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 ABSTRACT 

 In this paper, we propose the Bayes estimators of unknown parameters of power function distribution in the context of double 

censoring. The maximum-likelihood estimators (MLEs) for the  power function parameters are derived. Bayes estimators are derived using 
the squared error loss function, entropy loss function, and linex loss function using the Lindley approximation and  the importance 

sampling procedures. We also introduced sample prediction estimates using Bayesian techniques. Finally, we perform a simulation study 

to compare all the proposed estimation  methods and analyze a real-life data set for illustration purposes. 
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RESUMEN 

En este artículo, proponemos los estimadores de Bayes de parámetros desconocidos de la función de distribución de potencia en el 
contexto de la doble censura. Se derivan los estimadores de máxima verosimilitud (MLEs) para los parámetros de la función de 

potencia. Los estimadores bayesianos se derivan utilizando la función de pérdida de error al cuadrado, la función de pérdida de 

entropía y la función de pérdida de linex utilizando la aproximación de Lindley y los procedimientos de muestreo de importancia. 

También introdujimos estimaciones de predicción de muestra utilizando técnicas bayesianas. Finalmente, realizamos un estudio de 

simulación para comparar todos los métodos de estimación propuestos y analizamos un conjunto de datos de la vida real con fines 

ilustrativos. 
 

PALABRAS CLAVES: Estimación; aproximación de Lindely; procedimiento de muestreo de importancia; 

Predicción; Muestra doblemente censurada. 

 

1 INTRODUCTION 

 

We consider a lifetime experiment in which n identical units are placed on test simultaneously. The first r lifetimes 

may be left-censored due to negligence or problems at the beginning of the investigation and, in that, terminated 

as a means of obtaining data in life testing experiments as soon as the sth unit fails. Then consumed this information 

to create a type-II doubly censored sample. The resulting type II double censored model is; xr ≤ xr+1 ≤ .... ≤ xs−1 ≤ 

xs, 1 ≤ r ≤ s ≤ n. This type of censoring occurs in critical practical situations. For example, Peer et al. (1993) used 

doubly censored data to study the age-dependent growth rate of primary breast cancer. For more works related to 

doubly censored data, one can refer to papers written by Raqab et al. (1995) provided the On the maximum 

likelihood prediction of the exponential distribution based on doubly type-II censored samples, Estimation of the 

exponential-logarithmic distribution based on the doubly censored data with lifetime application introduced by 

Bakoban et al. (2016), El-Baset et.al (2015) show that the Estimation under burr type x distribution based on 

doubly type ii censored sample of dual generalized order statistics, Wang (2016) used the double type-II censored 

model to estimate the interval for a lower-truncated distribution, Azimi (2013) gave a Bayesian estimation of 

doubly censored generalised half logistic type II data, Tahir et al. (2019) presented the Bayesian Estimation of the 

mixture of burr type-xii distributions using doubly censored data, Fernandez (2000) investigated maximum 

likelihood prediction using type II doubly censored exponential data, Raqab and Madi (2002) applied Bayesian 

inference to doubly censored Rayleigh data prediction of the total time on the test and Wu (2008) presented 

estimates for the interval for a pareto distribution using a doubly type II censored sample. 

Power function distribution (PFD) is a flexible lifetime distribution compatible with different failure data sets. It 

has many applications in finance, economics, and reliability. Besides, PFD has received much attention in the 
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literature for modeling the reliability growth of complex systems and repairs. Meniconi and Barry (1996) proved 

that compared with exponential, lognormal, and Weibull, the PFD is the best distribution of the check electrical 

component’s reliability using the reliability and hazard function plots. For recent work on the estimation of 

parameters of PFD, one can refer to Abdul-sathar et al. (2018), Abdul-sathar et al. (2019), and Abdul-sathar et al. 

(2021). This paper aims to develop inference procedures for the power function model parameters where the 

sample data are available as a doubly censored sample. We build point estimators and interval estimators for the 

unknown parameters of PFD. The probability density function (PDF) and the cumulative distribution function 

(CDF) of the PFD are given by 

 where 0 < x < σ, and α, σ > 0,     

     (1.1) 

     where 0 < x < σ.      

     (1.2) 

This study aims to estimate the power function distribution’s parameters using a Type-II doubly censored sample. 

Each section of the article is organized as follows: The maximum likelihood estimate is given in Section 2. Bayes 

estimators of the parameters under the squared error loss function, entropy loss function, and linex loss function 

using the Lindley approximation method and importance sampling procedures together with HPD credible 

intervals discussed in Section 3. Section 4 also included a Bayes prediction. In Section 5, we conduct a 

performance evaluation of the estimators using simulated data. Finally, real-life data samples and conclusions are 

in Section 6. 

2 MAXIMUM LIKELIHOOD ESTIMATION 

 

This section describes the ML estimate of the parameters α and σ in PFD. Consider a random sample of size n, the 

ordered observations remaining when (r − 1) smallest observations and the (n − s) largest observations have been 

censored; hence, the doubly censored sample is xr ....xs. The likelihood function in this situation 

 .    

     (2.1) 

Using (1.1) and (1.2) in (2.1), the likelihood function simplifies to 

 .    

     (2.2) 

We are differentiating (2.2) for α equates to zero, we get 

. 

The MLE of σ can be directly obtained as  

�̂�= xs, 0 < x < σ           

     (2.3) 
where 𝛼 ̂is the solution of the nonlinear equation 

.     

     (2.4) 

There are several numerical techniques for solving nonlinear equations (2.4). 

2.1 Asymptotic Confidence Interval 

 

Although the sample sizes are not very large in survival and reliability analysis, intervals based on the asymptotic 

normality of the MLEs are of interest when the number of censored units is large enough. In this section, we 

present the asymptotic and coverage probability of estimates of the parameters. We know that the observed 

information matrix is a consistent estimator of the Fisher information matrix. The Fisher information matrix of θ 

= (α, σ) is given by 
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. 

Using the delta method, we derive the asymptotic distribution of �̂�𝑚𝑙𝑒 . For that, we have 

𝑣𝑎�̂� (�̂�𝑚𝑙𝑒) =  𝑣𝑎�̂� (�̂� ) ≈  𝑇′(�̂�) [𝐼(�̂�)−1 𝑇(�̂�), 

where 

. 

Hence 
�̂�𝑚𝑙𝑒−�̂� 

√𝑣𝑎�̂� (�̂�𝑚𝑙𝑒)

 ~ N (0,1). The 100(1 − δ)0/0 CI for �̂�𝑚𝑙𝑒  is given as �̂�𝑚𝑙𝑒  ± 𝑧𝛿/2 √𝑣𝑎�̂� (�̂�𝑚𝑙𝑒) .  Also, the 

coverage probability for �̂�𝑚𝑙𝑒  is given as 

, 

where zδ/2 is the doubly censored (δ/2)th percentile of standard normal distribution. 

3 BAYESIAN ESTIMATION 

Bayesian calculations are more practical than the classical estimation method. Many adopt the Bayesian method 

of estimating parameters and associated functions for different distributions. In this section, we evaluate the 

Bayesian estimates and then provide the associated credible intervals of parameters α and σ for PFD using other 

loss functions. In Bayesian estimation, we treat α and σ parameters in (2.3) and (2.4) as random variables and 

assume prior distributions. From the prior distribution, the parameters separated from the α and σ parameters are 

called hyper-parameters. The preceding information combined with the likelihood function can derive the 

posterior information. 

3.1 Prior distribution and posterior distribution 

 

To observe the influence of priors on Bayesian estimators in this paper, we use an informative prior and a non-

informative prior, respectively. Because of its flexibility, the gamma distribution using for the informative method. 

Moreover, they found that the gamma distribution is a conjugate before the parameters α and σ, making it easy to 

implement the sample simulation algorithm later. Here we use the piecewise independent gamma priors for the 

parameters α and σ, which obey Γ (c, d) and Γ (e, f), respectively. One may refer to Kundu and Pradhan (2009) 

for further details. Nadar et al. (2013) have also considered gamma priors for the Kumaraswamy distribution. 

Therefore, the prior gamma distribution is given by  

 
and 

. 

The prior joint distribution corresponds to α and σ can be obtained as 

𝐺∗(𝛼, 𝜎)  𝛼𝑐−1 𝜎𝑏−1 𝑒−(𝑑𝛼+𝑎𝜎).          

     (3.1) 

 

One can obtain the joint posterior distribution using (2.2) and (3.1). 

 

 

Π(α,σ)= 
1

𝐾
 𝛼(𝑐+𝑠−𝑟+1)−1 𝑒−𝛼(𝑑−(𝑟−1) log(𝑥)−𝑍) 𝜎(𝑏−𝑎𝑠)−1 𝑒−𝜎(𝑎)  (1 − (

𝑥

𝜎
)

𝛼

)
𝑛−𝑠

𝑒−𝑍                                   
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(3.2) 

where K is the normalizing constant and is given by  

𝐾−1 =  ∫ ∫ 𝛼(𝑐+𝑠−𝑟+1)−1 𝑒−𝛼(𝑑−(𝑟−1) log(𝑥)−𝑍) 𝜎(𝑏−𝑎𝑠)−1 𝑒−𝜎(𝑎)  (1 − (
𝑥

𝜎
)

𝛼

)
𝑛−𝑠

𝑒−𝑍 𝑑𝛼 𝑑𝜎,
∞

0

∞

0

 

where  𝑍 =  ∑ log[𝑥𝑖] ,   𝐴(𝜎) = 𝑎𝑠
𝑖=𝑟  . 

3.2 Loss Functions 

 

In Bayesian estimation, the loss function using to evaluate estimators' performances. The loss function measures 

the gap between the estimates and actual values. Therefore, we give Bayes estimators of different loss functions 

for H in Table 1. To obtain the best estimator in the Bayesian approach, one has to choose a loss function 

corresponding to each possible estimate. In this study, we consider symmetric as well as asymmetric loss functions, 

such as the squared error loss function (SELF), entropy loss function (ELF), and linex loss function (LLF) 

respectively, for estimating the parameters. 

Table 1: Bayesian estimators of the different loss functions 

Loss Functions Bayesian Estimator 

SELF: (�̂� − 𝐻)                       E (H |x) 

 

ELF: [[�̂�/H]]
−𝑞

- q (log([�̂�/H]))-1 

 

[𝐸(𝐻−𝑞/𝑥)]^(−1/𝑞) 

LLF: exp [h (H − �̂�)] – h (H − �̂�) – 1 
(−

1

ℎ
 Log (𝐸 (𝑒𝑥𝑝 (−ℎ 𝐻) | 𝑥))) 

  

Using Table 1, the Bayes estimator of parameters θ = (α, σ) under SELF, LLF and ELF, then given 

𝜃𝑠𝑒𝑙𝑓 =
∫ ∫ 𝜃 Π(α,σ) 𝑑𝛼 𝑑𝜎

∞

0

∞

0

∫ ∫ Π(α,σ) 𝑑𝛼 𝑑𝜎
∞

0

∞

0

,         

     (3.3) 

�̂�𝑒𝑙𝑓 = [
∫ ∫ 𝜃−𝑞 

∞
0 Π(α,σ) 𝑑𝛼 𝑑𝜎 

∞
0

∫ ∫  
∞

0 Π(α,σ) 𝑑𝛼 𝑑𝜎 
∞

0

]
−1/𝑞

,         

     (3.4) 

and 

   �̂�𝑙𝑙𝑓 = −
1

ℎ
 𝑙𝑜𝑔 [ 

∫ ∫ 𝑒−ℎ𝜃 Π(α,σ) 𝑑𝛼 𝑑𝜎 
∞

0
∞

0

∫ ∫  Π(α,σ) 𝑑𝛼 𝑑𝜎 
∞

0
∞

0

].        

     (3.5) 

where Π (α, σ) is given by (3.2), We can see that Bayes estimators are in the form of a ratio of integrals, which 

Couldn't be more straightforward than closed forms.  Here, we use two approximation methods, namely the 

Lindley approximation and importance sampling methods, to solve the above ratio of integrals discussed in the 

following sections. 

3.3 Approximation Techniques 

 

We can use various techniques in the literature to compute approximate Bayes estimates. This section employs 

the approaches to evaluate the Bayes estimates obtained in the preceding description. First, consider Lindley’s 

method, which expresses how to approximate a ratio of two particular integrations. For details, please refer to 

Lindley (1980). 

3.3.1 Lindely Approximation Method 

 

This subsection deals with the computation of the Bayes estimates of α and σ of PFD under the loss functions 

when a doubly censored sample is available. Several approximate methods are available to solve the ratio of 

integrals. One of the simplest methods is Lindley’s approximation method proposed by Lindley (1980). The 

Lindley approximation for obtaining the Bayes estimates of α and σ by considering the function I(x) is defined as 

follows; 

, 
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We can approximate the ratio of the integral as 

  
     (3.6)  

Where, 

 

  and  

First, let us write the Bayes estimate of σ for the SELF. Under this loss function, 

∆ (α, σ) = σ, ∆σ = 1, ∆αα = ∆σσ = ∆ασ = ∆σα = 0. In the following, Bayes estimate σ under SELF is given by 

. 

If so, then the 𝛼𝑠𝑒𝑙𝑓 estimate is 

. 

Next, then the ELF of σ is given as 

. 

. 

Then the Bayes estimate of 𝛼𝑒𝑙𝑓  is given as 

. 

Next, then the LLF of σ is given as 

∆ (α, σ) =𝑒−𝑝𝜎, ∆σ = −p 𝑒−𝑝𝜎, ∆σσ = 2𝑝𝑒−𝑝𝜎, ∆σσ = ∆ασ = ∆σα = ∆σ = 0. 

. 

Similarly, the Bayes estimate of αllf is 

. 

3.3.2 Importance sampling procedure 

In this subsection, we discuss the importance sampling procedure to derive the ratio of integrals for finding the 

Bayes estimator of parameters α and σ. We also derive the HPD credible intervals of the unknown parameters. 

Here we use the importance sampling method to obtain Bayes estimates of the parameters α and σ as considered 

by Kundu and Pradhan (2009a). We can write the joint posterior distribution given in (3.2).  

𝛱 (𝛼, 𝜎 | 𝑥)  ∝  𝑓𝛼(c + s − r + 1, 𝑑 − (𝑟 − 1) 𝑙𝑜𝑔[𝑥𝑟] − 𝑍)  𝑓𝜎|𝛼(𝑏 − 𝑎𝑠, 𝐴(𝜎)), ℎ (𝛼, 𝜎|𝑥)   

where   

ℎ (𝛼, 𝜎|𝑥) =  
𝑒−𝑍 [1−(

𝑥𝑠
𝜎

)
𝛼

]
𝑛−𝑠

 Γ(𝑏−𝑎𝑠)

exp {(𝑏−𝑎𝑠) 𝑙𝑜𝑔(𝐴(𝜎))}
                                                                                                                                                                                              

(3.7) 

𝑓𝛼(c + s − r + 1, 𝑑 − (𝑟 − 1) 𝑙𝑜𝑔[𝑥𝑟] − 𝑍) =  𝛼𝑐+𝑠−𝑟+1 𝑒−𝛼(𝑑−(𝑟−1) 𝑙𝑜𝑔[𝑥𝑟]−𝑍) (𝑑−(𝑟−1) 𝑙𝑜𝑔[𝑥𝑟]−𝑍)c+s−r+1

Γ(𝑐+𝑠−𝑟+1)
   

    

    (3.8) 

which is gamma distribution with scale parameter 𝑑 − (𝑟 − 1) 𝑙𝑜𝑔[𝑥𝑟] − 𝑍 and shape parameter (𝑐 + 𝑠 − 𝑟 =
+1) and 

𝑓𝜎|𝛼(𝑏)      

    

    (3.9) 
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is gamma distribution with scale parameter 𝐴(𝜎) and shape parameter b 

−𝛼𝑠is gamma distribution with scale parameter 𝐴(𝜎) and shape parameter b − 𝛼𝑠 

Thus, the Bayes estimations of the parameters under the importance sampling procedure can approximate using 

the following: 

Algorithm 1 

I.The initial values are n, r, and s. 

II.Based on the method of Type-II double censored method generate the data and derive Bayes estimators of α and  

𝜎. 

III.Using the joint posterior distribution in (3.2). 

a Generate N values of α say (𝛼1, 𝛼2,   … , 𝛼𝑁)  from gamma ( c + s − r + 1, 𝑑 − (𝑟 − 1) 𝑙𝑜𝑔[𝑥𝑟] − 𝑍) 

distribution. 

b Generate N values of 𝜎 say (𝜎1, 𝜎2,   … , 𝜎𝑁) from gamma (𝑏 − 𝑎𝑠, 𝐴(𝜎)) distribution based on the N 

value of α say (𝛼1, 𝛼2,   … , 𝛼𝑁) respectively obtain in the earlier step (a). 

IV.Based on the N value of α and 𝜎 compute N value of ℎ (𝛼, 𝜎|𝑥). 

V.Then, the Bayes estimators of the parameter θ = (α, σ) under SELF, ELF, and LLF simplify. 

𝜃𝑠𝑒𝑙𝑓 =
∑ 𝜃𝑘1

 ℎ(𝛼𝑘1, 𝜎𝑘1
)𝑁

𝑘1=1

∑  ℎ(𝛼𝑘1, 𝜎𝑘1
)𝑁

𝑘1=1

,         

  

𝜃𝑒𝑙𝑓 = [
∑ (𝜃𝑘1

)
−𝑞

 ℎ(𝛼𝑘1, 𝜎𝑘1
)𝑁

𝑘1=1

∑  ℎ(𝛼𝑘1, 𝜎𝑘1
)𝑁

𝑘1=1

]

−1/𝑞

 ,        

   

and 

�̂�𝑙𝑙𝑓 = −
1

ℎ
 𝑙𝑜𝑔 [ 

∑ 𝑒
−ℎ𝜃𝑘1  ℎ(𝛼𝑘1, 𝜎𝑘1)𝑁

𝑘1=1

∑  ℎ(𝛼𝑘1, 𝜎𝑘1)𝑁
𝑘1=1

], 

Where ℎ(𝛼𝑘1, 𝜎𝑘1
),  𝑘1 = 1,2 are given by (3.7). 

3.3.3 HPD credible interval 

In this section, we suggest the HPD credible intervals of α and σ using the procedure discussed by Chen and Sao 

(1999). Define (α, σ) = (�̂�(𝜇), �̂�(𝜇)) , where α(µ) and σ(µ) for µ = 1, 2 ..., M are posterior samples generated 

respectively from (3.8) to (3.9) for α and σ. Let �̂�𝜇and �̂�𝜇  be the ordered values of �̂�(𝜇)  and �̂�(𝜇). Define 

 
The tth quantile of �̂� can be estimated as 

. 

The 100(1 − δ) 0/0, where 0 < δ < 1, confidence interval for �̂�  is given by (�̂�𝑗/𝑀, �̂�(𝑗+[(1−𝜇)𝑀]/𝑀)  ),  j = 1,2, ..., 

M, where [.] is the greatest integer function. Similarly, we can construct the 100(1 − δ) 0/0 HPD credible interval 

for σ. 

3.3.4 Markov Chain Monte Carlo Method 

This subsection discusses the Gibbs sampling procedure to generate a sample from the posterior distribution. We 

have used the concept of Metropolis-Hastings (M-H) under the Gibbs sampling procedure to create models from 

the posterior density function (3.2). The assumption is that parameters α and σ have independent gamma density 

functions with hyper-parameters c, d, b, and a, respectively. The conditional posterior densities of α and σ are, 

respectively;  

, 

 

 

 

  (3.10) 
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and 

 .                  

     (3.11) 

We shall use the following steps for the generation of the required sample: 

Algorithm 2: 

a) Start with initial guess (𝛼(0) =  �̂� 𝑎𝑛𝑑 𝜎(0) =  �̂�) 

b) Based on M-H create αI using (3.10) with the N(α(I−1), β1) proposal distribution, where β1 is from variance-

covariance matrix. 

c) Based on M-H create σI using (3.11) with the N(σ(I−1), β2) proposal distribution, where β2 is from variance-

covariance matrix. 

d) Calculate αI and σI 

e) Put I=I+1. 

f) Repeat steps (2-5) M times. 

g) We get the point estimation by Bayes estimates of the parameters θ = (α, σ) for the SEL, ELF, and LLF 

are given respectively by 

, 

 
and 

. 

h) To compute the credible intervals of order 𝜃𝑇0+1, … , 𝜃𝑀  respectively. Hence, the symmetric credible 

interval with 100(1 − 𝛿)%, 0 < δ < 1 is 

𝜃((𝑀−𝑇0)(𝛿/2)), 𝜃((𝑀−𝑇0)(1−𝛿/2)), 

 

where T0 is the number of iterations (burn-in-period). 

4 Prediction 

In many business and engineering problems, the behaviour of future samples is predicted based on information 

from existing ones. For example, past data indicate the number of random failures for the coming year. Jeffrey 

(1961) and many others have studied this problem from a Bayesian perspective. In this section, based on the type-

II doubly censored sample X = xr, ...., xs, the issue under consideration is predicting the failure times of the unfailed 

things, Yk:n, k = s + 1,...,n in a future sample of n items independently drawn from the same population. We 

consider the problem of predicting the unfailed items Yk:n = Xs+1,...., Xn. For predicting Yk:n, we first obtain the 

posterior predictive density of Yk:n given X. Then, the posterior predictive density of Yk:n given X is given by 

       
     (4.1) 

We are often interested in predicting an order statistic, Yk:n of an unfailed item of size n. Thus, we need the 

predictive density of the future order statistics Yk:n given informative sample X. The pdf g(Yk:n|α,σ) of nth order 

statistics is given by; 

 ,  

     (4.2) 

where f (. |α, σ) and F (. |α, σ) are the corresponding density and cumulative distribution function. If we denote the 

predictive density of Yk:n as g∗(.| X), then 

g∗ (Yk:n |X) = ∬ g(𝑌𝑘:𝑛|α, σ) Π(α, σ|X), dα dσ,                      

     (4.3)  
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where Π (α, σ| X) is the joint posterior density of α and σ. The above shows that can not explicitly solve the integral 

in equation (4.3). Thus, we propose using the MCMC technique to estimate the predictive density. For any fixed 

value of Yk:n, we simulate a value of α, σ. Therefore, we can write a consistent simulation estimator of g∗ (. |X) as, 

 .                    

     (4.4) 

It should note that the evaluation of the expression (4.4), which was briefly discuses in the previous section, may 

be done using the same MCMC approach. Therefore, the Bayes estimators of the Yk:n  given X using predictive 

density are offered by and where g(Yk:n|αk, σk) is provided by (4.3). 

 

𝑌𝑘:𝑛
𝑠𝑒𝑙𝑓 =  [

1

𝑁
 ∑ 𝑌𝑘:𝑛 𝑔(𝑌𝑘:𝑛 | 𝛼𝑘, 𝜎𝑘)𝑛

𝑘=𝑠+1 ], 

𝑌𝑘:𝑛
𝑒𝑙𝑓 =  [

1

𝑁
 ∑ 𝑌𝑘:𝑛

−𝑞 𝑔(𝑌𝑘:𝑛 | 𝛼𝑘, 𝜎𝑘)𝑛
𝑘=𝑠+1 ]

−
1

𝑞
, 

and 

𝑌𝑘:𝑛
𝑙𝑙𝑓 =  −

1

𝑝
 𝑙𝑜𝑔 [

1

𝑁
 ∑ 𝑒−𝑝𝑌𝑘:𝑛  𝑔(𝑌𝑘:𝑛 | 𝛼𝑘, 𝜎𝑘)

𝑛

𝑘=𝑠+1

] 

 

                         

Table 2: Bias and MSE for MLE and AIL and CP for CI of the α 

(n, r, s) α σ �̂�𝑚𝑙𝑒  confidence interval 

asymptotic HPD 

   Bias MSE AIL CP AIL CP 

(10,3,5) 1 0.5 -0.4818 0.2811 0.1007 0.9129 0.4323 0.9572 

(10,3,5) 3 0.75 -0.2827 0.8025 0.1825 0.9091 0.1544 0.9398 

(15,3,10) 1 0.5 -0.8426 0.7113 0.1019 0.9499 0.3670 0.9335 

(15,3,10) 3 0.75 -0.2924 0.8555 0.1552 0.9399 0.2704 0.9313 

(20,3,15) 1 0.5 -0.6930 0.4829 0.0929 0.9104 0.1687 0.9299 

(20,3,15) 3 0.75 -0.2886 0.8333 0.0925 0.9085 0.0181 0.9157 

 

 

Table 3: Bias and MSE for MLE and AIL and CP for CI of the σ 

(n, r, s) α σ σ̂mle confidence interval 

asymptotic HPD 

   Bias MSE AIL CP AIL CP 

(10,3,5) 1 0.5 -0.2727 0.1013 0.5083 0.9881 0.4953 0.9867 

(10,3,5) 3 0.75 -0.2686 0.1108 0.4995 0.9782 0.5580 0.9917 

(15,3,10) 1 0.5 -0.1849 0.0598 0.4688 0.9805 0.5131 0.9891 

(15,3,10) 3 0.75 -0.2007 0.0733 0.4818 0.9716 0.5021 0.9786 

(20,3,15) 1 0.5 -0.3130 0.1326 0.4955 0.9863 0.4268 0.9663 

(20,3,15) 3 0.75 -0.3547 0.1906 0.5422 0.9886 0.6520 0.9982 
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 (a)   (b) 
        Figure 1: MLE and Bayes estimators of the α and σ under different loss functions based on the M-H Algorithm 

 

Table 4: MSE value for Bayes estimators of α and σ under Lindley approximation method 

(n, r, s) α σ �̂�𝑠𝑒𝑙𝑓 �̂�𝑒𝑙𝑓 �̂�𝑙𝑙𝑓  �̂�𝑠𝑒𝑙𝑓  �̂�𝑒𝑙𝑓 �̂�𝑙𝑙𝑓 

   MSE MSE MSE MSE MSE MSE 

(10,3,5) 1 0.5 0.3233 0.1811 0.5093 0.2627 0.3433 0.3178 

(10,3,5) 3 0.75 0.2977 0.1577 0.1712 0.2297 0.2077 0.2577 

(15,3,10) 1 0.5 0.1897 0.1087 0.4111 0.1853 0.1805 0.2558 

(15,3,10) 3 0.75 0.0290 0.0939 0.1203 0.0262 0.1412 0.1004 

(20,3,15) 1 0.5 0.0258 0.0658 0.0883 0.0099 0.1291 0.0296 

(20,3,15) 3 0.75 0.0054 0.0534 0.0296 0.0045 0.0597 0.0242 

 

Table 5: MSE value for Bayes estimators of α and σ under importance sampling procedure 

(n, r, s) α σ �̂�𝑠𝑒𝑙𝑓 �̂�𝑒𝑙𝑓 �̂�𝑙𝑙𝑓  �̂�𝑠𝑒𝑙𝑓  �̂�𝑒𝑙𝑓 �̂�𝑒𝑙𝑓 

   MSE MSE MSE MSE MSE MSE 

(10,3,5) 1 0.5 0.2805 0.3527 0.3920 0.4536 0.3003 0.2528 

(10,3,5) 3 0.75 0.2559 0.3278 0.3380 0.3460 0.3246 0.2188 

(15,3,10) 1 0.5 0.2103 0.2260 0.2843 0.2400 0.2573 0.1807 

(15,3,10) 3 0.75 0.1660 0.1871 0.1597 0.1694 0.2336 0.1190 

(20,3,15) 1 0.5 0.1260 0.0778 0.1109 0.1431 0.1805 0.1160 

(20,3,15) 3 0.75 0.0885 0.0986 0.0877 0.1277 0.1070 0.0485 

5 SIMULATION STUDY 

This section conducts the simulation study to investigate the performance of the proposed estimators. This study's 

MLE and Bayes estimators may calculate the difference numerically using Monte Carlo Simulations. A Monte 

Carlo simulation study compares the Bayes estimators under various loss functions, sample sizes, left and right 

test termination times, and parametric values. Take random samples of sizes n = 10;15;20 from PFD with α = 1;3 

and σ = 0.5;0.75 respectively. Consider the values of hyperparameters as c = 2.2, d = 2, b = 2.4 and a = 2.5 

respectively. We use the following algorithm, the generated samples under a doubly censored scheme for N=1000 

times. 

Algorithm 3: 

i Start with initial values n, α, σ, a, b, c, d, r, s, q, and h. 

ii Create the Power function distribution with parameters (α, σ). 

iii Determine the test terminations points on left and right, that is, the values of xr and xs. 

iv The observations xr is less, and xs is more excellent have been considered censored from each 

sample.  

v Calculate the MLE and Bayes estimators using SELF, ELF, and LLF with the censored samples. 

vi Compute the average bias and MSE. 

vii Repeat step (1-6) 1000 times for the desired sample size. 

 

Table 6: The Bayes estimators of the parameters correspond to the electrical insulator's actual data. 
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Tables 2 and 3 present the average bias and MSE of the MLE together with the asymptotic confidence intervals 

of AIL and CP. MSE value of Bayes estimates using Lindley approximation and importance sampling procedures 

are given in Tables 4 and 5, respectively. We can report the following points from the numerical results presented 

in Tables 2-5. 

1. We can see that the Bayes estimator is better than MLE in bias and MSE. It is because Bayes estimators 

have more information in the form of prior knowledge than MLE. 

2. The average length of the approximate confidence intervals also increases as the sample size increases, 

while the coverage probability is around 0.95. 

3. From Table 4-5, the MSE of the estimators decreases with increasing sample size. 

4. The HPD credible intervals’ width is smaller than the width of the asymptotic confidence intervals in all 

the cases. However, the width of the confidence / HPD intervals decreases as the sample size increases. 

5. In Figure 1, using MSE, Bayes estimators and MLE perform the better increasing 

6 NUMERICAL EXAMPLE 

In this example, we analyze an actual data set, considered by Lawless (1982), representing the lifetime of a type 

of electrical insulator subject to constant voltage stress. It shows that the Power function distribution fits the data 

set well. We have checked the validity of PFD using the Kolmogorov Smirnov (KS) test and observed that the KS 

distance corresponding to the p-value = 0.265107 is 0.114393. Suppose that the first r = 3 smallest and the largest 

s = 5 observations censored. They represent the lifetime (in minutes) to fail: 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 

7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89. Then the doubly Type-II censored 

sample is observed as 

(x4, x5, ...., x15) = (0.78,8.01,31.75,7.35,6.50,8.27,33.91,32.52,3.16,4.85,2.78). 

For the Bayes estimation, we choose hyper-parameters values as a=1.6, b=3.2, c=2, and d=2, respectively. 

Bayesian estimates using LL and EL functions are evaluated for h = 2 and q = 2. The results of the analysis are in 

Table 6. The amounts of estimation associated with each estimator have given in the table. The table presents the 

estimated value of MLE and Bayes estimator as the best when looking at the actual data results. 

  α = 0.0137193 and σ = 0.399591   

(n, r, s)   estimation  Prediction 

  MLE AIL CP LAM ISP M-H k=10 k=18 

(19,3,5) �̂�𝑚𝑙𝑒  0.3629 - - - - - - - 

 �̂�𝑚𝑙𝑒  0.1323 - - - - - - - 

 �̂�𝐴𝐶𝐼 - 0.5924 0.9680 - - - - - 

 �̂�𝐴𝐶𝐼 - 0.6004 0.9969 - - - - - 

 �̂�𝑠𝑒𝑙𝑓 - - - 0.2675 0.3005 0.2614 - - 

 �̂�𝑠𝑒𝑙𝑓  - - - 0.1856 0.1228 0.4021 - - 

 �̂�𝑒𝑙𝑓 - - - 0.1478 0.1623 0.2213 - - 

 �̂�𝑒𝑙𝑓 - - - 0.1462 0.1005 0.3210 - - 

 �̂�𝑙𝑙𝑓 - - - 0.2845 0.2680 0.1956 - - 

 �̂�𝑙𝑙𝑓 - - - 0.2036 0.2215 0.2732 - - 

 
 

- - - - - - 0.3527 0.6542 

 
 

- - - - - - 0.3637 0.8324 

 
 

- - - - - - 0.3689 0.7954 
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7 CONCLUSION 

 

This paper proposed the estimating parameters of the PFD for the Type-II doubly censored data using MLE and 

Bayesian techniques. Bayes estimates are simplified using the Lindley approximation method and the Importance 

sampling procedure. The predictive posterior density for the future ordered statistics is difficult to obtain; using 

Bayesian computational techniques can be easily implemented to estimate the predictive densities. In our 

simulation study, we found that the bias and MSE values are satisfactory based on the estimated value of the MLE 

and Bayes estimators of the parameters under different loss functions. In data analysis, we study the performance 

of the proposed MLE and Bayes estimators under different loss functions. Large Bayesian samples are better than 

small classical samples in interpreting the actual study. The simulation shows that Bayes estimates perform better 

than the confidence interval and MLE. Also, the Bayes estimation of SELF is better in all cases. We can get the 

forecast interval for future observation and the ratio of subsequent failure times. An example shows the use of all 

the methods included in this paper. 
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