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ABSTRACT  

This paper extends a multi-choice decision-making approach for a stochastic randomized response model with two stages in a 

multivariate stratified sampling problem. In the proposed problem enumeration cost follows a normal distribution and budget 

parameter presented in multiple choices. Binary variables are used to handle the multiple choices of the budget parameter in the 
proposed problem. Further, utilizing the chance constraint approach, the probabilistic constraint has been transformed into a 

deterministic two-stage randomized response problem. Compromise optimum allocation of samples within each stratum is derived 

by using Goal Programming, Chebychev Approximation, and Chebychev Goal Programming techniques. For demonstration of 
the proposed model, a numerical illustration has been presented in the study.  

 

KEYWORDS: Chance Constraint Programming, Multi-Choice programming, Stratified sampling, Two-Stage randomized 
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RESUMEN 

Este paper extiende un enfoque de toma de decisión para un modelo de rsepuestas aleatorizadas multi-selección estocástica de dos 
etapas para el problema del muestreo estratificado multivariado. En el propuesto problema el costo de  enumeración sigue una 

distribución  normal y el  parámetro de presupuesto se  presenta con múltiples alternativas. Variables binarias son usadas para 

manejar las múltiples alternativas del parámetro de presupuesto en el  problema. Además , se utiliza un enfoque de restricciones 
restringidas, la restricción probabilística ha sido transformada en un problema bietápico de respuestas aleatorizadas  

determinísticas. Una afijación óptima de compromiso para las muestras de los estratos  es derivada usando Programación por 

Metas, Aproximación de Chebychev  y  Programación por Metas  de Chebychev. Para la demostración del modelo propuesto, 
una ilustración  numérica ha sido  presentada en el  estudio.  

 

PALABRAS CLAVE: Programación por Restricciones Restringidas, Programación Multi-seleción, Muestreo estratificado, 
Problema bietápico de respuestas aleatorizadas  , Técnica de transformación. 

 

 

1. INTRODUCTION 

 

In a structured survey interview, a randomized response research method is used. Randomized Response (RR) 

method is likewise a gadget suspected to enhance the accessibility of positive reaction identifying with delicate 

and sensitive issues on which information is hard to get. For reasons of humility, the dread of being thought 

extremist, or just a hesitance to trust insider facts to outsiders, numerous people endeavor to dodge certain 

inquiries put to them by questioners. To take out sly answers predisposition by diminishing the pace of non-

reaction keeping the respondent’s secrecy (Warner, 1965) developed Randomized response technique, which 

was further modified by Greenberg et al. (1969) permits respondents to answer to sensitive questions (for 

example, criminal conduct or sexuality) while looking after privacy. Chance concludes, obscure to the 

questioner, whether the inquiry is to be addressed honestly, or ”yes", paying little mind to reality. 

Mangat and Singh (1990) suggested a two-stage RR model based on Warner’s model. Hong et al. (1994) 

suggested a stratified RR technique. Various other RR techniques are also considered such as Chang and Huang 



(2001) used RR for the estimation of the proportion of a qualitative character, Chaudhuri (2001) used RR to 

estimate a sensitive proportion from a complex survey, Moors (1971) formulated the randomized response 

model to optimize the unrelated questions, Padmawar and Vijayan (2000) revisited the randomized response 

method and Singh (2002) proposed a new stochastic randomized response method that evokes more prominent 

participation from the respondents and can be made more efficient by selecting specific parameters. Some recent 

work on two-stage sampling and programming problems are due to Khan et al. (2006) who obtained optimum 

allocation in two-stage and stratified two-stage sampling for multivariate surveys, Khan et al. (2008) used 

dynamic programming to determine the optimum strata boundary points and Khan et al. (2012a) obtained 

compromise allocation in two-stage and stratified two-stage sampling designs for multivariate study. Shahid 

and Hussain (2016) presents the problem of the reliable data procuring on stigmatizing variable. For efficient 

estimation of average and sensitivity level, they proposed the two optional randomized response models.  

In numerous uses of the RR procedure, more than one sensitive issues are under examination i.e.multiple 

delicate inquiry settings are to be thought off. In such cases, an allocation called “Compromise allocation" is 

used to obtain optimum allocation for all the characteristics in some sense. 

In the sample survey problems, the uncertainties are inherent as only a part of the populace is measured and 

because of non-sampling errors. There are several approaches to model uncertainty in mathematical 

programming, such as fuzzy programming, stochastic programming, and multi-choice programming, etc. A 

probability distribution on the parameters usually characterizes uncertainty. Stochastic multivariate sample 

allocation problem in stratified sample surveys has been studied by many authors namely Kozak (2006), Diaz-

Garcia and Cortez (2008), Diaz-Garcia and Gary-Tapia (2007), Bakhshi et al. (2010), Khan et al. (2011), Khan 

et al. (2012b), Ali et al. (2013), Gupta et al. (2013a, 2013b), Khan et al. (2016), Gupta and Bari (2017), Gupta 

et al. (2020), Haq et al. (2020), Zhang et al. (2020), Nasseri and Bavandi (2021) among others. 

A multi-choice programming problem is a problem where the RHS goals (accessibility or prerequisite vectors) 

of certain requirements are multi-choice. For each limitation, there may exist a different number of goals, out 

of which precisely one is to be picked. Goals selection ought to be in such a way that the blend of decisions for 

every requirement ought to give an ideal answer for the objective function. There may exist more than one mix, 

which will give an ideal arrangement. Multi-choice linear programming problems have been discussed earlier 

by Ravindran et al. (1987), Hiller and Lieberman (1990), Chang (2007, 2008), Biswal and Acharya (2006, 

2011), Roy and Mahapatra (2014), Pradhan and Biswal (2017), Patro et al. (2018), and recently several 

researchers focus on the application of multi-choice linear programming some of them are Rout et al. (2020), 

Nasseri and Bavandi (2020), and Belay and Acharya (2021). 

This paper considers a RR model with two stages and a multi-objective non-linear programming problem 

(MONLPP) has been formulated. The MONLPP involves random variables following normal distribution and 

multiple choices for the right hand side budget parameter in cost constraint. Binary variables and some 

additional constraints are used to handle the multi-choice nature of budget parameter and chance constrained 

programming is used to transform probabilistic cost constraint into deterministic one. The compromise 

allocations are derived by three different techniques viz. Goal Programming (GP), Chebyshev Approximation 

(CA) and Chebyshev Goal programming (CGP). To validate the proposed model a numerical illustration based 

on the secondary data has been employed and all the mathematical models are solved by an optimization 

software LINGO-17. A detailed flow of methodology adopted in this paper is presented in Figure 1 below. 

 

 
Figure 1: Methodology Flow Chart 



 

2. TWO STAGE RANDOMIZED RESPONSE MODEL 

 

The initial notations and model has been considered from Ghufran et al. (2013). 

Notations: 

Stratum size:-𝑁ℎ, ℎ = 1,2, … , 𝐿 size of ℎ𝑡ℎ stratum 

Populace:- 𝑁 = ∑𝐿ℎ=1 𝑁ℎ 

Stratum weights:- 𝑊ℎ =
𝑁ℎ

𝑁
 

Sample size:- 𝑛ℎ sample size of ℎ𝑡ℎ stratum and 𝑛 = ∑𝐿ℎ=1 𝑛ℎ is the total sample size for the stratum h. 

A stratified populace of size N has considered and partitioned into L disjoint strata. In the first stage an 

individual respondent in the sample is told to utilize the randomization gadget 𝑅1ℎ which comprises of the 

accompanying two explanations: 

(i) "I belong to the sensitive group" & (ii) "Go to the randomization device 𝑅2ℎ in the second stage" 

with known probabilities 𝑀ℎ & (1 − 𝑀ℎ) respectively. 

Respondents are advised in the second stage to use the randomization device 𝑅2ℎ comprises of the 

accompanying two explanations: 

(i) "I belong to the sensitive group" & (ii) "I do not belong to the sensitive group" with known 

probabilities 𝑃ℎ & (1 − 𝑃ℎ) respectively. 

Expecting that the "Yes" or a "No" reports are made honestly for various results and 𝑀ℎ and 𝑃ℎ are 

set by the questioner, at that point the likelihood of a "Yes" answer in layer h is given by  

 𝑌ℎ = 𝑀ℎ𝜋𝑠ℎ + (1 − 𝑀ℎ)[𝑃ℎ𝜋𝑠ℎ + (1 − 𝑃ℎ)(1 − 𝜋𝑠ℎ)]; ℎ = 1,2, … , 𝐿.                            (1) 

 furthermore, 𝜋𝑠ℎ is the extent of respondents having a place with the delicate gathering from layer h. The 

most extreme probability gauge of 𝜋𝑠ℎ is  

 𝜋̂𝑠ℎ =
𝑌̂ℎ−(1−𝑀ℎ)(1−𝑃ℎ)

2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)
; ℎ = 1,2, … , 𝐿.                                                          (2) 

 where 𝑌̂ℎ is the assessed extent of "Yes" answers which follows a binomial distribution 𝐵(𝑛ℎ, 𝑌ℎ). It very 

well may be seen that the estimator 𝜋̂𝑠ℎ is unbiased for 𝜋𝑠ℎ with variance  

 𝑉(𝜋̂𝑠ℎ) =
𝜋𝑠ℎ(1−𝜋𝑠ℎ)

𝑛ℎ
+

(1−𝑀ℎ)(1−𝑃ℎ)[1−(1−𝑀ℎ)(1−𝑃ℎ)]

𝑛ℎ[2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)]
2                                              (3) 

 Since 𝑛ℎ are drawn autonomously from every layer, the estimators for singular layers can be added to acquire 

the estimator for the entire populace. Thus an unbiased estimate of 𝜋𝑠ℎ is given by  

 𝜋̂𝑠 = ∑𝐿ℎ=1 𝑊ℎ𝜋̂𝑠ℎ 

Utilizing Eqn (2)  

 𝜋̂𝑠 = ∑𝐿ℎ=1 𝑊ℎ [
𝑌̂ℎ−(1−𝑀ℎ)(1−𝑃ℎ)

2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)
]                                                                (4) 

  

 

3. OPTIMIZATION MODEL FORMULATION 

 

To optimize the two stage randomized response under uncertain environment, a multi-choice stochastic model 

has been considered and formulated as MONLPP as in Ghufran et al. (2014):  

 

Minimize [

𝑉(𝜋̂𝑠1)
⋮
𝑉(𝜋̂𝑠𝑝)

]

Subject to ∑𝐿ℎ=1 𝑐ℎ𝑛ℎ +∑
𝐿
ℎ=1 𝑡ℎ√𝑛ℎ ≤ 𝐶0

2 ≤ 𝑛ℎ ≤ 𝑁ℎ; ℎ = 1,2, … , 𝐿

 and 𝑛ℎ are  integers }
 
 
 
 
 

 
 
 
 
 

                                                 (5) 

 where  

 𝑉(𝜋̂𝑠𝑗) = ∑
𝐿
ℎ=1

𝑊ℎ
2

𝑛ℎ
{𝜋𝑠ℎ𝑗(1 − 𝜋𝑠ℎ𝑗) +

(1−𝑀ℎ)(1−𝑃ℎ)[1−(1−𝑀ℎ)(1−𝑃ℎ)]

[2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)]
2 } 

In most of the situations, the cost of measurement 𝑐ℎ, and the travel cost 𝑡ℎ in several strata are assigned by 



the Decision-Maker (DM). But, in reality, DM itself does not know the precise values of those parameters. To 

deal with the uncertainty, the DM may consider these parameters as random. Thus, we assume that 𝑐ℎ and 𝑡ℎ 

are independently normally distributed random variables and that the multiple choices are available for the total 

budget. Therefore, the multi-choice non-linear probabilistic cost constraint is given as  

 

 𝑃 (∑𝐿ℎ=1 𝑐ℎ𝑛ℎ + ∑
𝐿
ℎ=1 𝑡ℎ√𝑛ℎ ≤ (𝐶0

(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)) ≥ 𝑝0 

where 𝑝0 is a specified probability and 0 ≤ 𝑝0 ≤ 1.  

With a probabilistic cost function, all the p variances given by (5) can be minimized simultaneously to derive 

the compromise allocation. Thus, the following Multi-Choice Stochastic Non-Linear Programming Problem 

(MCSNLPP) is solved to find the optimum compromise allocations 𝑛ℎ:  

 

 Minimize [

𝑉(𝜋̂𝑠1)
⋮
𝑉(𝜋̂𝑠𝑝)

]

 Subject  to 𝑃(∑𝐿ℎ=1 𝑐ℎ𝑛ℎ + ∑
𝐿
ℎ=1 𝑡ℎ√𝑛ℎ ≤ (𝐶0

(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)) ≥ 𝑝0

2 ≤ 𝑛ℎ ≤ 𝑁ℎ; ℎ = 1,2, … , 𝐿
 and 𝑛ℎ are  integers }

 
 
 

 
 
 

                      (6) 

In order to solve the above MCSNLPP, probabilistic and multiple choice constraints are transformed into an 

equivalent deterministic form using chance constrained programming and binary integer programming as 

discussed below:  

 

3.1  Chance Constrained Programming 

 

Chance constrained programming includes constraints that are relied upon to be fulfilled distinctly in an extent 

of cases or with given probabilities. In chance constraint formulation, the vulnerability surface is converted into 

input moments, bringing about an equal deterministic optimization problem. Therefore, using the chance 

constrained programming, we obtain the equivalent deterministic form of problem given in Eqn. (5) as follows 

(Khan et al., 2011) (MCSNLPPD):  

 Minimize                    [

𝑉(𝜋̂𝑠1)
⋮
𝑉(𝜋̂𝑠𝑝)

]                                                                       (𝑖)

 Subject  to 

(∑𝐿ℎ=1 𝑐ℎ̅𝑛ℎ + ∑
𝐿
ℎ=1 𝑡ℎ̅√𝑛ℎ) +

𝐾𝛼√(∑
𝐿
ℎ=1 𝜎𝑐ℎ

2 𝑛ℎ
2 + ∑𝐿ℎ=1 𝜎𝑡ℎ

2 𝑛ℎ) ≤ (𝐶0
(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)    (𝑖𝑖)

2 ≤ 𝑛ℎ ≤ 𝑁ℎ; ℎ = 1,2, … , 𝐿                                                        (𝑖𝑖𝑖)
 and 𝑛ℎ are  integers                                                                             (𝑖𝑣) }

 
 
 
 

 
 
 
 

                 (7) 

The right hand side of constraint 7(ii) contains k number of goals out of which the goal that will minimize the 

objective is to be selected. To solve the problem of multi-choice parameter we use a transformation procedure 

for different cases in the next section.  

 

3.2  Binary Integer Programming Technique 

 

Binary integer programming is used to convert the multiple choice problem into an equivalent deterministic 

problem (Biswal and Acharya, 2009). The model MCINLPPD is formulated for maximum of two choices for 

any availability of budget in RHS of cost constraint function. Two cases are presented below for k=2 and 3.  

 

Case 1: 𝑘 = 2  

 

For 𝑘 = 2, RHS of constraint 7(ii) has two parameters 𝐶0
(1)
, 𝐶0

(2)
, out of which one has to be selected. Since 

the total number of elements of the set is 2, one binary variable is required. Using the binary variable 𝜔(1), the 

cost constraint will be: 

 



 𝐶0 = 𝜔(1)𝐶0
(1)
+ (1 − 𝜔(1))𝐶0

(2)
 

where 𝜔(1) = 0/1 

 

Case 2: 𝑘 = 3  

 

For 𝑘 = 3, RHS of constraint 7(ii) has three parameters 𝐶0
(1)
, 𝐶0

(2)
, 𝐶0

(3)
, out of which one has to be selected. 

Since 21 < 3 < 22, so we need two binary variables 𝜔(1) and 𝜔(2). Since 3 can be expressed as (
2
2
) + (

2
1
)   

or   (
2
1
) + (

2
0
), therefore, the remaining one’s (i.e. 4-3) term can be restricted by introducing additional 

constraint in problem (8). Using the binary variables 𝜔(1) and 𝜔(2) and introducing additional constraint, two 

models of the cost constraint will be: 

𝑀𝑜𝑑𝑒𝑙(𝑎): 𝐶0 = (1 − 𝜔(1))(1 − 𝜔(2))𝐶0
(1)
+ (1 − 𝜔(1))𝜔(2)𝐶0

(2)
+ 𝜔(1)(1 − 𝜔(2))𝐶0

(3)
 

with additional constraint  

 𝜔(1) + 𝜔(2) ≤ 1 

and 𝜔(𝑞) = 0/1; 𝑞 = 1,2 

𝑀𝑜𝑑𝑒𝑙(𝑏): 𝑐0 = (1 − 𝜔
(1))𝜔(2)𝐶0

(1)
+𝜔(1)(1 − 𝜔(2))𝐶0

(2)
+ 𝜔(1)𝜔(2)𝐶0

(3)
 

with additional constraint  

 𝜔(1) + 𝜔(2) ≤ 1 

and 𝜔(𝑞) = 0/1; 𝑞 = 1,2 Similarly we can formulate the deterministic models for more then three choices of 

the parameters.  

 

4  COMPROMISE SOLUTION USING DIFFERENT OPTIMIZATION TECHNIQUES 

 

In this section three optimization techniques has been discussed in detail to derive the optimum allocation of 

the proposed MONLPP. 

  

4.1  Goal Programming approach 

 

Goal programming approach (GP) is a well known programming approach. Initially, the goal programming 

formulation was introduced by Charnes et al. (1955) and a more formal theory of goal programming is given 

by Charnes and Cooper (1961). Further, it has been discussed by several authors such as Varshney et al. (2011), 

Ghufran et al. (2014) etc. Using Goal programming approach by these authors, our GP model will be:  

 

 

 Minimize ∑𝑝𝑗=1 𝑥𝑗

 Subject  to ∑𝐿ℎ=1
𝑊ℎ
2

𝑛ℎ
𝜋𝑠ℎ𝑗(1 − 𝜋𝑠ℎ𝑗) + 𝐴ℎ − 𝑥𝑗 ≤ 𝑉(𝜋̂𝑠𝑗)

∗

(∑𝐿ℎ=1 𝑐ℎ̅𝑛ℎ + ∑
𝐿
ℎ=1 𝑡ℎ̅√𝑛ℎ) + 𝐾𝛼

√(∑𝐿ℎ=1 𝜎𝑐ℎ
2 𝑛ℎ

2 +∑𝐿ℎ=1 𝜎𝑡ℎ
2 𝑛ℎ) ≤ (𝐶0

(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)

2 ≤ 𝑛ℎ ≤ 𝑁ℎ; ℎ = 1,2, … , 𝐿; 𝑥𝑗 ≥ 0; 𝑗 = 1,2, … , 𝑝

 and 𝑛ℎ are  integers }
 
 
 
 

 
 
 
 

                     (8) 

where  

 

 𝐴ℎ =
(1−𝑀ℎ)(1−𝑃ℎ)[1−(1−𝑀ℎ)(1−𝑃ℎ)]

[2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)]
2  

𝑉(𝜋̂𝑠𝑗)
∗= variance at the individual optimum allocation 𝑛𝑗

∗  and 𝑥𝑗(𝑗 = 1,2, … , 𝑝)  are the unknown goal 

variables.  

 

4.2  Chebyshev Goal Programming approach 

 

Among several forms of Chebyshev goal programming, we limit our coverage to just one for the solution of 

formulated problem (7). Chebyshev goal programming minimizes the maximum deviation from any single soft 



goal. Returning to our problem, one possible chebyshev goal programming model will be:  

 

 

 Minimize               𝛿
 Subject  to 

(∑𝐿ℎ=1 𝑐ℎ̅𝑛ℎ + ∑
𝐿
ℎ=1 𝑡ℎ̅√𝑛ℎ) + 𝐾𝛼

√(∑𝐿ℎ=1 𝜎𝑐ℎ
2 𝑛ℎ

2 + ∑𝐿ℎ=1 𝜎𝑡ℎ
2 𝑛ℎ) ≤ (𝐶0

(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)

𝛿 ≥ (𝑉(𝜋̂𝑠𝑗) − 𝑈𝑗)/(𝑈𝑗 − 𝐿𝑗)

2 ≤ 𝑛ℎ ≤ 𝑁ℎ; ℎ = 1,2, … , 𝐿
𝛿 ≥ 0

and 𝑛ℎ are  integers }
 
 
 
 

 
 
 
 

                    (9) 

 where  

𝑈𝑗=the worst possible value for objective j.  

𝐿𝑗=the best possible value for objective j.  

𝛿=a dummy variable representing the worst deviation level.  

𝑉(𝜋̂𝑠𝑗)=the value of the 𝑗𝑡ℎ objective function.  

 

4.3  Chebyshev Approximation 

 

Here we apply Chebyshev Approximation to problem (7) for which we have to convert the problem into convex 

programming problem, so by making the transformation 𝑛ℎ =
1

𝑥ℎ
, ℎ = 1,2, … , 𝐿 and putting  

 

 𝑎ℎ𝑗 = 𝑊ℎ
2 {𝜋𝑠ℎ𝑗(1 − 𝜋𝑠ℎ𝑗) +

(1−𝑀ℎ)(1−𝑃ℎ)[1−(1−𝑀ℎ)(1−𝑃ℎ)]

[2𝑃ℎ−1+2𝑀ℎ(1−𝑃ℎ)]
2 }, 

the problem (3) is equivalent to minimizing the linear form (Khan et al., 2011) 

 

 

 Minimize 𝑍 = 𝑥𝐿+1
 Subject  to 𝑎𝑗𝑉(𝜋̂𝑠𝑗) ≤ 𝑥𝐿+1𝑜𝑟𝑎𝑗 ∑

𝐿
ℎ=1 𝑎ℎ𝑗𝑥ℎ − 𝑥𝐿+1 ≤ 0, 𝑗 = 1,2, … , 𝑝

(∑𝐿ℎ=1
𝑐ℎ̅

𝑥ℎ
+ ∑𝐿ℎ=1

𝑡̅ℎ

√𝑥ℎ
) + 𝐾𝛼

√(∑𝐿ℎ=1
𝜎𝑐ℎ
2

𝑥ℎ
2 + ∑

𝐿
ℎ=1

𝜎𝑡ℎ
2

𝑥ℎ
) ≤ (𝐶0

(1)
, 𝐶0

(2)
, … , 𝐶0

(𝑘)
)

 and 
1

𝑁ℎ
≤ 𝑥ℎ ≤

1

2
; ℎ = 1,2, … , 𝐿 }

 
 
 
 

 
 
 
 

                       (10) 

 where 𝑎𝑗 are the weights assigned to the variances according to their importance. 

Now the problem (10) is a convex programming problem which is solved by an optimization software 

LINGO-17.  

 

5  NUMERICAL ILLUSTRATION 

 

To illustrate the computational details following example based on artificial data is given below.  

The populace size N is taken to be 1000. It is estimated that for complete budget of the survey, choices 6000 or 

6100 or 6200 units are available. The artificial data for four characteristics and four strata are given in Table 1. 

In this problem, it is assumed that measurement and travel costs are independently normally distributed random 

variables with known means and standard deviations which are provided in Table 1. Utilizing the values 

provided in Table 1, the values of 𝐴ℎ  are obtained as 𝐴1 = 0.072830578, 𝐴2 = 0.072830578, 𝐴3 =
0.072830578𝑎𝑛𝑑𝐴4 = 0.072830578. Let the chance constraint in 7(ii) required to be satisfied with 99 percent 

probability such that 𝐾𝛼  = 0.99. The value of the standard normal variable corresponding to 99 percent 

confidence limit is 2.33 (by linear interpolation).  

Table  1: Data for four characteristics and four strata 

h 𝑁ℎ 𝑊ℎ 𝜋𝑠ℎ1 𝜋𝑠ℎ2 𝜋𝑠ℎ3 𝜋𝑠ℎ4 𝑀ℎ 𝑃ℎ 𝐸(𝑐ℎ) 𝑉(𝑐ℎ) 𝐸(𝑡ℎ) 𝑉(𝑡ℎ) 



1 81 0.0808 0.28 0.33 0.40 0.62 0.8 0.7 15 3 10 2 

2 343 0.3434 0.48 0.53 0.35 0.22 0.8 0.7 20 5 13 1.5 

3 455 0.4546 0.68 0.73 0.55 0.82 0.8 0.7 30 6.5 10 1 

4 121 0.1212 0.88 0.93 0.75 0.32 0.8 0.7 18 2.5 12 3 

 

Using the data given in Table 1 and procedure discussed in sections 2.1 & 2.2, the following Multi-Objective 

Non-Linear Programming Problem (MONLPP) will be solved as a non-linear programming problem (NLPP) 

for each objective function. 

 

 

 Minimize 
0.001791658449

𝑛1
+

0.038022161

𝑛2
+

0.06002072

𝑛3
+

0.00262104527

𝑛4

 Subject  to (15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝑧(1) + 𝑧(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121
 and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }

 
 
 

 
 
 

              (11) 

 

Solving the problem in Eqn. (11) has been solved by an optimization software LINGO-17 and the optimal 

allocation is derived as follows: 

𝑛1 = 21, 𝑛2 = 84, 𝑛3 = 88, 𝑛4 = 25 with 𝑉(𝜋𝑠ℎ1) = 0.001324857. 

 

 Minimize 
0.001918966929

𝑛1
+

0.037963199

𝑛2
+

0.055784166

𝑛3
+

0.00202612295

𝑛4

 Subject  to (15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝑧(1) + 𝑧(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121
and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }

 
 
 

 
 
 

                    (12) 

 

Solving the problem in Eqn. (12) has been solved by an optimization software LINGO-17 and the optimal 

allocation is derived as follows: 

𝑛1 = 23, 𝑛2 = 88, 𝑛3 = 86, 𝑛4 = 22 with 𝑉(𝜋𝑠ℎ2) = 0.001255583. 

 

 Minimize 
0.002042358225

𝑛1
+

0.03541605

𝑛2
+

0.066199888

𝑛3
+

0.003824110406

𝑛4

 Subject  to (15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝑧(1) + 𝑧(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121
 and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }

 
 
 

 
 
 

                    (13) 

 

Solving the problem in Eqn. (13) has been solved by an optimization software LINGO-17 and the optimal 

allocation is derived as follows: 

𝑛1 = 25, 𝑛2 = 78, 𝑛3 = 88, 𝑛4 = 29 with 𝑉(𝜋𝑠ℎ3) = 0.001419884. 

 



 Minimize 
0.002013632209

𝑛1
+

0.028824123

𝑛2
+

0.045554438

𝑛3
+

0.00426626255

𝑛4

 Subject  to (15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝑧(1) + 𝑧(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121
and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }

 
 
 

 
 
 

                   (14) 

 

Solving the problem in Eqn. (14) has been solved by an optimization software LINGO-17 and the optimal 

allocation is derived as follows: 

𝑛1 = 25, 𝑛2 = 81, 𝑛3 = 83, 𝑛4 = 34 with 𝑉(𝜋𝑠ℎ4) = 0.001110726. 

Using the individual optimum solutions and the procedures discussed in section 3, the GP model, CGP model, 

and CA model can be formulated as:  
 Goal  Programming  model: 

 Minimize 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

 Subject  to (
0.001791658449

𝑛1
+

0.038022161

𝑛2
+

0.06002072

𝑛3
+

0.00262104527

𝑛4
) − 𝑥1 ≤ 0.001324857

(
0.001918966929

𝑛1
+

0.037963199

𝑛2
+

0.055784166

𝑛3
+

0.00202612295

𝑛4
) − 𝑥2 ≤ 0.001255583

(
0.002042358225

𝑛1
+

0.03541605

𝑛2
+

0.066199888

𝑛3
+

0.003824110406

𝑛4
) − 𝑥3 ≤ 0.001419884

(
0.002013632209

𝑛1
+

0.028824123

𝑛2
+

0.045554438

𝑛3
+

0.00426626255

𝑛4
) − 𝑥4 ≤ 0.001110726

(15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝜔(1) + 𝜔(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121

 and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

                       (15) 

 

 Minimize 𝛿

 Subject  to 

𝛿 ≥ ((
0.001791658449

𝑛1
+

0.038022161

𝑛2
+

0.06002072

𝑛3
+

0.00262104527

𝑛4
) − 0.001341307)/(0.00001645)

𝛿 ≥ ((
0.001918966929

𝑛1
+

0.037963199

𝑛2
+

0.055784166

𝑛3
+

0.00202612295

𝑛4
) − 0.001277130)/(0.000021547)

𝛿 ≥ ((
0.002042358225

𝑛1
+

0.03541605

𝑛2
+

0.066199888

𝑛3
+

0.003824110406

𝑛4
) − 0.001434843)/(0.000014959)

𝛿 ≥ ((
0.002013632209

𝑛1
+

0.028824123

𝑛2
+

0.045554438

𝑛3
+

0.00426626255

𝑛4
) − 0.001138720)/(0.000027994)

(15𝑛1 + 20𝑛2 + 30𝑛3 + 18𝑛4 + 10√𝑛1 + 13√𝑛2 + 10√𝑛3 + 12√𝑛4)

+2.33√(3𝑛1
2 + 5𝑛2

2 + 6.5𝑛3
2 + 2.5𝑛4

2) + (2𝑛1 + 1.5𝑛2 + 𝑛3 + 3𝑛4)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝜔(1) +𝜔(2) ≤ 1; 2 ≤ 𝑛1 ≤ 81; 2 ≤ 𝑛2 ≤ 343; 2 ≤ 𝑛3 ≤ 455; 2 ≤ 𝑛4 ≤ 121

𝛿 ≥ 0;  and 𝑛1, 𝑛2, 𝑛3, 𝑛4 integers. }
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (16) 

  



 

 Chebyshev  Approximation  model: 

 Minimize 𝑍 = 𝑥5

 Subject  to 

(0.001791658449𝑥1 + 0.038022161𝑥2 + 0.06002072𝑥3 + 0.00262104527𝑥4) − 𝑥5 ≤ 0

(0.001918966929𝑥1 + 0.037963199𝑥2 + 0.055784166𝑥3 + 0.00202612295𝑥4) − 𝑥5 ≤ 0

(0.002042358225𝑥1 + 0.03541605𝑥2 + 0.066199888𝑥3 + 0.003824110406𝑥4) − 𝑥5 ≤ 0

(0.002013632209𝑥1 + 0.028824123𝑥2 + 0.045554438𝑥3 + 0.00426626255𝑥4) − 𝑥5 ≤ 0

(
15

𝑥1
+

20

𝑥2
+

30

𝑥3
+

18

𝑥4
+

10

√𝑥1
+

13

√𝑥2
+

10

√𝑥3
+

12

√𝑥4
)

+2.33√(
3

𝑥1
2 +

5

𝑥2
2 +

6.5

𝑥3
2 +

2.5

𝑥4
2) + (

2

𝑥1
+

1.5

𝑥2
+

1

𝑥3
+

3

𝑥4
)

≤ 6000(1 − 𝜔(1))𝜔(2) + 6100𝜔(1)(1 − 𝜔(2)) + 6200𝜔(1)𝜔(2)

𝜔(1) + 𝜔(2) ≤ 1;
1

81
≤ 𝑥1 ≤

1

2
;
1

343
≤ 𝑥2 ≤

1

2
;
1

455
≤ 𝑥3 ≤

1

2
;
1

121
≤ 𝑥4 ≤

1

2 }
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 (17) 

 

All the three model (15-17) are solved by LINGO-17 and the compromise allocations obtained are given in 

Table 2.   

Table 2: Compromise Allocations 

 Allocations 

Approaches 𝑛1 𝑛2 𝑛3 𝑛4 𝑉(𝜋𝑠ℎ1) 𝑉(𝜋𝑠ℎ2) 𝑉(𝜋𝑠ℎ3) 𝑉(𝜋𝑠ℎ4) Cost 

GP* 23 81 88 27 0.001326437 0.001261067 0.001419939 0.001119076 6100 

CA† 23 79 89 29 0.001323962 0.001260635 0.001412787 0.001111372 6100 

CGP‡ 17 85 86 30 0.001337995 0.001275697 0.001434035 0.001129468 6100 

*GP:Goal Programming†CA:Chebyshev Approximation‡CGP:Chebyshev Goal Programming 

 

  

6. CONCLUSION 

 

In real world problems parameters like measurement cost, travel cost, and budget can vary due to any natural 

or human activities. Thus, in this paper a two stage randomized response model has been formulated as a Multi-

Choice Stochastic Non-Linear Programming Problem (MCSNLPP). The formulated uncertain problem is 

converted into deterministic Multi-Objective Non-Linear Programming problem (MONLPP) using chance 

constrained programming and binary integer programming. Then, the compromise optimum allocations are 

obtained by using Goal programming, Chebyshev Approximation and Chebyshev Goal programming 

optimization techniques. From the computational details given in Table 2 shows that Chebyshev Approximation 

technique minimizes the sampling variance for all the four characteristics and for total budget each technique 

gives the second choice i.e. 6100 units. Hence chebyshev approximation is the best technique amongs the three 

which helps the decision-maker in choosing the optimum budget for minimizing the sampling variances. 

Decision-maker’s can utilize the proposed model and chebyshev approximation technique to take more 

calculative decisions.    
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