Cases 

 

Let us consider special cases of 𝑡𝑘ℎ when 𝑔 = 1, 𝛼 = 1 and 𝐴 = 1,and 𝐵 may be either (i) 𝑆𝑥or (ii)𝐶𝑥 or (iii) 𝜌𝑥𝑦. 

These special cases of 𝑡𝑘ℎ, in the form of transformed ratio estimators, are given as follows: 

𝑡1 = �̄�
�̄�+𝑆𝑥

�̄�+𝑆𝑥
; 𝑡2 = �̄�

�̄�+𝐶𝑥

�̄�+𝐶𝑥
; 𝑡3 = �̄�

�̄�+𝜌𝑥𝑦

�̄�+𝜌𝑥𝑦
; 𝑡4 = �̄�(

�̄�

�̄�
) 

Define 𝛿1 =
�̄�

�̄�+𝑆𝑥
,𝛿2 =

�̄�

�̄�+𝐶𝑥
,𝛿3 =

�̄�

�̄�+𝜌
, 4 1 =  

To𝑂(1/𝑛2), the expressions for𝐸(𝑡𝑖), 𝑉(𝑡𝑖), 𝐸(𝑡𝑖𝑏), 𝑉(𝑡𝑖𝑏), 𝐸(𝑡𝑖𝑡)and𝑉(𝑡𝑖𝑡)are obtained by substituting 𝜆𝑖 = 𝛿𝑗
𝑖 , 𝑗 =

1,2,3,4; 𝑖 = 1,2,3,4 in the  relevant expressions in (10),(11),(15),(16), (20) and (21)respectively. Thus, assuming a 

bivariate symmetric distribution for ( y , x ),we have 

𝐵(𝑡𝑖) = �̄�[𝜃(𝛿𝑖
2𝐶20 − 𝛿𝑖𝐶11) + 𝜃2(3𝛿𝑖

4𝐶20
2 − 3𝛿𝑖

3𝐶20𝐶11)], i=1       (28) 

2( )iV t Y= 𝜃(𝛿𝑖
2𝐶20 − 2𝛿𝑖𝐶11 + 𝐶02) + �̄�2𝜃2{8𝛿𝑖

4𝐶20
2 + 5𝛿𝑖

2𝐶11
2 + 3𝛿𝑖

2𝐶20𝐶02 − 16𝛿𝑖
3𝐶20𝐶11}        (29) 

( )itB t = �̄�𝜃2[(2𝛿𝑖
4 − 2𝛿𝑖

3 − 3𝛿𝑖
2)𝐶20

2 + (−𝛿𝑖
3 + 3𝛿𝑖

2 + 𝛿𝑖)𝐶20𝐶11]           (30) 

𝑉(𝑡𝑖𝑡) = �̄�2𝜃(𝛿𝑖
2𝐶20 − 2𝛿𝑖𝐶11 + 𝐶02) + �̄�2𝜃2[(3𝛿𝑖

2 − 2𝛿𝑖)𝐶11
2 + 𝛿𝑖

2𝐶20𝐶02] + �̄�2𝜃2[(6𝛿𝑖
4 − 4𝛿𝑖

3)𝐶20
2 + (6𝛿𝑖

2 −
10𝛿𝑖

3)𝐶20𝐶11]         (31)
 𝐵(𝑡𝑖𝑏) = �̄�𝜃2[(3𝛿𝑖

4 − 2𝛿𝑖
3 − 3𝛿𝑖

2)𝐶20
2 + (−2𝛿𝑖

3 + 3𝛿𝑖
2 + 𝛿𝑖)𝐶20𝐶11]           (32) 

𝑉(𝑡𝑖𝑏) = �̄�2𝜃(𝛿𝑖
2𝐶20 − 2𝛿𝑖𝐶11 + 𝐶02) + �̄�2𝜃2[(3𝛿𝑖

2 − 2𝛿𝑖)𝐶11
2 + 𝛿𝑖

2𝐶20𝐶02] + �̄�2𝜃2[(6𝛿𝑖
4 − 4𝛿𝑖

3)𝐶20
2 + (−10𝛿𝑖

3 +
6𝛿𝑖

2)𝐶20𝐶11]                (33) 

𝑉(𝑡𝑖𝑏) = 𝑉(𝑡𝑖𝑡)    (34) 

5. EMPIRICAL ILLUSTRATIONS 

To compare the almost unbiased ratio -type estimators corresponding to t1, t2, t3, t4 we are considering four examples 

given by Murthy (1967), and Kadilar and Cingi (2004) respectively. We assume that (y, x) has a bivariate symmetric 

distribution. The comparison of biases and variances of Beale type and Tin type almost unbiased estimators are given 

in Table-1(excepting constant multipliers).
 Example 1, (Murthy,1967) 

X=Geographical area of village (in acres), Y=Area under paddy (in acres ) 

𝑁=108 and 𝑛=20  ,𝜃 =
𝑁−𝑛

𝑁𝑛
𝛿1 =

�̄�

�̄�+𝑆𝑥
𝛿2 =

�̄�

�̄�+𝐶𝑥
𝛿3 =

�̄�

�̄�+𝜌
𝛿4 = 1

 
�̄� = 460.9259,�̄� = 172.1481 ,𝑉𝑎𝑟(𝑥) = 101645.27 ,𝑉𝑎𝑟(𝑦) = 18187.62 

𝐶02=0.6077 ,𝐶20 = 0.4740 ,𝐶11 = 0.4211 ,𝑆𝑥 = 318.82 ,𝜌 = 0.7845 

Example 2. (Murthy,1967) 

X=Number of workers, Y=Number of absentees 

𝑁=43 and 𝑛=10,  𝜃 =
𝑁−𝑛

𝑁𝑛
𝛿1 =

�̄�

�̄�+𝑆𝑥
𝛿2 =

�̄�

�̄�+𝐶𝑥
𝛿3 =

�̄�

�̄�+𝜌
𝛿4 = 1

 
�̄� = 79.4651,�̄� = 9.6512 ,𝑉𝑎𝑟(𝑥) = 1330.2597 ,𝑉𝑎𝑟(𝑦) = 43.1373 

𝐶02=0.4523 ,𝐶20 = 0.2058 ,𝐶11 = 0.2016 ,𝐶𝑥 = 0.4628,𝑆𝑥 = 36.2726 ,𝜌 = 0.6607 

Example 3 (Murthy, 1967) 



Y =Output in factory, X=Number of workers 

N =80, n =20,𝜃 =
𝑁−𝑛

𝑁𝑛
𝛿1 =

�̄�

�̄�+𝑆𝑥
𝛿2 =

�̄�

�̄�+𝐶𝑥
𝛿3 =

�̄�

�̄�+𝜌
𝛿4 = 1 

�̄� = 51.8264, �̄� = 2.8513, 𝐶𝑥 = 0.3542, 𝐶𝑦 = 0.9484, 𝑆𝑥 = 1.0099, 𝜌 = 0.9150 

𝐶02 = 0.8995, 𝐶20 = 0.1254, 𝐶11 = 0.3074 

Example 4 (Kadilar and Cingi, 2004) 

𝑌 =Level of apple production,  𝑋 =Number of apple trees 

N=106, n =20,  
𝛿1 =

�̄�

�̄�+𝑆𝑥
𝛿2 =

�̄�

�̄�+𝐶𝑥
𝛿3 =

�̄�

�̄�+𝜌 4 1 =
 

�̄� = 2212.59, �̄� = 27421.70, 𝐶𝑥 = 2.10, 𝐶𝑦 = 5.22, 𝑆𝑥 = 57585.57, 𝜌 = 0.86
 𝐶02 = 27.2484, 𝐶20 = 4.41, 𝐶11 = 9.4273

 Table-1. Comparison of biases and variances of Transformed ratio estimators corresponding to Beale type 

and Tin type almost unbiased ratio-type estimators 

(Excepting constant multipliers) 
Estimators |𝑩(𝒕𝒊)| 𝑉(𝑡𝑖) |𝑩(𝒕𝒊𝒃)| 𝑽(𝒕𝒊𝒃) |𝑩(𝒕𝒊𝒕)| 𝑽(𝒕𝒊𝒕) 

Pop-1  

t1 0.996538 0.011508 0.2109E-05 0.011326 0.2079E-4 0.011326 

t2 1.002246 0.010337 0.83727E-04 0.009943 0.12461E-03 0.009943 

t3 1.002241 0.01335 0.83794E-04 0.009942 0.12457E-03 0.009942 

t4 1.002280 0.010345 0.832580E-04 0.009950 0.12486E-03 0.009950 

Pop-2  

t1 0.996751 0.021429 0 .7219E-05 0.021089 0.3087E-04 0.021089 

t2 1.000240 0.024752 0.1155E-04 0.019864 0.1513E-04 0.019864 

t3 1.000199 0.020469 0.1209E-04 0.019862 0.1505E-04 0.019862 

t4 1.000338 0.020489 0.1018E-04 0.019871 0.1527E-04 0.019871 

Pop-3  

t1 0.994006 0.019596 0.5079E-04 0.019341 0.6605E-04 0.019341 

t2 0.993394 0.017347 0.5850E-04 0.017045 0.8281E-04 0.017045 

t3 0.993919 0.019308 0.5178E-04 0.019047 0.6084E-04 0.019047 

t4 0.993079 0.011583 0.6419E-04 0.015498 0.9628E-04 0.015498 

Pop-4  

t1 0.889402 0.981100 0.027734 0.866657 0.029684 0.866657 

t2 0.687254 1.005283 0.072817 0.653764 0.109222 0.653764 

t3 0.687243 1.005282 0.072820 0.653752 0.109229 0.653752 

t4 0.687235 1.005282 0.072822 0.653743 0. 092331 0.653743 

The computations in Table1show that there have been a serious reduction of bias and an increase in efficiency for the 

transformed ratio estimators.  Note that we have an advance knowledge of the population parameters (standard 

deviations, coefficients of variation of x, and of the coefficient of correlation). Further, a substantial reduction in bias 

and variance has also been achieved by the application of the almost unbiased estimator techniques proposed by 

Beale and Tin. Beale estimator was less biased and equally efficient compared to Tin´s one. 

 

6. STRATIFIED EXTENSION WITH THE SEPARATE ESTIMATOR 

 

We will develop a stratification extension for using the estimators developed in the previous section in each stratum. 

Stratified sampling considers the selection of independent samples from each stratum 

𝑈𝑖 = {𝑢𝑖0, … , 𝑢𝑖𝑁𝑖
}, 𝑖 = 1, … , 𝐾; 𝑁 = ∑ 𝑁𝑖

𝐾

𝑖=1

 

Independent samples  

𝑠𝑖 = {𝑢𝑖𝑗
∗ ,   𝑗 = 1, … , 𝑛𝑖};  𝑠𝑖 ⊂ 𝑈𝑖;  𝑖 = 1, … , 𝐾;  

Are selected using SRSWR and denoting Z=Y, X the means of the population may be written as  



�̄� =
1

𝑁
∑ 𝑍𝑖 = ∑ 𝑊𝑖

𝐾

𝑖=1

�̅�𝑖 

𝑁

1

 

𝑤ℎ𝑒𝑟𝑒 �̅�𝑖 =
1

𝑁𝑖
∑ 𝑍𝑖𝑗, 𝑊𝑖 =

𝑁𝑖

𝑁
;  𝑍𝑖 = ∑ 𝑁𝑖

𝐾
𝑖=1 �̅�𝑖 

𝑁𝑖
𝑗=1  

We will consider valid that �̄�𝑖 is known in advance and that is valid the approximation order 𝑂(1/𝑛𝑖) for each 

i=1,..,K. Then 

 

𝑅𝑖 =
�̄�𝑖

�̄�𝑖
  is the i´th stratum Population Ratio; 

𝑆𝑍(𝑖)
2 =

1

𝑁𝑖−1
∑ (𝑍𝑖𝑗

𝑁𝑖
𝑗=1 − �̅�𝑖)

2 is the finite population variance of z in Ui 

𝑆𝑥𝑦(𝑖) =
1

𝑁𝑖−1
∑ (𝑋𝑖𝑗

𝑁𝑖
𝑗=1 − �̅�𝑖)(𝑌𝑖𝑗 − �̅�𝑖) 𝑖𝑠 𝑡ℎ𝑒  finite population covariance between x  and y in Ui, 

𝐶𝑥𝑦(𝑖) =
𝑆𝑥𝑦(𝑖)

�̅�𝑖�̅�𝑖
=𝜌𝑥𝑦(𝑖)𝐶𝑥(𝑖)𝐶𝑦(𝑖)=Relative covariance of y and x in Ui 

𝐶𝑧(𝑖) =
𝑆𝑧(𝑖)

�̄�𝑖
=coefficient of variation of z in Ui,   

𝜌𝑥𝑦(𝑖) =correlation coefficient between 𝑥 and 𝑦, in Ui 

𝛽𝑖 =
𝑆𝑥𝑦(𝑖)

𝑆𝑥(𝑖)
2 =population regression coefficient of 𝑦 on 𝑥 in Ui. 

The involved sample measures are: 

𝑧�̅� =
1

𝑛𝑖
∑ 𝑧𝑖𝑗

𝑛𝑖
𝑗=1 =sample mean of z in Ui, 

𝑟𝑖 =
�̄�𝑖

�̄�𝑖
= sample ratio  in Ui 

𝑠𝑧𝑖
2 =

1

𝑛𝑖−1
∑ (𝑧𝑖𝑗

𝑛𝑖
𝑗=1 − 𝑧�̅�)

2=sample variance of 𝑧, 𝑖𝑛 𝑈𝑖 

𝑠𝑥𝑦(𝑖) =
1

𝑛𝑖−1
∑ (𝑥𝑖𝑗

𝑛𝑖
𝑗=1 − �̄�𝑖)(𝑦𝑖𝑗 − �̄�𝑖) =sample covariance between 𝑥 and 𝑦 in Ui 

The classic ratio estimator of the population mean  𝑖𝑛 𝑈𝑖is given by  

�̂̄�𝑟𝑖
=

�̄�𝑖

�̄�𝑖
�̄�𝑖,                                    

𝐸(�̂̄�𝑟𝑖
) = �̄�𝑖[1 + 𝜃𝑖(𝐶𝑥(𝑖)

2 − 𝐶𝑥𝑦(𝑖))] =�̄�𝑖 + �̄�𝑖[𝜃𝑖(𝐶𝑥(𝑖)
2 − 𝐶𝑥𝑦(𝑖))] = �̄�𝑖 + 𝐵𝑖 = �̄�𝑖 + �̄�𝑖𝜃1(𝑖)(𝐶20(𝑖) − 𝐶11(𝑖)) 

𝑤ℎ𝑒𝑟𝑒 𝐶𝑡ℎ(𝑖) =
𝜇𝑡ℎ

�̄�𝑡
𝑖�̄�ℎ

𝑖
=

1

𝑁𝑖
∑ (𝑋𝑖𝑗−�̅�𝑖)𝑡(𝑌𝑖𝑗−𝑌)ℎ𝑁𝑖

𝑗=1

�̄�𝑡
𝑖�̄�ℎ

𝑖
 , and 𝜃1(𝑖) =

𝑁𝑖−𝑛𝑖

(𝑁𝑖−1)𝑛𝑖
 

For very large 𝑁𝑖, 𝜃1(𝑖) ≈ i    

𝑉(�̂̄�𝑟𝑖
) = i �̄�2

𝑖(𝐶𝑦(𝑖)
2 + 𝐶𝑥(𝑖)

2 − 2𝐶𝑥𝑦(𝑖))      

Then the efficiency of each �̂̄�𝑟𝑖
is supported by  𝜌𝑥𝑦(𝑖) >

1

2

𝐶𝑥(𝑖)

𝐶𝑦(𝑖)
,         

We will consider extending the estimators with the better behavior. The extensions to Stratified Sampling yields that 

for the transformed separate type ratio estimators models are:  

S1: 

𝑡𝑆1 = ∑ 𝑊𝑖

𝐾

𝑖=1

(�̄�𝑖

�̄�𝑖 + 𝑆𝑥𝑖

�̄�𝑖 + 𝑆𝑥𝑖

) 

 

Under bivariate symmetric distributions, 

𝐵(𝑡𝑆1 ) = ∑ 𝑊𝑖

𝐾

𝑖=1

(𝑌�̄�[𝜃𝑖(𝛿1
2𝐶20(𝑖) − 𝛿1𝐶11(𝑖)) + 𝜃2

𝑖(3𝛿1
4𝐶20(𝑖)

2 − 3𝛿1
3𝐶20(𝑖)𝐶11(𝑖))]) 

𝑉(𝑡𝑆1 ) = ∑ 𝑊𝑖
2

𝐾

𝑖=1

(�̅�𝑖
2𝜃𝑖(𝛿1

2𝐶20(𝑖) − 2𝛿1𝐶11(𝑖) + 𝐶02(𝑖))

+ �̅�𝑖
2𝜃2

1{8𝛿1
4𝐶20(𝑖)

2 + 5𝛿1
2𝐶11(𝑖)

2 + 3𝛿1
2𝐶20(𝑖)𝐶02(𝑖) − 16𝛿1

3𝐶20(𝑖)𝐶11(𝑖)}) 

S2: 



𝑡𝑆2 = ∑ 𝑊𝑖

𝐾

𝑖=1

(�̄�𝑖

�̄�𝑖 + 𝐶𝑥𝑖

�̄�𝑖 + 𝐶𝑥𝑖

) 

𝐵(𝑡𝑆2 ) = ∑ 𝑊𝑖

𝐾

𝑖=1

(𝑌�̄�[𝜃𝑖(𝛿2
2𝐶20(𝑖) − 𝛿2𝐶11(𝑖)) + 𝜃2

𝑖(3𝛿2
4𝐶20(𝑖)

2 − 3𝛿2
3𝐶20(𝑖)𝐶11(𝑖))]) 

 

𝑉(𝑡𝑆2 ) = ∑ 𝑊𝑖
2

𝐾

𝑖=1

(�̅�𝑖
2𝜃𝑖(𝛿2

2𝐶20(𝑖) − 2𝛿2𝐶11(𝑖) + 𝐶02(𝑖))

+ �̅�𝑖
2𝜃2

𝑖 {8𝛿2
4𝐶20(𝑖)

2 + 5𝛿2
2𝐶11(𝑖)

2 + 3
2

2 𝐶20(𝑖)𝐶02(𝑖) − 16𝛿2
3𝐶20(𝑖)𝐶11(𝑖)}) 

 

 

 

 

S3: 

𝑡𝑆3 = ∑ 𝑊𝑖

𝐾

𝑖=1

(�̄�𝑖

�̄�𝑖 + 𝜌𝑥𝑖,𝑦𝑖

�̄�𝑖 + 𝜌𝑥𝑖,𝑦𝑖

) 

𝐵(𝑡𝑆3 ) =  ∑ 𝑊𝑖

𝐾

𝑖=1

(𝑌�̄�[𝜃𝑖(𝛿3
2𝐶20(𝑖) − 𝛿3𝐶11(𝑖)) + 𝜃2

𝑖(3𝛿3
4𝐶20(𝑖)

2 − 3𝛿3
3𝐶20(𝑖)𝐶11(𝑖))]) 

 

𝑉(𝑡𝑆3 ) = ∑ 𝑊𝑖
2

𝐾

𝑖=1

(�̅�𝑖
2𝜃𝑖(𝛿3

2𝐶20(𝑖) − 2𝛿3𝐶11(𝑖) + 𝐶02(𝑖))

+ �̅�𝑖
2𝜃2

𝑖{8𝛿3
4𝐶20(𝑖)

2 + 5𝛿3
2𝐶11(𝑖)

2 + 3𝛿3
2𝐶20(𝑖)𝐶02(𝑖) − 16𝛿3

3𝐶20(𝑖)𝐶11(𝑖)}) 

 

M4 

𝑡𝑆4 = ∑

𝐾

𝑖=1

𝑊𝑖�̄�𝑖 (
�̅�𝑖

�̅�𝑖

) 

 

𝐵(𝑡𝑆4 ) = ∑ 𝑊𝑖

𝐾

𝑖=1

(𝑌�̄�[𝜃𝑖(𝐶20(𝑖) − 𝛿1𝐶11(𝑖))) + 𝜃2
𝑖(3𝐶20(𝑖)

2 − 3𝐶20𝐶11(𝑖))]) 

 

 

𝑉(𝑡𝑆4 ) = ∑ 𝑊𝑖
2

𝐾

𝑖=1

(�̅�𝑖
2𝜃𝑖(𝐶20(𝑖) − 2𝐶11(𝑖) + 𝐶02(𝑖)) + �̅�𝑖

2𝜃2
𝑖{8𝐶20(𝑖)

2 + 5𝐶11(𝑖)
2 + 3𝐶20(𝑖)𝐶02(𝑖) − 16𝐶20(𝑖)𝐶11(𝑖)}) 

 

 

 

 

 

 

 

We develop a study with the population data of 5 real life populations and computed biases and variances of them. 

The populations are: 

• Population 1-4. Leaching of elements from solid waste compost. (plumb, magnesium, cadmium and others). 

x=report of the factories of the  level of contaminants, y= Environmental Control laboratory results. 

N=1785. K=7. 

• Population 5. Study of acute inhalation risk assessment. x, y= laboratory results. K=10 



• Population 6. Measurement of serum-prevalence in a population of COVID-19 patients by age group. 

x=hospital report y=report after vaccination. N=3400, K=5. 

• Population 7-9. Measurements of Dissolved Oxygen, BDO (Biological Oxygen Demand), pH, Nitrate, 

x=measures with a portable kit. Y=measures in a laboratory. N=780. 

• Population 10. Evaluation of resilience. x=self-report, y=psychologic test. N=2318, K=10. 

The sampling fraction was 0.1 for all the strata. We computed 𝑅𝐵(ℎ) = |
𝐵(𝑡𝑆ℎ)

𝑡𝑆ℎ
|  𝑎𝑛𝑑  𝑅𝑉(𝑏) = |

𝑉(𝑡𝑆ℎ)

𝑡𝑆ℎ
| for h =1,…,4. 

See the results in Table 2. 

Table-2. Comparison of biases and variances of the estimation in stratified models 

Estimators 

𝑡𝑆1 

𝑡𝑆2 𝑡𝑆3 𝑡𝑆4 

𝑡𝑆1 

𝑡𝑆2 𝑡𝑆3 𝑡𝑆4 

  Relative  Absolute Biases  Relative  Variances  

Population 1 0,532 0,289 0,427 0,806 0,857 0,695 0,597 0,909 

Population2 0,050 0,620 0,886 0,905 0,200 1,094 0,066 1,188 

Population3 0,329 0,725 0,843 1,200 0,470 2,72 0,670 2,006 

Population4 0,596 0,390 0,687 0,990 0,963 1,059 0,936 1,228 

Population5 0,075 0,097 0,192 0,857 0,063 0,673 0,688 0,775 

Population6 0,243 0,088 0,890 1,405 0,063 0,695 0,988 1,075 

Population7 0,479 0,238 0,560 0,600 0,884 0,707 0,796 0,882 

Population8 0,442 0,206 0,849 1,499 0,376 0,732 0,106 0,984 

Population9 0,470 0,672 0,770 0,795 0,843 0,769 0,948 1,706 

Population10 0,463 0,059 0,536 0,990 0,687 0,596 0,390 0,987 

See that ts4 is, as expected, the worse estimator in terms of the relative biases, and except in population 3 the same 

result is obtained in term o rel-variance. Both tS1 and tS2 have the smaller rel-biases in the 50% of the populations. 

For the 60% of the populations ts1 has the smallest rel-variances while ts2 never is the best alternative. Hence , 

considering the experiments is recommended preferring tS1 

 

7. CONCLUSIONS 

 

This paper deals with constructing a family of almost unbiased ratio estimators, which are hitherto not available in 

literature. The biases and variances of these estimators are derived up to O(1/n2). As special cases, we have 

considered transformed ratio estimators when the population standard deviation and the coefficient variation of the 

auxiliary variable x and the coefficient of correlation are known in advance or approximately known from the past 

surveys. For four natural populations under consideration the Beale type estimator is found to be least biased and 

more efficient than both transformed ratio estimators and simple ratio estimator. Further, an extension to stratified 

random sampling with transformed ratio estimator in each stratum has been suggested with applications to real life 

populations. 
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