FORTHCOMING 68T05-05-22-03

MODELIZACIÓN ECONOMÉTRICA AUTORREGRESIVA (AR) DE LA FORMACIÓN BRUTA DE CAPITAL FIJO Y LA INVERSIÓN EXTRANJERA DIRECTA EN LA ECONOMÍA ECUATORIANA DURANTE EL PERIODO 2000-2020

Alisva, Cárdenas-Pérez^{1*}, Marco, Veloz-Jaramillo**, Guadalupe, Mácas-Sánchez***, Adrian, Llauli-Tapia***
*Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador y Instituto Superior Tecnológico España, Ambato,
Ecuador

ABSTRACT

Foreign Direct Investment (FDI) as part of the Gross Fixed Capital Formation (FBKF) affected the Ecuadorian national economy in various ways, for example in promoting employment in the construction area; this study verified that the FBKF had an impact on FDI adding more than a thousand dollars for every dollar that entered the country in FDI during the period 2019 to 2020. The Box Jenkins methodology used in this research has a quantitative, exploratory and descriptive approach, it was determined that the econometric model has significant relevance with the application of AR autoregressive tests (10). This research contributed to the area of National Finance by estimating the betas to make possible forecasts that are important in making economic policy decisions. Researchers who wish to continue with this type of research can use the methodology used to collect new results and possible comparisons.

KEYWORDS - Gross Fixed Capital Formation (FBKF), Foreign Direct Investment (FDI), Box Jenkins, National Finance, Econometrics.

MSC: 68T05

RESUMEN

La Inversión Extranjera Directa (IED) como parte de la Formación Bruta de Capital Fijo (FBKF) afectó en la economía nacional ecuatoriana de diversas formas, por ejemplo en la promoción del empleo que se da por el área de la construcción; este estudio comprobó que la FBKF incidió en la IED sumando más de mil dólares por cada dólar que ingresó al país en IED durante el periodo 2019 al 2020. La metodología Box Jenkins usada en esta investigación tiene un enfoque cuantitativo, exploratorio y descriptivo, se determinó que el modelo econométrico tiene relevancia significativa con la aplicación de pruebas autorregresivas AR (10). Esta investigación aportó al área de las Finanzas Nacionales mediante la estimación de los betas para realizar posibles pronósticos que sean importantes en la toma de decisiones de política económica. Los investigadores que deseen continuar con este tipo de investigaciones pueden ayudarse de la metodología empleada para la recopilación de nuevos resultados y posibles comparaciones.

PALABRAS CLAVE – Formacion Bruta de Capital Fijo (FBKF) , Inversion Extranjera Directa (IED) , Box Jenkins , Finanzas Nacionales, Econometría.

1. INTRODUCCIÓN

La inversión extranjera directa (IED) ayuda significativamente al crecimiento de la economía internacional, existe una finalidad primordial el cálculo de los estadísticos de la IED ya que a través de estos se pueden

^{**}Universidad Técnica de Cotopaxi, Latacunga, Ecuador y Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador

^{****}Universidad Nacional Mayor de San Marcos, Lima, Perú

^{***}Pontificia Universidad Católica de Cuenca, Cuenca, Ecuador

¹ Correo autor principal: <u>aacardenas@espe.edu.ec</u> , <u>alisva.cardenas@iste.edu.ec</u>

generar políticas para atraer de manera eficiente la inversión internacional [1, 6] a su vez la formación bruta de capital fijo (FBKF) ayuda a determinar qué sectores de la economía ecuatoriana han aumentado o disminuido la producción de bienes duraderos generando un indicador macroeconómico para identificar los sectores que han aumentado su capacidad de producción y por ende la creación de fuentes de empleo [2].

La IED junto con la FBKF son elementos significativos que contribuyen al desarrollo económico de un país como Ecuador. Esta investigación demuestra que a pesar de la pandemia COVID 19 la IED no existen cambios significativos, puesto que de 961,5 millones en el 2019 a \$ 1.016,9 millones en el 2020 se registra una leve recuperación, por lo tanto, correr un modelo auto regresivo que permita exponer cómo los flujos de IED inciden en la FBKF ayuda a la gestión de indicadores que promuevan políticas económicas en favor del bienestar del Ecuador [3].

La bondad que ofrece la aplicación del modelo econométrico autorregresivo (AR) es que reduce los niveles de errores en el modelo econométrico, para mejorar la significancia de los betas que ayudan a explicar de mejor manera las variables, la ampliación de data con información de 20 años permite la examinación de los residuos resultantes para que el proceso de estimación y predicción sean más cercadnos a la realidad y ayuda a que el modelo sea bien especificado, arroje valores suavizados que permitan realizar pronósticos reales para series de tiempo temporales [4, 5].

Es así que el modelo realizado en este artículo permite demostrar la relación que existe entre la variable independiente: FBKF y la variable dependiente: IED, que por medio de la metodología AR (10) explica la relación conjunta de estas variables, es decir se comprueba la robustez del modelo a través del cumplimiento de los diferentes supuestos econométricos.

2. METODOLOGÍA

La metodología empleada en esta investigación se basó en los métodos exploratorio, descriptivo y analítico, y para realizar el respectivo análisis de la información y la comprobación de las diferentes hipótesis se aplicó el modelamiento autorregresivo AR (10) que son modelos Box Jenkins, en donde a través de sus probabilidades se llegó a determinar la incidencia que tiene la IED en la FBKF. Se tomó el total de la población de las dos variables anteriormente mencionadas conformadas por variables como la modalidad de inversión, rama de actividad económica y país de origen [3].

Para la recopilación de la información y análisis de los datos cuantitativos se empleó los datos obtenidos del Banco Central del Ecuador en su página web oficial para la construcción del Modelo AR (10) [3], se amplió una base de 20 datos de las dos variables de estudio, mismas que se encuentran clasificadas en diferentes sectores: explotación de minas y canteras, industrias manufactureras, suministro de electricidad, gas y agua, servicios, trasporte, almacenamiento, comunicaciones, construcción y otros sectores, cada una de las variables nombradas anteriormente están compuestas por diferentes valores obtenidos en el BCE [2] cuya sumatoria total se utilizó para realizar la modelización autorregresiva AR (10).

Para la modelización econométrica se aplicó las 5 fases de la metodología Box Jenkins [5], específicamente de la metodología autorregresiva AR (10) que son: la especificación para determinar la variable dependiente e independiente en donde se estableció la respectiva ecuación para posteriormente remplazar los valores resultantes de la estimación; la identificación, para comprobar estacionalidad de los datos que es el segundo proceso para la aplicación de modelos autorregresivos AR, MA y ARIMA; la estimación a través de un corrido econométrico de regresión por mínimos cuadrados ordinarios; la comprobación, con diferentes pruebas de hipótesis para verificar si el modelo econométrico autorregresivo se encuentra ajustado para realizar posibles estimaciones y como último paso la explotación, donde se interpretó y utilizó el modelo.

Resultados

A continuación, se presenta la data de la FBKF y la IED con la que se realizó el modelo econométrico AR (10), extraídos del Banco Central del Ecuador [3]:

Tabla 1: Flujos de la Inversión Extranjera Directa (IED) y la Formación Bruta de Capital Fijo (FBKF) de los años 2000-2020 en miles de dólares.

	unos 200	JO 2020 CII IIIICS	uc uoi	urcs.
Date	IED		F	
2000	\$	-23.439,37	\$	3.483.242,00
2001	\$	538.568,58	\$	4.661.579,00
2002	\$	783.261,01	\$	5.906.605,00
2003	\$	871.513,41	\$	6.240.683,00
2004	\$	836.939,59	\$	7.209.125,00

2005	\$ 493.413,84	\$ 8.476.753,00
2006	\$ 271.428,85	\$ 9.759.712,00
2007	\$ 194.158,53	\$ 10.593.947,00
2008	\$ 1.057.368,02	\$ 13.818.514,00
2009	\$ 308.610,89	\$ 14.257.689,00
2010	\$ 165.866,32	\$ 17.127.889,00
2011	\$ 646.077,36	\$ 20.470.786,00
2012	\$ 567.410,30	\$ 23.707.838,00
2013	\$ 727.064,21	\$ 26.211.660,00
2014	\$ 776.547,95	\$ 27.684.231,00
2015	\$ 1.331.206,34	\$ 26.390.456,00
2016	\$ 755.954,87	\$ 25.080.788,00
2017	\$ 624.469,41	\$ 26.496.256,00
2018	\$ 1.388.175,76	\$ 27.517.684,00
2019	\$ 961.518,50	\$ 26.908.008,00
2020	\$ 1.016.949,29	\$ 25.620.931,76

Fuente: datos tomados del Banco Central del Ecuador (2020).

1. Especificación del modelo

El modelo básico que se derivó es:

$$Y=B_0+B_1x_1+B_2x_2+\cdots+B_nx_n+\varepsilon.$$

$$FBKF = B_0 + B_1IED + \varepsilon$$
.

Donde:

FBKF = Formación Bruta de Capital Fijo

IED = Inversión Extranjera Directa

 ε = Épsilon, variable de perturbación o error

B₀= Parámetro de intercepto (Autónomo)

B₁= Parámetro de la IED

2. Identificación

Para la comprobación de estacionalidad se planteó la siguiente hipótesis:

Ho: No existe estacionalidad

H1: Existe estacionalidad

Comprobando estacionalidad de los datos mediante el test Dicke Fuller Aumentado se observó que la FBKF no presenta estacionadad, ya que tiene una probabilidad de 0,57 que es mayor a 0,05. A continuación, los resultados:

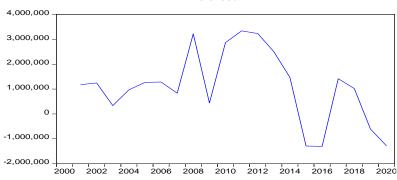
Figura 1: Test Dicke Fuller Aumentado de la Formación Bruta Formación. diferencias.

Null Hypothesis: DFBKF has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.144056	0.2311
Test critical values:	1% level	-3.831511	
	5% level	-3.029970	
	10% level	-2.655194	

Figura 2: Test Dicke Fuller Aumentado de Capital Fijo (FBKF) con segundas Bruta de Capital Fijo (FBKF)

	ous: Consta	KF has a unit ro nt atic - based on		1)
			t-Statistic	Pro
Augmented Dic	key-Fuller te	st statistic	-1.380384	4 0.56
Test critical values:	1% leve		-3.83151	1
	5% leve	ı	-3.029970	D
	10% leve	el	-2 65519	4
Dependent Variable: Di Method: Least Squares Date: 06/17/21 Time: 200 Sample (adjusted): 200	22:34			
Method: Least Squares Date: 06/17/21 Time:	22:34 1 2020	tments Std. Error	t-Statistic	Prob.
Method: Least Squares Date: 06/17/21 Time: Sample (adjusted): 200 Included observations:	22:34 1 2020 20 after adjus		t-Statistic 3.260950 1.382562	Prob. 0.0043 0.1837
Method: Least Squares Date: 06/17/21 Time: Sample (adjusted): 200 Included observations: Variable C	22:34 1 2020 20 after adjust Coefficient 1051992.	Std. Error 322602.9	3.260950 1.382562	0.0043
Method: Least Squares Date: 08/77/21 Time Date: 08/77/21 Time Sample (adjusted): 200 Included observations: Variable C DIED R-squared Adjusted R-squared	22:34 1 2020 20 after adjust Coefficient 1051992 1.055233 0.095999 0.045777	Std. Error 322602.9 0.763245 Mean depen S.D. depend	3.260950 1.382562 dent var	0.0043 0.1837 1106884 1465696
Method: Least Squares Date: 08/17/21 Time: Sample (adjusted): 200 Included observations: Variable C DIED R-squared Adjusted R-squared Adjusted R-squared S.E. of regression	22:34 1 2020 20 after adjust Coefficient 1051992 1.055233 0.095999 0.045777 1431756.	Std. Error 322602.9 0.763245 Mean depen S.D. depend Akaike info c	3.260950 1.382562 dent var ent var riterion	0.0043 0.1837 1106884 1465696 31.28134
Method: Least Squares Date: 06/17/21 Time; Sample (adjusted): 200 Included observations: Variable C DIED R-squared Adjusted R-squared S.E. of regression Sum squared resid	22:34 1 2020 20 after adjus: Coefficient 1051992. 1.055233 0.095999 0.045777 1431756. 3.69E+13	Std. Error 322602.9 0.763245 Mean depen S.D. depend	3.260950 1.382562 dent var ent var riterion arion	0.0043 0.1837 1106884 1465696
Method: Least Squares Date: 08/17/21 Time: Sample (adjusted): 200 Included observations: Variable C DIED R-squared Adjusted R-squared Adjusted R-squared S.E. of regression	22:34 1 2020 20 after adjust Coefficient 1051992 1.055233 0.095999 0.045777 1431756.	Std. Error 322602.9 0.763245 Mean depen S.D. depend Akaike info c Schwarz crite	3.260950 1.382562 dent var ent var riterion arion nn criter.	0.0043 0.1837 1106884 1465696 31.28134 31.38091


Fuente: Bases de datos y sistema EViews

Para corregir la no estacionariedad de los datos de la FBKF, se aplicó las primeras diferencias al Test Dicke Fuller Aumentado.

Una vez se aplicó el Test Dicke Fuller Aumentado con primeras diferencias persiste la no estacionalidad ya que presenta una probabilidad de 0,23 que es menor a 0,05; sin embargo, al comprobar con el gráfico se considera que la serie es Figura 3

Figura 3: Segundas diferencias del Test de Dicke Fuller Aumentadode la Formación Bruta de Capital Fijo (FBKF) 2000-2020, en miles de dólares

Differenced FBKF

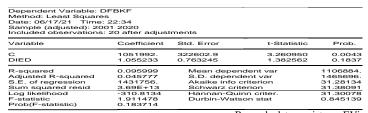
Fuente: Bases de datos y sistema EViews.

Figura 4: Test Dicke Fuller Aumentado de la Inversión Extranjera Directa (IED).

Null Hypothesis: DIED has a unit root Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-5.491738	0.0004
Test critical values:	1% level	-3.857386	
	5% level	-3.040391	
	10% level	-2.660551	


Fuente: Bases de datos y sistema EViews son estacionarias

Por otro lado, la Inversión Extranjera Directa Aplicando el Test Dicke Fuller Aumentado a primeras diferencias muestra que la serie de datos presenta estacionariedad ya que tiene una probabilidad de 0,0004 que es menor al 0,05: Al verificar que los datos presentan estacionariedad se rechaza la Fuente: Bases de datos y sistema EViews hipótesis nula y se acepta la hipótesis alternativa; las series

Figura 5: Estimación de las betas en miles de dólares.

3. ESTIMACIÓN

Se realizó una regresión por mínimos cuadrados ordinarios (MCO), mediante el paquete estadístico econométrico EViews 10. A continuación:

Bases de datos y sistema EViews

Al realizar la estimación de las betas se observa que el B0 si es estadísticamente significativo ya que Fuente: tiene una probabilidad de 0,004, mientras el B1 no es significativo debido a su probabilidad de 0,18 < 0,05 y por consiguiente en su conjunto no presenta relación lineal debido a . que su Prob(F- statistic) es de 0,18 < 0.05.

Para corregir la significancia global y del B1 se aplicó un modelamiento auto regresivo (AR), mismo que se escogerá su nivel dependiendo de cómo presenta su correlograma

Figura 6: Correlograma de las variables sin diferencias AR(10), en miles de dólares

Fuente: Bases de datos y sistema EViews

Figura 7: Estimación de las betas con un autorregresivo AR(10), en miles de dólares

Dependent Variable: DFBKF Method: ARMA Maximum Likelihood (BFGS) Date: 07/07/21 Time: 06:56 Sample: 2001 2020

Included observations: 20

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1022835.	175249.4	5.836453	0.0000
DIED	1.615740	0.651850	2.478701	0.0247
AR(10)	-0.664865	0.297178	-2.237264	0.0399
SIGMASQ	1.06E+12	3.78E+11	2.801510	0.0128
R-squared	0.480496	Mean depe	ndent var	1106884.
Adjusted R-squared	0.383090	S.D. dependent var		1465696.
S.E. of regression	1151211.	Akaike info		31,21912
Sum squared resid	2.12E+13	Schwarz cri		31.41827
Log likelihood	-308.1912	Hannan-Qu	inn criter.	31.25800
F-statistic	4.932879	Durbin-Watson stat		1.116717
Prob(F-statistic)	0.012980			
Inverted AR Roots	.9130i	.91+.30i	.56+.78i	.5678i
inverted / it (100ts	.0096i	00+.96i		5678i
	- 01+ 30i	- 01- 30i		

Como se observa en la figura (6) se tendría que hacer pruebas autorregresivas (AR) ya que son las que presentan discontinuidad en su correlación. Comprobando con sus diferentes niveles, el orden para que este modelo presente significancia es un auto regresivo decimo, o AR(10), arrojándonos los siguientes resultados.

4. COMPROBACIÓN DEL MODELO

Para el proceso de validez se realizó diferentes pruebas de existencia lineal individual y global, también los diferentes Fuente: Bases de datos y sistema EViews supuestos de mínimos cuadrados ordinarios MCO como son:

Fuente: Bases de datos y sistema EViews

Heterocedasticidad, Autocorrelación, Normalidad y Multicolinealidad

Prueba de significancia individual

Mediante la probabilidad o P- Valor se planteó la siguiente prueba de hipótesis. Si el Pvalor es menor al rango determinado se rechaza Ho (0,05).

$$FBKF = B_0 + B_1IED + \varepsilon.$$

 $FBKF = $1.022.835.000,00 + ($1.615,74)IED + \varepsilon.$

 H_0 : $\beta = 0$ No existe relación lineal individual entre las variables (x)y(y)

 H_1 : $\beta \neq 0$ Existe relación lineal entre las variables (x)y(y)

El coeficiente de B0 es 0,00< 0,05 por lo tanto se rechaza Ho; existe relación lineal entre las variables (x) y (y).

El coeficiente de B1 es 0,02 < 0,05 por lo tanto se rechaza Ho; existe relación lineal entre las variables (x) y (y).

Prueba de significancia global

Figura 8: Prueba formal de White (prueba White y método gráfico)

Dependent Variable: DFBKF
Method: ARMA Maximum Likelihood (BFGS)
Date: 07/07/21 Time: 06:56
Sample: 2001 2020
Included observations: 20
Convergence achieved after 7 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DIED	1022835. 1.615740	175249.4 0.651850	5.836453 2.478701	0.0000 0.0247
AR(10) SIGMASQ	-0.664865 1.06E+12	0.297178 3.78E+11	-2.237264 2.801510	0.0399
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.480496 0.383090 1151211. 2.12E+13 -308.1912 4.932879 0.012980	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1106884. 1465696. 31.21912 31.41827 31.25800 1.116717
Inverted AR Roots	.9130i .0096i 91+.30i	.91+.30i 00+.96i 9130i	.56+.78i 56+.78i	.5678i 5678i

Para determinar la significancia global se aplicó la prueba "F", así tenemos el planteamiento de las hipótesis de la siguiente manera:

Ho: $B_1 = B_2 = B_3 = 0$ No existe relación lineal conjunta entre las variables (x)y(y)

H1: $B_1 \neq B_2 \neq B_3 \neq 0$ Existe relación lineal conjunta entre las variables (x) y (y)

El p-valor de "F" es 0,012 < 0,05 por lo que se rechaza Ho. Existe relación lineal conjunta en el modelo.

Supuestos de modelo MCO

Supuesto de homocedasticidad Como se puede apreciar en la figura No (9) no existen cambios significativos (que salgan de las líneas entrecortadas) por lo que se puede determinar que no existe heterocedasticidad, sin embargo se necesita una prueba formal para comprobar el supuesto de homocedasticidad planteado las siguientes hipótesis.

 H_0 : Existe homocedasticidad H_1 : Existe heterocedasticidad

Si: Obs * R - squared > F - Statistic; rechazamos H_0 Para la prueba formal se aplicó el test de White en el modelo original así los resultados tenemos:

Obs * R - squared: 0.13 > F - Statistic 0.00; no rechazamos H_0 . Mediante estas pruebas se puede observar que existe heteroscedasticidad.

Supuesto de autocorrelación

La prueba formal que se utilizó en este modelo para determinar que los residuos no están auto correlacionados es el estadístico Durbin-Watson stat. El planteamiento de las hipótesis es el siguiente:

> H_0 : No existe Autocorrelación *H*₁: *Existe Autocorrelación*

Para determinar si el modelo presenta autocorrelación se verificó con con el 5% de error según la figura 9a:

Como se observa en la figura (9a) el valor del estadístico Durbin-Watson: 1,82 debe estar entre 1,20 y 1,41; sin embargo, es mayor que 1,41 por lo que tiene autocorrelación positiva, en este caso se rechaza H0 y se acepta Fuente: Bases de datos y sistema EViews H1.

Supuesto de normalidad

Se aplicará el test de Jarque

. Figura 9a: Estadístico Durbin-Watson stat con un nivel de significancia del 5%.

Dependent Variable: DFBKF Method: ARMA Maximum Likelihood (BFGS) Date: 07/07/21 Time: 06:56 Sample: 2001 2020 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	1022835.	175249.4	5.836453	0.0000	
DIED	1.615740	0.651850	2.478701	0.0247	
AR(10)	-0.664865	0.297178	-2.237264	0.0399	
SIGMASQ	1.06E+12	3.78E+11	2.801510	0.0128	
R-squared	0.480496	Mean depen	dent var	1106884.	
Adjusted R-squared	0.383090	S.D. dependent var		1465696.	
S.E. of regression	1151211.	Akaike info c	riterion	31,21912	
Sum squared resid	2.12E+13	Schwarz criterion		31,41827	
Log likelihood	-308.1912	Hannan-Quinn criter.		31.25800	
F-statistic	4.932879	Durbin-Watson stat		1.116717	
Prob(F-statistic)	0.012980				
Inverted AR Roots	.9130i	.91+.30i	.56+.78i	.5678i	
	.0096i	00+.96i	56+.78i	5678i	

Bera para comprobar el supuesto de normalidad, el planteamiento de hipótesis está dado de la siguiente manera:

Figura 9: Supuesto de homocedasticidad a través

20.00000

Coefficient

1.06E+12

2.52E+13

1.90E+19

1.14E+14

-1.20E+26

2.25E+24

1.000000

1.000000

5.407306

38072055

Prob. Chi-Square(14)

Std. Error

12.90655

14036254

1.82F+19

19.24527

11.45402

8.24E+25

4.64E+13

Mean dependent va

S.D. dependent va

Akaike info criterion

Schwarz criterion Hannan-Quinn criter Durbin-Watson stat

Series: Residuals Observations 20

Std. Dev.

Kurtosis

64048.25

1054378 -0.423705

3.959647 1.365854

t-Statistic

8.21E+10

1.414001

2.712408

1.263890 1.045341

-0.064734 -0.170204 -0.619521

-1.873885

-1.520436

-1.260182

-1.453730

4.85E+10

0.0000

0.1968

Prob.

0.0000

0.2165

0.0422

0.2620

0.1198

0.2632

0.2058

0.0000

1.06E+12

6.327085

Heteroskedasticity Test: White

Obs*R-squared

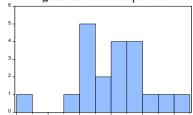
Scaled explained SS

Sample: 2001 2020 Included observations: 20

Variable

GRADF_01² GRADF_01⁴GRADF_02 GRADF_01⁴GRADF_03 GRADF_01⁴GRADF_04

GRADF_01'GRADF_04 GRADF_02'G GRADF_02'GRADF_03 GRADF_02'GRADF_04 GRADF_02'GRADF_04 GRADF_03'GRADF_04 GRADF_03'GRADF_04

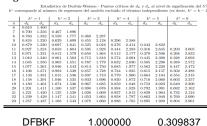

GRADF_03 GRADF_04^2

GRADF_04

Adjusted R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)

 H_0 : La μ sigue una distribución normal H₁: La μ NO sigue una distribución normal Figura 10: Test de Jarque Bera


Fuente: Bases de datos y sistema EViews.

La probabilidad es de 0.5 > 0.05 por lo que se rechaza hipótesis nula La μ no sique una distribución normal

Supuesto de multicolinealidad (Matriz de correlaciones)

1.000000

Figura 11: Matriz de correlaciones de la FBKF y la IED.

0.309837

DIED

Para detectar problemas de multicolinealidad, el nivel establecido es =>90%, es decir que cuando exista una correlación >= 90% presenta Fuente: Bases de datos y sistema EViews.

multicolinealidad entre las variables.

No presentan problemas de multicolinealidad ya que cumple con la condición anteriormente mencionada.

4. EXPLOTACIÓN

 $FBKF = \$1.022.835.000,00 + (\$1.615,74)IED + \varepsilon.$

Fuente: Monografías (2019).

Bo representa que, en el caso de no existir Inversión Extranjera Directa (IED), la Formación Bruta de Capital Fijo (FBKF) es de \$1.022.835.000,00 y que por cada dólar que llega al país por concepto de IED, se genera \$1.615.74 de FBKF.

Es preciso indicar que aunque la autocorrelación podría explicarse por los cambios económicos drásticos propios de la pandemia por la COVID-19 suscitada a nivel mundial, siendo un evento externo imposible de controlar y sin precedentes, por tanto, la predicción económica realizada con este modelo es confiable más debe tomarse con cuidado, este estudio deja expuesta una metodología econométrica posible de aplicar para futuras estimaciones, esperando tiempos de menor incertidumbre, en donde se puedan realizar comparaciones temporales.

5. DISCUSIÓN

Al preguntarnos ¿cómo incide la Inversión Extranjera Directa (IED) en la Formación Bruta de Capital Fijo (FBKF) del Ecuador? se comenzó con la determinación de las variables quedándonos como variable dependiente la FBKF y variable independiente la IED, para posteriormente realizar indagación de las mismas que se encuentran clasificadas en diferentes modalidades, con los valores totales obtenidos se realizó la modelización econométrica autorregresiva AR (10) y comprobar las diferentes hipótesis de acuerdo a su probabilidad en cada una de sus fases, a través de la comprobación de las hipótesis se determina que los datos si son explicativos y comprueban que la IED si incide significativamente en la FBKF. El hallazgo de este estudio determina que, en el caso de no existir IED, la FBKF es de = \$1.022.835.000,00 y que por cada dólar que llega al país por concepto de IED, se genera \$1.615,74 de FBKF, de esta forma se determina la importancia de la IED en el bienestar económico del Ecuador, ya que influye a la FBKF, que son los generadores de la producción de un país y generadores de fuentes de trabajo, por otro lado, la investigación queda abierta ya que el modelo presenta problemas de autocorrelación, que son solucionados con metodologías diferentes de box Jenkins u otros procesos que incluyen una modelización econométrica. Las hipótesis tanto nula como alternativas presentadas en cada fase de la modelización econométrica autorregresiva AR (10), se acepta o rechaza, presentándonos de esta manera resultados verídicos. En la comprobación del modelo aunque se presentaron problemas de autocorrelación, es preciso indicar que la mayor parte de las fases del modelo autorregresivo cumplen con los supuestos. Las variables en su conjunto e individualmente presentan relación lineal, por lo que se determina que el modelo presenta significancia y robustez, es así que este modelo es confiable y puede ser utilizado para futuras estimaciones. La metodología AR, que son procesos autorregresivos no son sencillos de aplicar, debido a que de un número determinado de variables no todas presentan significancia en el modelo, con la comprobación de las hipótesis y verificando su significancia se puede agregar, eliminar o modificar algunas de las variables que no cumplen con las especificaciones del modelo autoagresivo, de aquí que existen diferentes variables y procesos que pueden explicar en esta investigación obteniendo resultados diferentes y sacar conclusiones de sus comparaciones.

Este tipo de herramientas autorregresivas de series de tiempo ya sea AR, MA, o ARIMA [7, 8] miden el grado de incidencia entre variables y los hallazgos promueven mejores tomas de decisiones económicas, el modelo econométrico realizado en esta investigación tiene un enfoque cuantitativo por presentar información en dólares de las dos variables, este evidente que este análisis se podía lograr con un análisis econométrico simple, pero por la complejidad de los datos que son volátiles en diferentes periodos se optó por utilizar sistemas estadísticos más sofisticados y obtener resultados mayormente confiables, es así que el paquete estadístico EViews 10 nos presenta muchas bondades para el análisis y comprobación de las hipótesis de este estudio.

6. CONCLUSIONES

Analizar la incidencia de la Inversión Extranjera Directa (IED) en la Formación Bruta de Capital Fijo (FBKF) ayuda a determinar las ventajas y desventajas que la IED puede causar en la economía del Ecuador en el caso de que exista disminución o aumento de las misma, esto dependerá mucho de las diferentes políticas que los gobiernos de turno toman en cuanto a la obtención de la inversión internacional. Cabe decir que Ecuador es un país potencialmente atractivo para la IED, la dolarización es un aspecto que lejos de considerarlo problemático por su efecto de apreciación, debería verse como un apoyo por su carácter fijo y que ayuda a los inversores a tener una seguridad monetaria en cuanto a evitar la pérdida de valor del dinero invertido [9].

Esta investigación destaca cómo durante un año 2020 tan complicado por la pandemia de la COVID-19, la IED no tuvo cambios significativos, el análisis econométrico ayudó a determinar cómo la inversión internacional debe ser vista como una oportunidad para crecer económicamente, por ejemplo, aprovechar la condición de socio de la Comunidad Andina de Naciones, buscar apalancamiento extranjero para promover el turismo que puede ser afincado en la enorme cantidad de recursos naturales que el país posee, mismos que son valiosos para los turistas internacionales. más para los propios ecuatorianos resultan complicados de explotar puesto que no se ha logrado fomentar un crecimiento de la FBK en este sector ni generar un incremento de la tasa de empleo adecuado [10].

RECEIVED: AUGUST, 2022. REVISED: OCTOBER, 2022.

REFERENCIAS

- [1]. BANCO CENTRAL DEL ECUADOR. (2020): Inversión Extranjera Directa. Disponible en https://www.bce.fin.ec/index.php/component/k2/item/298-inversi%C3%B3n-extranjera-directa Consulted 01-07-2021.
- [2]. BANCO CENTRAL DEL ECUADOR. (2020): Inversión Extranjera Directa. Disponible en https://www.bce.fin.ec/index.php/component/k2/item/298-inversi%C3%B3n-extranjera-directa Consulted 01-07-2021BANCO CENTRAL DEL ECUADOR. (2020): Boletines de prensa. Disponible en https://n9.cl/umn2x Consulted 01-07-2021.
- [3]. BOLAÑOS, J. (2019): Formación bruta de capital fijo e inversión extranjera directa: Revaluar las relaciones entre variables explicativas. **IISEC Bolivia.** Disponible en: http://www.iisec.ucb.edu.bo/publicacion/formacion-bruta-de-capital-fijo-e-inversion-extranjera-directa-revaluar-las-relaciones-entre-variables-explicativas Consulted 01-07-2021 BOYCE, P. (2021): Definición de Inversión Extranjera Directa (IED) | 3 tipos | BoyceWire. https://boycewire.com/foreign-direct-investment-definition/
- [4]. CASIMIRO, P. G. (2005): Análisis de Series Temporales: Modelos ARIMA. 169. Disponible en https://addi.ehu.es/handle/10810/12492 Consulted: 03-07-2021
- [5]. CHÁVEZ, Q, N. (1997:. Modelos Arima. **Revista Ciencia y Cultura**, (1):23-30. Disponible en http://www.scielo.org.bo/pdf/rcc/n1/a05.pdf Consulted: 10-07-2021
- [6]. GALLEGO-NICASIO M., J. A., et al. (2018): Modelos ARIMA para la predicción del gasto conjunto de oxígeno de vuelo y otros gases en el Ejército del Aire. **Sanidad Militar**, 74(4):223-229. Disponible en https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1887-85712018000400223 Consulted: 10-07-2021.
- [7]. GARAY, A. (2014): Inversión Extranjera Directa—OMAL | **Observatorio de Multinacionales en América Latina**. Disponible en: https://omal.info/spip.php?article4822
- [8]. GUTMAN, V., LÓPEZ, A., RAMOS, D., Y GARCÍA, P. (2016): Análisis de los mecanismos de regulación y promoción de la Inversión Extranjera Directa (IED) en Ecuador | **Publicaciones.** Disponible en https://n9.cl/z8n36 Consulted: 20-06-2021
- [9]. INEC. (2022): Estadísticas laborales. Disponible en https://www.ecuadorencifras.gob.ec/estadisticas-laborales-julio-2022/ Consulted: 20-02-2022