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ABSTRACT 

Missing data appears in the study of recovered COVID19-patients. They should be  imputed for 

estimating adequately difference of means. A new predictor is developed and its variance is  obtained. 

Numerical studies are  developed using data on anti-SARS-CoV-2 IgG and IgM antibody levels. 
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RESUMEN 

Data faltante  aparece en el estudio de pacientes recuperados de  COVID19.  Estos deben ser 

imputados para estimar adecuadamente la diferencia de medias.Un nuevo predictor es desarrollado y 

su varianza es obtenida.  Estudios Numéricos se llevaron a cabo usando n  data de los niveles de los 

antecuerpos  anti-SARS-CoV-2 IgG e  IgM. 

 

PALABRAS CLAVE: imputación, diferencia, aproximación de la  variancia, COVID19, Jacknife, 

Bootstrap 

 

1. INTRODUCTION 

 

Researchers need  testing the effectiveness of medical treatments, of agricultural pest controls developing 

experiments. They must  face to deal with missing data in the sample due to failing in obtaining 

measurements  of some of the experimental units. Incompleteness is identified as non-response.  The 

researchers may be interested in the value of the variable of interest in the  non-respondents for using 

appropriately statistical data analysis tools. The lack of full information inferring on  the population 

parameters may be spoiled. 

Estimating the difference of the means of two variables Y and X is common in many real-life problems. For 

example an epidemiologist is interested in the difference between the anti-SARS-CoV-2 IgG and IgM 

antibody levels, ecologists want to estimate the difference between the abundance of a pest after and before 

introducing a biological control of it, a social researcher observes some discussion forum in two occasions 

and is interested in the percentage of positive criteria, etc. 

Commonly is needed to deal with the existence of missing data is problem.  Rubin (1976) determined the 

existence of three of missingness mechanisms:  

• Missing Completely at Random (MCAR) 

• Missing at Random (MAR)  

• Missing Not at Random (MNAR).  

In the case of MCAR and MAR the mechanisms are ignorable missingness mechanism. MCAR assumption 

may be difficult to be accepted but in laboratory studies experimented researchers may consider that in their 

study missingness is due to a chance mechanism.  
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An effective imputation method, under MCAR response mechanism, is  derived as well as a resultant 

estimator. Some previous related papers are Al-Omari, A. I., Bouza -Herrera, C.N. (2013), Beaumont et al.. 

(2011), Berg et al. . (2016), Bouza-Herrera and  Covarrubias-Melgar (2009). 

 Commercial softwares include some imputation methods in their library, see for example a: ICE, Imputation 

with Chained Equations (Stata), SAS; IVEware: Imputation and Variance Estimation Software, R Packages 

(MICE, Amelia, missForest, Hmisc, mi). See Raghunathan, et al. (2016),  Waljee, et al. (2013), Rickert, 

(2016) . 

The researcher should be able to fix some assumptions supporting that Y/X is similar to 
𝑌𝑡

𝑋𝑡
,  for unit t.  Then 

imputation may be considered as a good solution for predicting the missing observation of Y using the 

observed value of X. In the example on COVID19  anti-SARS-CoV-2 IgG and IgM antibody levels are 

standardized and a comparison a solution for dealing with predicting the difference between two 

measurements of them.  

The behavior of the proposal is evaluated using resampling methods in a real-life study. Resampling 

procedures are replacing traditional statistical analysis approximation methods. They are computer–intensive 

and repeatedly resampling is used for inferring. Nowadays are available  high speed and power in common 

computers which allow to perform inference using resampling.  

Section 2 presents a proposal for imputing. It is a generalization of Liu (2006) and Bouza-Herrera and  

Covarrubias-Melgar (2009) proposals. The predictor of the difference is developed and its variance obtained. 

Section 3 presents a numerical study analyzing real life data where X=anti-SARS-CoV-2 IgG and Y=IgM 

antibody levels were measured in recovered  patients. Missing data may be present in Y due to diverse 

causes. A data base of patients with full response used as an artificial population and missing data were 

artificially generated. The coverage provided by the application of  Bootstrap and Jacknife confidence 

intervals was analyzed. The absolute relative mean error (approximation error) of the individual imputations 

was also analyzed.  

 

2. IMPUTATION OF THE NON-RESPONSES  

 

Datasets frequently must face the existence of  missing values in statistical applications. When a data set 

contains missing values statisticians may decide using  weighting or imputation methods. The decision  

depends on the nature  of the non-response mechanism. Population surveys inevitably face the problem of 

dealing with incomplete data. Imputation may be used to complete datasets, by filling the missing values with 

adequate  values. Imputation permits working with a  complete data set, then the  subsequent analyses may 

be implemented. Some papers on the  uses of imputation in survey sampling are Al-Omari and  Bouza -

Herrera (2013),   Yang-Kim (2018),  Beaumont et al. (2011), Berg et al. (2016), Chen and  Shen (2015), Liu 

et al. (2006) 
 Missing data arise in surveys as well as in clinical and epidemiological studies as well as in other scientific 

research. It is an important source of errors and in many cases invalidate using efficiently statistical tools for 

analyzing the data. This problem is the theme of a lot of papers and chapters in specialized  books. 

Enlightening discussion may be obtained in  Enders (2010), Good (2006), Haziza  (2009). 

The problem to be considered in this paper is   the estimation of the difference between two variables X and 

Y: 

Δ = �̅� − �̅� 

There are  missing observations of  Y. The random sample s is divided into  

𝑠(1) = {𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑢𝑙𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒}, ‖𝑠(1)‖ = 𝑛1  
𝑠(2) = {𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑢𝑙𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑌}, ‖𝑠(2)‖ = 𝑛2  

Using the measurements obtained and imputing Y in the units in s(2). Consider to estimate the difference 

through 

Δ̂ =
𝑛1(�̅�1 − �̅�1) + 𝑛2(�̅�2 − �̅�2

∗)

𝑛
 

The imputation is made, using the proposal of Liu (2006) and Bouza-Covarubias (2009) extension, as   

𝑦𝑖
∗ = (

∑ 𝑟𝑡𝑦(1)
𝑛1
𝑡=1

𝑛1

) 𝑥𝑖 = �̅�𝑦(1)𝑥𝑖 ;  𝑟𝑡𝑦(1) =
𝑦𝑡

𝑥𝑡

 

Then the imputed mean is  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Waljee%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=23906948
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�̅�2
∗ = �̅�𝑦(1) (

1

𝑛2

∑ 𝑥𝑖

𝑛2

𝑖=1

) 

For each unit in s(2) the expectation of the imputed value is  

𝐸 (
𝑦𝑡

𝑥𝑡

𝑥𝑖) = 𝐶𝑜𝑣 (
𝑦𝑡

𝑥𝑡

, 𝑥𝑖) + 𝐸 (
𝑦𝑡

𝑥𝑡

) 𝐸(𝑥𝑖) 

The use of independent random sampling sustains accepting that 

𝐸 (
𝑦𝑡

𝑥𝑡

𝑥𝑖) = 𝐸 (
𝑦𝑡

𝑥𝑡

) 𝐸(𝑥𝑖) = 𝐸 (
𝑦𝑡

𝑥𝑡

) �̅� 

Take 

𝜀0𝑡 = (
𝑦𝑡

�̅�
− 1) ; 𝜀1𝑡 = (

𝑥𝑡

�̅�
− 1) 

They have expectation zero and  

𝐸(𝜀0𝑡)2 =
𝜎𝑦

2

�̅�2
;  𝐸(𝜀1𝑡)2 =

𝜎𝑥
2

�̅�2
;  𝐸(𝜀0𝑡𝜀1𝑡) = 𝜌𝑥,𝑦

𝜎𝑦

�̅�

𝜎𝑥

�̅�
 

Assuming that 

|𝜀1𝑡| < 1, 𝜀1𝑡
𝑞

→ 0 𝑤ℎ𝑒𝑛 𝑔 ↑ 

is possible to develop the Binomial expansion of (1 + 𝜀1𝑡)−1. Then , 

𝑦𝑡
∗ = 𝑦𝑡 (

�̅�

𝑥𝑡

) = �̅�(1 + 𝜀0𝑡)(1 + 𝜀1𝑡)−1 = �̅�(1 + 𝜀0𝑡 − 𝜀1𝑡 + 𝜀1𝑡
2 − 𝜀0𝑡𝜀1𝑡 + 𝑂(𝜀1𝑡)) 

Its expectation is approximately  

𝐸(𝑦𝑡
∗) = [(

∑ �̅�(1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) + 𝑂(𝜀1𝑡)

𝑛1
𝑡=1

�̅�𝑛1

) �̅�] ≅ �̅�(1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

 As a result 

𝐸(�̅�2
∗) ≅ �̅�(1 + 𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

Note that the prediction of the mean of Y is given by 

�̅�𝑖𝑚𝑝 =
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
 

Its conditional expectation is 

𝐸(�̅�𝑖𝑚𝑝|𝑛2) =
𝑛1�̅� + 𝑛2�̅�(1 + 𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)

𝑛
= �̅� +

𝑛2�̅�(𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)

𝑛
 

The expectation of 𝐸(�̅�𝑖𝑚𝑝|𝑛2) is easily derived, considering that W1 is the probability of a full response. It 

is given by 

𝐸 (𝐸(�̅�𝑖𝑚𝑝|𝑛2)) ≅ �̅� +
𝑊2�̅�(𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)

𝑛
, 𝑊2 = 1 − 𝑊1 

The proposed estimator of the difference is 

∆̂𝑖𝑚𝑝=
𝑛1(�̅�1 − �̅�1)

𝑛
+

𝑛2(�̅�2 − �̅�2
∗)

𝑛
= �̅� −

𝑛1�̅�1 + 𝑛2�̅�2
∗

𝑛
 

Then the following result holds: 

Lemma: 𝐵𝑖𝑎𝑠(∆̂𝑖𝑚𝑝) ≅ −
𝑊2�̅�(𝐶𝑥

2−𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)

𝑛
 

Clearly if the response probability is high the bias is negligible.  That is  

𝐵𝑖𝑎𝑠(∆̂𝑖𝑚𝑝) → 0  𝑤ℎ𝑒𝑛 𝑊1 → 1 𝑜𝑟 𝑛 → ∞. 

 

The error of  the predictor is  

𝜑(∆̂𝑖𝑚𝑝) = 𝐸 (𝑉(∆̂𝑖𝑚𝑝|𝑛2)) + 𝑉 (𝐸(∆̂𝑖𝑚𝑝|𝑛2)) = 𝜑1 + 𝜑2 

As 

𝐸(�̅�𝑖𝑚𝑝|𝑛2) ≅ �̅� +
𝑛2�̅�(𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)

𝑛
 

the variance of the conditional variance is  

𝑉[𝐸(�̅�𝑖𝑚𝑝|𝑛2)] ≅
𝑊1𝑊2(�̅�(𝐶𝑥

2−𝜌𝑥,𝑦𝐶𝑥𝐶𝑦))2

𝑛
        (1) 

Note that, if the number on non-responses is small, it is negligible. On the other hand 
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𝑉(∆̂𝑖𝑚𝑝|𝑛2) = 𝑉(�̅�) + 𝑉 (
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
|𝑛2) − 2𝐶𝑜𝑣 (�̅�,

𝑛1�̅�1 + 𝑛2�̅�2
∗

𝑛
 |𝑛2) = 𝑉(1) + 𝑉(2|𝑛2) − 𝐶𝑂𝑉 

The first term is the variance of X in s 

𝑉(1) = 𝑉(�̅�) =
𝜎𝑥

2

𝑛
          (2) 

The second term is 

𝑉(2|𝑛2) = 𝑉 (
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
|𝑛2) = (

𝑛1

𝑛
)

2 𝜎𝑦
2

𝑛1

+ (
𝑛2

𝑛
)

2

𝑉(�̅�2
∗) 

Because, due to the independence 𝐶𝑜𝑣(�̅�1, �̅�2
∗) = 0 . Note that  

𝐸((�̅�2
∗ − �̅�)2|𝑛2) ≅

�̅�2

𝑛2�̅�2
𝐸 ((𝜀0𝑡 − 𝜀1𝑡 + 𝜀1𝑡

2 − 𝜀0𝑡𝜀1𝑡)|𝑛2 ) ≅
�̅�2

𝑛2�̅�2
(𝐶𝑦

2 + 𝐶𝑥
2 − 𝜌𝑥𝑦𝐶𝑥𝐶𝑦) 

Then is possible to use the approximation 

𝑉(2|𝑛2) ≅ (
𝑛2

𝑛
)

2

𝑉 (
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
|𝑛2) ≅ 𝑛1

𝜎𝑦
2

𝑛2
+ 𝑛2

�̅�2

𝑛2�̅�2
(𝐶𝑦

2 + 𝐶𝑥
2 − 𝜌𝑥𝑦𝐶𝑥𝐶𝑦) 

Its expectation is  

𝐸(𝑉(2|𝑛2)) ≅ 𝑊1

𝜎𝑦
2

𝑛
+ 𝑊2

�̅�2

𝑛 �̅�2
(𝐶𝑦

2 + 𝐶𝑥
2 − 𝜌𝑥𝑦𝐶𝑥𝐶𝑦) 

The third term is 

𝐶𝑂𝑉 = 𝐶𝑜𝑣 (�̅�,
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
 |𝑛2)

= 𝐸 (
𝑛1

2

𝑛2
(�̅�1�̅�1) +

𝑛2�̅�2

𝑛
×

𝑛1�̅�1

𝑛
+

𝑛1𝑛2�̅�1�̅�2
∗

𝑛2
+

𝑛2
2�̅�2�̅�2

∗

𝑛2
) − 𝐸(�̅�)𝐸 (

𝑛1�̅�1 + 𝑛2�̅�2
∗

𝑛
)

= 𝐶(1) + 𝐶(2) + 𝐶(3) + 𝐶(4) − 𝐶(5) 

where  

𝐶(1) = 𝐸 (
𝑛1

2

𝑛2
(�̅�1�̅�1)) =

𝑛1
2

𝑛2
(𝜌𝑥𝑦𝐶𝑥𝐶𝑦 + �̅��̅�) 

𝐸(𝐶(1)) =
𝑊1𝑊2(𝜌𝑥𝑦𝐶𝑥𝐶𝑦 + �̅��̅�)

𝑛
 

𝐶(2) = 𝐸 (
𝑛2�̅�2

𝑛
×

𝑛1�̅�1

𝑛
) =

𝑛2�̅�

𝑛
×

𝑛1�̅�

𝑛
 

𝐸(𝐶(2)) = −
𝑊2𝑊1�̅��̅�

𝑛
 

𝐸(𝐶(3)) =
𝑊2

𝑛
�̅��̅� +

𝑊1

𝑛
�̅�2�̅�(1 + 𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

𝐶(4) ≅
𝑛2

𝑛2
[(𝜎𝑥

2 + �̅�2)((1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)) + �̅� (�̅�(1 + 𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦))] 

𝐸(𝐶(4)) ≅
𝑊2

𝑛
[(𝜎𝑥

2 + �̅�2) + �̅��̅�](1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

𝐶(5) = 𝐸(�̅�)𝐸 (
𝑛1�̅�1 + 𝑛2�̅�2

∗

𝑛
) ≅ �̅��̅� (

𝑛1

𝑛
+

𝑛2

𝑛
(1 + 𝐶𝑥

2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦)) 

𝐸(𝐶(5)) ≅ �̅��̅�(𝑊1 + 𝑊2(1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

Therefore 

𝐸(𝐶𝑂𝑉) ≅ 𝜗 = ∑ 𝜗ℎ

5

ℎ=1

 

where 

𝜗1 =
𝑊2

𝑛
[[(�̅� − �̅�)2 − �̅�2)]𝑃] 

𝜗2 =
𝑊1𝑊2(𝜌𝑥𝑦𝐶𝑥𝐶𝑦)

𝑛
 

𝜗3 =
𝑊2

𝑛
�̅�2�̅�𝑃 
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𝜗4 =
𝑊2

𝑛
𝑃𝜎𝑥

2 

𝜗5 =
𝑊2

𝑛
�̅��̅� − 2�̅��̅�(𝑊1) = �̅��̅� (

𝑊2

𝑛
− 2𝑊1) 

𝑃 = (1 + 𝐶𝑥
2 − 𝜌𝑥,𝑦𝐶𝑥𝐶𝑦) 

Then is proved the next theoretical result.  

𝐿𝑒𝑚𝑚𝑎: 𝐸 (𝑉(∆̂𝑖𝑚𝑝|𝑛2)) ≅
𝜎𝑥

2

𝑛
+ 𝑊1

𝜎𝑦
2

𝑛
+ 𝑊2

�̅�2

𝑛 �̅�2 (𝐶𝑦
2 + 𝐶𝑥

2 − 𝜌𝑥𝑦𝐶𝑥𝐶𝑦) + 𝜗 

Note that if 𝑊1 is large  

𝐸 (𝑉(∆̂𝑖𝑚𝑝|𝑛2)) ≅
𝜎𝑥

2

𝑛
+

𝜎𝑦
2

𝑛
 

The estimation of the derived sampling error is rather complicated. The use of a resampling methods is the 

most common solution when dealing with such problems in sampling survey applications. See for example 

Kolenikov (2010), Haziza  (2009), Enders  (2010), Chen and Shen (2015), Beaumont et al. (2011). In the 

next section are developed resampling procedures for coping with the estimation of (𝑉(∆̂𝑖𝑚𝑝|𝑛2)) . 

 

3.  RESAMPLING PROCEDURES FOR THE ESTIMATION OF (𝑽(∆̂𝒊𝒎𝒑|𝒏𝟐)) 

 

When imputation is present  must be  described  the effect of imputing missing data. In this section is 

presented a resampling based study of real-life data.  The study serves for illustrating the effectivity of 

estimating the variance of the proposed estimator  in determining confidence intervals.  The intervals are 

estimated using Jackknife and Bootstrap, both are resampling procedures with a robust behavior. A 

comparison of their robustness is developed under various scenarios.  The efficiency of the individual 

imputations is also analyzed. The use of resampling  in real life are discussed in Righi et al.  (2014), Chen 

and Shen (2015), Shao (2003) for example.  
The evaluation of the behavior of the proposed imputation method is analyzed by estimating the coefficient 

intervals using Jacknife and Bootstrap. The coverage probability of them is estimated.  

The effect of the imputation in approximating the missing data is also evaluated. The efficiency, in terms  of 

the approximations of the imputed values, is analyzed  by comparing the mean of the relative absolute errors 

observed in the Monte Carlo experiments.  

Records of recovered patients with COVID-19 were obtained.  The epidemiology protocols established  a 

regular follow-up and observation of them. The interest is analyzing retrospectively the clinical 

characteristics of the recovered patients  for  evaluating the effect of serum-specific antibody levels on 

positiveness. The difference of  the means of X=anti-SARS-CoV-2 IgG and Y=IgM antibody levels of 

recovered patients at their discharge. The data consisted of 370 recovered patients positive to  COVID19.  

Following the ideas of Quatember (2016) these entries conformed  an artificial   population. Hence, in the 

study the involved parameters were known. The Monte Carlo experiments were based on  M=1000 iid 

samples. Using the population values, samples  of size n were selected independently.  Bernoulli experiments 

generate  n2 entries to be  considered as missing-data.  

 

3.1. The Jacknife numerical experiment 

 

The Jackknife is a resampling method which was proposed by Quenouille in (1949), see Good (2006).  

Nowadays, it is used commonly for variance estimation. Jackknife uses a group of  observations of size n-d, 

d=1,..,n-1, from the sample.  Tukey in 1958, see Good (2006)..  , introduced the term  “pseudovalue”  for the 

outputs obtained from each group of size n-d.  They are  iid random variables and  are used to obtain  a 

simple estimator of the variance. Its efficiency  in variance estimation in sampling is discussed extensively in 

Rao and  Shao (1992), Kovar and Chen (1994). 

In the developed Monte Carlo experiment, M samples are selected independently and the jackknife procedure 

is used for determining  confidence intervals. The coverage probability and the mean of the relative absolute 

approximation error, provided by the method, are estimated. A pseudo code is described as follows: 

Jacknife study of  a population for  θ = Δ   using Δ̂𝑖𝑚𝑝 

 Input M, d, n, r=0, b=0,  𝑍 = (𝑧1, … , 𝑧𝑁);  𝑧𝑖 = (𝑋𝑖 , 𝑌𝑖) = 0, 𝛿 = 0, 𝜃 

  Step (i). Generate n2 with distribution B(n,W2 ). 
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  While 𝑟 ≤ (𝑛
𝑑

)  

   Select a  sample  and determine 𝑧 = (𝑧1, … , 𝑧𝑛) from 𝑍 = (𝑧1, … , 𝑧𝑁). 
   Generate n2 independent Bernoulli variables with parameter W2  

   If 𝛽𝑡 = 1 𝑡ℎ𝑒𝑛  𝑧𝑡 = 𝑧𝑡
∗ 

   Arrange the  imputed sample 

    𝑧𝑖𝑚𝑝,𝑟 = ((𝑥1, 𝑦1) … , (𝑥𝑛1
, 𝑦𝑛1

), (𝑥𝑛1+1,𝑦𝑛1+1
∗ ), … , (𝑥𝑛1+𝑛2,𝑦𝑛1+𝑛2

∗ ))  

   Compute the estimator �̂�𝑠𝑗𝑏𝑟
(𝑧𝑖𝑚𝑝,𝑟) = �̂�𝑠𝑗𝑏𝑟

  . 

   Calculate 𝛿𝑖𝑚𝑝,𝑏 =
1

𝑛2
∑ |

𝑦𝑡−𝑦𝑡
∗

𝑦𝑡
|

𝑛1+𝑛2
𝑡=𝑛1+1  

  r=r+1 

  Step (ii) Calculate �̂�(�̂�𝑛𝑏) =
1

(𝑛
𝑑)

∑ (�̂�𝑠𝑗𝑟
− �̅�𝐽𝑏)

2(𝑛
𝑑)

𝑟=1 ;  �̅�𝐽𝑏 =
1

(𝑛
𝑑)

∑ �̂�𝑠𝑗𝑟𝑠𝑗𝑟
   

  Step (iii) Calculate 𝐼𝐶𝑏(θ) = (�̅�𝐽𝑏 ∓ 2√�̂�(�̂�𝑛𝑏)) ; 𝜏𝑏 = {
1 𝑖𝑓 𝜃 ∈ 𝐼𝐶𝑏(θ)

0 𝑖𝑓 𝑛𝑜𝑡
,   

   𝜏 = 𝜏 + 𝜏𝑏, 𝛿 = 𝛿 + 𝛿𝑖𝑚𝑝,𝑏  

 b=b+1 

  Step (iv) If 𝑏 < 𝑀 go to step (i)  

 Calculate 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝛾 =
𝜏

𝑀
 

 Calculate 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝜀̂ =
𝛿

𝑀
 

END 

 

The results of the Monte Carlo experiments are given below.  

Table 1 presents the estimated coverage probabilities for 3 sample sizes and 3 probabilities of non-responses. 

Table 1. 𝛾 in a Jacknife study of  a population for  Δ   using Δ̂𝑖𝑚𝑝 

  W2=0,1   W2=0,3   W2=0,5  

d 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 

1 0,822 0,885 0,903 0,725 0,697 0,684 0,528 0,457 0,423 

3 0,840 0,893 0,915 0,823 0,828 0,831 0,753 0,753 0,750 

5 0,887 0,896 0,920 0,852 0,848 0,855 0,778 0,778 0,775 

The results of Table 1 suggest that for smaller values of W2 and larger values of d the coverage probabilities 

increase. It seems reasonable to argue that the jackknife CI`s derived by using Δ̂𝑖𝑚𝑝 perform better when the 

number of imputations is small and the number of pseudo values is large. 

The mean of the relative approximation error analysis is presented in Table 2. The results sustain considering 

that the errors are smaller for smaller values of W2 and that their values are stable for variations in the  

sample sizes. The increase in W2 seems to have a small effect in 𝜀̂.  Then,  it may be considered that the 

imputations on Y are not seriously affected by increases by the sample sizes but by the number of missing 

observations. 

Table 2. 𝜀̂ in a Jacknife study of  a population 𝐟𝐨𝐫 Δ   using Δ̂𝑖𝑚𝑝 

  W2=0,1   W2=0,3   W2=0,5  

d 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 

1 1,392 1,384 1,400 1,952 1,944 1,953 1,943 1,937 1,939 

3 1,391 1,188 1,107 1,919 1,917 1,917 1,921 1,926 1,915 

5 1,347 1,117 1,104 1,560 1,568 1,554 1,476 1,470 1,475 

 

3.2. The Bootstrap numeric experiment 

 

Bootstrap is a powerful resampling method for estimating the distribution of estimators and  test statistics. 

Bootstrap may be considered as a method for simulating the behavior of a statistical procedure from the 

empirical distribution derived from the observed data. Efron´s seminal paper proposed this nonparametric 

approach , see Efron (1982). It performs better than Jackknife in some circumstances. Under milder 

conditions Bootstrap provides good approximations to the distribution of statistics, coverage probabilities of 

confidence intervals, and rejection probabilities of tests. It is at least as accurate as the first-order asymptotic 

distribution obtained by classic approximation. Sometimes  the bootstrap is more accurate than the Delta 
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method. See discussions and application of Bootstrap in survey sampling in Shao (2003), Liu etal.  (2006), 

Chen and Shen (2015). 

A pseudo code is the presented below.  

Bootstrap study of  a population for  𝜽 = Δ   using Δ̂𝑖𝑚𝑝  

 Input  M,  n, r=0, b=0,  𝑍 = (𝑧1, … , 𝑧𝑁);  𝑧𝑖 = (𝑋𝑖 , 𝑌𝑖) = 0, 𝛿 = 0, 𝜃, 𝑅, 𝑊2 

  Step (i). Generate n2 with distribution B(n,W2 ). 

  Step (ii): Draw the sample {{𝑧𝑖}𝑖=1
𝑛 }𝑟 of size n=n1 +n2 with replacement (SRSWR) from the 

observed   values z1, …, zn 

   Generate n2 independent Bernoulli variables with parameter W2  

   If 𝛽𝑡 = 1 𝑡ℎ𝑒𝑛  𝑧𝑡 = 𝑧𝑡
∗ 

   Arrange the imputed sample 

𝑧𝑖𝑚𝑝,𝑟 = ((𝑥1, 𝑦1) … , (𝑥𝑛1
, 𝑦𝑛1

), (𝑥𝑛1+1,𝑦𝑛1+1
∗ ), … , (𝑥𝑛1+𝑛2,𝑦𝑛1+𝑛2

∗ )) 

   Determine a subsample of size n:  

{𝑍(𝑢𝑖)𝑏}𝑖=1
𝑛 ;   𝑧𝑏𝑟

∗ = (
1

𝑛
∑ 𝑋𝑖 ,

1

𝑛1

  ∑ 𝑌𝑖

𝑛1

𝑖=1

,
1

𝑛2

  ∑ 𝑌𝑖
∗

𝑛2

𝑖=1

 

𝑛

𝑖=1

)

𝑏𝑟

  

    Compute the estimator 

�̂�𝑠𝑗
(𝑧𝑏𝑟

∗ ) = �̂�𝑠𝑗𝑏𝑟
  . 

    Calculate 

𝛿𝑖𝑚𝑝,𝑏𝑟 =
1

𝑛2

∑ |𝑦𝑡 − 𝑦𝑡
∗|

𝑛1+𝑛2

𝑡=𝑛1+1

 

   r=r+1 

  Step (iii) while r<R go to Step (ii)  

  Step (iv) calculate   

𝑉𝐵𝑜𝑜𝑡(𝑔(𝜃)) =
1

𝑅
∑ (�̂�𝑠𝑗𝑏𝑟

− �̂�𝐵𝑜𝑜𝑡
∗ )

2
𝑅
𝑟=1 , �̂�𝐵𝑜𝑜𝑡

∗ =
1

𝑅
∑ �̂�𝑠𝑗𝑏𝑟

𝑅
𝑟=1  , 𝛿 = 𝛿 + 𝛿𝑖𝑚𝑝,𝑏𝑟 

  Step (v) Calculate  

𝐼𝐶𝑏(g(θ)) = (�̂�𝐵𝑜𝑜𝑡
∗ = ∓2√𝑉𝐵(𝑔(𝜃))) ; 𝜏𝑏 = {

1 𝑖𝑓 𝜃 ∈ 𝐼𝐶𝑏(g(θ))

0 𝑖𝑓 𝑛𝑜𝑡
, 𝜏 = 𝜏 + 𝜏𝑏 

    𝜏 = 𝜏 + 𝜏𝑏, 𝛿 = 𝛿 + 𝛿𝑖𝑚𝑝,𝑏  

    b=b+1 

   while b<M go to step (i) 

   Calculate 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = �̂� =
𝜏

𝑀
 

  Calculate 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝜀̂ =
𝛿

𝑀
 

END 

 

The results of the experimentations are given in Tables 3 and 4.  

Table 3. 𝛾 in a Bootstrap  study of  a population for  Δ   using Δ̂𝑖𝑚𝑝 

  W2=0,1   W2=0,3   W2=0,5  

R 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 

20 0,892 0,895 0,925 0,902 0,905 0,908 0,902 0,907 0,918 

30 0,901 0,913 0,929 0,906 0,917 0,923 0,928 0,928 0,931 

50 0,927 0,946 0,948 0,919 0,921 0,929 0,930 0,947 0,947 

100 0,948 0,947 0,962 0,951 0,954 0,955 0,955 0,955 0,971 

The results of Table 3 suggest that for larger  values of W2 and larger values of R the coverage probabilities 

are closer to the goal value of 0,95. It seems reasonable to argue that the convergence of the parametric 

Bootstrap  CI`s, derived by using Δ̂𝑖𝑚𝑝 , is faster in terms of the number of bootstrap samples observed.    

The analysis of the mean of the relative approximation error is presented in Table 4. The results sustain 

considering that the errors are smaller for smaller values of W2 and that their values are stable for variations 

in the  sample sizes. The increase in W2 seems to have a small effect in 𝜀̂.  Then,  it may be considered that 

the imputations on Y are not seriously affected by increases by the sample sizes but by the number of 

missing observations.  
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Note that in the study of 𝜀̂ , Jackknife and Bootstrap produced similar results. For R>30  the approximation 

errors are not affected seriously by changes in the other parameters. 

Table 4. 𝜀̂ in a Bootstrap study of  a population for 𝜽 = Δ   using Δ̂𝑖𝑚𝑝  

  W2=0,1   W2=0,3   W2=0,5  

R 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 20 𝑛 = 30 𝑛 = 50 

20 1,391 1,387 1,403 1,943 1,941 1,956 1,933 1,939 1,939 

30 1,391 1,185 1,100 1,916 1,910 1,909 1,919 1,924 1,935 

50 1,188 1,189 1,180 1,185 1,184 1,184 1,187 1,186 1,186 

100 1,118 1,110 1,087 1,120 1,115 1,115 1,118 1,116 1,116 

  

4. CONCLUSIONS. 

 

The proposed imputation procedure was friendly to the epidemiologists,  as it fitted with pre- conceived ideas 

on an acceptable way of substituting the missing data. 

Bootstrap performed better in terms of the coverage probabilities of the CI`s.  

The computational costs were very similar for Jackknife and Bootstrap methods.  

RECEIVED: JANUARY, 2022. 

REVISED: MARCH, 2022. 
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