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ABSTRACT 

In this paper, we have compared some linear and nonlinear models for explaining and forecasting the productionof two 

different crops, Mango and the Sugarcane using area of fields as the auxiliary variable. The models under considerations 
are compared on the basis of different fitting measures such as, Coefficient of Determination (R2),Residual Mean Square 

(s2), Mean Absolute Error (MAE) and Akaike Information Criterion (A.I.C.). The two primary data sets have been 

collected, first for sugarcane production from the Sitapur district of Uttar Pradesh state in India and second for mango 

production from the Lucknow district of Uttar Pradesh state in India. The fitting measures are calculated for the collected 
primary data sets and the best fitted models are selected and recommended for further use on the basis of the fitting 

measures. From the data analysis for both the data sets, it is found that the Compound, Growth, Exponential and Logistic 

models are equally good for practical applications.  
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RESUMEN 

En este paper, hemos comparado algunos modelos lineales y   no-lineales para explicar y predecir la  producción de dos  
diferentes cultivos, Mango y Caña de Azúcar usando el  área de los campos como variable auxiliar. Los modelos bajo  

consideración son  comparados en  base a diferentes medidas de ajuste como, Coeficiente de Determinación (R2), Cuadrado 

Medio Residual Mean (s2), Error Absoluto Medio  (MAE) y el Criterio de Información de  Akaike  (A.I.C.). Los dos 

primarias data-sets han sido  colectadas. Primero para la  producción de caña de azúcar del distrito de  Sitapur del estado de 
Uttar Pradesh en India y el segundo para la de  mango para el distrito de  Lucknow del estado de  Uttar Pradesh, India. Las 

medidas de ajuste fueron calculadas para los datos primarios y los segundos mejores modelos son seleccionados y 

recomendados  a partir de las medidas de ajuste. Del análisis de la de los conjuntos de datos  se halló que fueron igualmente 
buenos para la aplicación los modelos Compound, Growth, Exponential and Logistic.  

 

PALABRAS CLAVE: Variable de estudy, Variable Auxiliar, Ajuste de Modelos, Medidas de Ajuste, Modelos Lineale y  
Non-lineales  

 

1. INTRODUCTION 

 

The term regression was first used as a statistical concept in late 18th century. The word “regress” 

signified “moving back to the average”. Nowadays, regression analysis is a collection of several methods 

which deals with establishing the functional relationship between a dependent variable and one or several 

independent variables. More specifically regression analysis is a statistical technique to predict one 

variable from another variable. The variable about which we have full information is known as 

independent variable and the main unknown variable under consideration is called as dependent variable. 

For instance, if there is a linear relationship between the age of father and son then if we know the age of 

any one of them then we can get the age of another by using that relationship. The method of least 

squares, proposed by Adrien-Marie-Legendre in 1805. See if interested in its roots Legendre (1805):, and 

Carl Fredrich Gauss (1809). Legendre suggested using the least square approach, which minimises the 

sum of squares of these variations. Carl Friedrich Gauss, a German mathematician who may have used 

the same method before, made significant computational and theoretical breakthroughs. In 1821, Gauss 

published a continuation of the theory of least squares, which included a variant of the Gauss Markov 

Theorem. You may consult this oeuvre in a recently publication of it, Gauss (1995). Initially , Francis 

Galton developed the term regression to describe a biological process in the nineteenth century. In this 

phenomenon he observed that the heights of descendants (an ancestor refers to any element which is 

connected further up no matter how many levels higher) tend to regress down towards a normal average.  

The phenomenon, was also known as regression towards the mean. Regression had just this biological 
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meaning for Galton, but his work was eventually extended to a broader statistical context by Udny Yule 

and Karl Pearson. The joint distribution of the main and independent variables is assumed to be Gaussian 

in Yule and Pearson's works. R.A. Fisher's efforts from 1922 and 1925 undercut this idea. The conditional 

distribution of the main variable was assumed to be Gaussian by Fisher, but the joint distribution did not 

have to be. Fisher's assumption is similar to the Gauss Formulation of 1821 in this regard. Regression 

analysis is most typically used to calculate the dependent variable's conditional expectation given the 

independent variables, or the average value of the dependent variable while the independent variables are 

fixed. For prediction and forecasting, regression analysis is commonly utilised. It's also used to figure out 

which of the independent factors are linked to the dependent variables, as well as to investigate the nature 

of those links. Interested in historical details see Galton  (1877): 

Resuming, Linear Regression is a linear model with a linear connection between the input variables ( X ) 

and the single output variable (Y ). As a result, a linear combination of the input variables can be 

determined ( X ). The method is known as a simple linear regression model when there is only one input 

variable ( X ). When there are several input variables, the procedure is referred to as multiple linear 

regression in statistics literature. Simple linear regression relates two variables (Y and X ) with a straight 

line ( bXaY += ), while nonlinear regression relates the two variables in a nonlinear relationship. 

Normality, linearity, homoscedasticity, multicollinearity and autocorrelation are some of the assumptions 

to proceed for regression analysis. Normality means how well the data is modelled by a normal 

distribution. Statisticians  utilise the Histogram, Normal Probability Plot, and Scatterplot of Residuals to 

check the data's normality. After creating a histogram, we can look at the line that displays the 

distribution's shape to see if it is genuinely normal or not. Is expected that  on the Normal Probability Plot  

the actual observations are falling near to the diagonal from lower left to upper right. If the data has a 

normal distribution, the residuals scatter plot reveals that the majority of the residuals for the 

corresponding value of the predicted score are in the centre of the plot, with some residuals trailing out 

symmetrically from the centre.  

The assumption of homoscedasticity states that the residuals for all projected dependent variables are 

approximately equal. We can check for homoscedasticity by looking at a scatter plot between each 

independent variable and dependent variable. Singularity occurs when the independent variables are 

perfectly correlated and one independent variable is a combination of one or more of the other 

independent variables. Multicollinearity occurs when the independent variables are highly correlated 

(0.90 or greater), whereas singularity occurs when the independent variables are perfectly correlated and 

one independent variable is a combination of one or more of the other independent variables. Strong 

bivariate correlations or high multivariate correlations can create multicollinearity and singularity. Simple 

running correlations among independent variables can easily reveal high bivariate correlations. We are 

only looking at the scenario of one independent variable in this study. See generalities and discussions in 

Aldrich (2005),  the roots in Pearson et al. (1903):   

 

2. MATERIALS AND METHODS 

 

It is well known that the general linear regression model with Y as the dependent variable and Y as the 

independent variable is presented as: 

Y = β
0

+ β
1

X + ε 

Where, 𝑌 is termed as the dependent or study variable and 𝑋 is termed as independent or explanatory 

variable. The terms β0 and β1are the parameters of the model. The parameter β0is termed as intercept 

term and the parameter β1is termed as slope parameter. These parameters are usually called as regression 

coefficients. The unobservable error component ε accounts for the failure of data to lie on the straight line 

and represents the difference between the true and observed realization of Y. Its modern development is 

due to the seminal works discussed in  Fisher (1922) and presented in the text of  (1954).. 

The Ordinary Least Square (OLS) Estimates of β0 and β1 are, 

β̂0 = Ŷ − β̂1X̅ 

β̂1 =
∑ 𝑥𝑖 𝑦𝑖

∑ 𝑥𝑖
2

 

Where, 𝑥𝑖 = 𝑋𝑖 − �̅� and 𝑦𝑖 = 𝑌𝑖 − �̅�. Theoretical discussions are given in standard text books as 

Montgomery, Peck &Vining(2012), Rencher & Schaalje (2008). 

The mathematical form of the Nonlinear Regression model is given by, 

𝐘 = 𝐟(𝐱, 𝛉) + 𝛆 

Where, θ is vector of unknown parameters and ε is an uncorrelated random error term. We also typically 

assume that the errors are normally distributed, as in the case of linear regression model. The general 

solution is obtainable using Mathematical Programming methods, see as examples Allende  & Bouza 
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(1995, 1999) and Allende et al (2003). Commonly the parameters of the nonlinear regression models are 

estimated by the method of Nonlinear Least Square, Method of Three Selected Points, Steepest Descent 

Method and the well-known Levenberg Marquardt methods. See details books as Gujarati & Sangeetha 

(2008), Fox (2016). Among these methods, Levenberg Marquardt is the best one and we have used it for 

the estimation of the parameters of the nonlinear models.  

There are different fitting measures for the regression models and on the basis of these measure, we find 

the best fitted models for the better explanation and future prediction of the phenomenon under 

consideration. Following are different goodness of fit measures: 

Coefficient of Determination (R2) 

The regression model is evaluated by determining how much of the overall sum of squares has dropped 

into the sum of squares as a result of the regression. The coefficient of determination R2 is defined as, 

𝑅2 = 1 −
∑ (𝑌𝑖   −  𝑌�̂�)

2𝑛
𝑖=1

∑ (𝑌𝑖   −  �̅�)2𝑛
𝑖=1

 

The R2 value closer to 1 describe that the most of the amount of variability in Y has been explained by the 

fitted model. Thus, observance of a high R2 is an indication of the good fit. 

Coefficient of Determination -𝐑𝐀𝐝𝐣
𝟐  

The measure RAdj
2  was described by Montgomery et al. (2012) as being good for model comparison when 

the numbers of parameters in two models are not equal. The coefficient of determination RAdj
2 is defined 

as, 

RAdj
2   =  1  −

∑ (𝑌𝑖   −  𝑌�̂� )
2

/𝑛 − 𝑝𝑛
𝑖=1

∑ (𝑌𝑖   −  �̅�)2/𝑛 − 1𝑛
𝑖=1

  

The value of RAdj
2 reaching very close to 1 implies that most of the variability in the data has been 

explained by the fitted model. Thus, observance of a high value indicates a good fit. 

Residual Mean Square (𝐬𝟐) 

The residual mean square 𝑠2 for the models for our problem is defined as, 

𝑠2 =
∑ (𝑆𝑤

2 − 𝑆𝑤
2̂ )

2𝑛
𝑖=1

𝑛 − 𝑝
  =

∑ 𝑒𝑖
2𝑛

𝑖=1

𝑛 − 𝑝
 

Where, the number of observations is n, while the number of model parameters utilised is p. A small 𝑠2 

number indicates that the error-related regression is small, implying that the sum of squares owing to 

regression is high enough to match the entire sum of squares. Hence a  𝑠2 value indicates that the fitted 

model is adequate. 

Mean Absolute Error (MAE) 

The MAE which is average of absolute error is defined as, 

𝑀𝐴𝐸 =
∑ |𝑌𝑖 − 𝑌�̂�|

𝑛
𝑖=1

𝑛
=

∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
 

Where, n is the number of observations. A smaller MAE is preferred in fitting of various linear and 

nonlinear regression models. 

Akaike Information Criterion (A.I.C.) 

The Akaike Information Criterion (A.I.C.) was given a lot of weight , see Gujarati and Sangeetha (2007). 

It is a very useful criterion for judging the performance of fitted model. It is also good for comparing two 

or more models. The model with lowest value of A.I.C. is preferred. It can be defined as, 

A. I. C. = exp (
2p

n
)

RSS

n
 

Where, the number of observations is n, while the number of parameters is p. RSS stands for residual sum 

of squares. 

 

3. MODELS UNDER CONSIDERATION 

 

The purpose of the present study is to find the best fitted regression model for the explanation and 

prediction of the production of the Sugarcane and the Mango yields at two different district of Uttar 

Pradesh State in India. Following are different linear and nonlinear regression models under comparison 

presented in Table-1 below as: 

Table1: Different linear and nonlinear models under consideration 

Model Functional Form 

Linear Y =  β0 + β1x 
Logarithmic Y =  β0 + β1ln(x) 
Inverse Y =  β0  +  (β1 / x) 
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Quadratic Y = β0 +  (β1x)  +  (β2x2) 
Cubic Y =  β0 + β1 x + β2x2 + β3x3 
Power Y =  β0 (xβ1) 
Compound Y =  β0 (β1

x) 
S-curve Y =  exp(β0 +  (β1/x)) 
Logistic Y =  1 / (1/u + (β0 (β1

x))) 
Growth Y =  exp(β0  +  (β1x)) 
Exponential Y = β0(exp(β1x)) 

 

We have collected two primary data sets and a simulated data for the numerical comparison of different 

models under consideration.  

Data Description of Data-1 

We have collected primary data of Sugarcane Production from some villages of Machrehta block of 

Sitapur District for 100 fields. The details of the collected data are as follows: 

 Dependent Variable: Yield of Sugarcane denoted as Y in quintals (1 quintal=100 Kilogram) 

 Independent Variable: Area of cultivation denoted as X  in Bigha (1 Bigha=0.2508 hectare) 

 Descriptive Statistic: N = 100, �̅� = 8.0275,  �̅� =  468.745, 𝜎𝑋 = 5.598396122, 

𝜎𝑌 =365.8315386,  𝜌𝑋𝑌 = 0.968655062 
The data collected from 100 fields is presented in Table-2 below. 

Table-2: Data-1 collected on sugarcane yield form Sitapur District 

S.N. Y  X  S.N. Y  X  S.N. Y  X  S.N. Y  X  

1 900 18 26 125 2 51 119 2 76 450 10 

2 2450 35 27 900 17 52 180 4 77 350 6 

3 150 4 28 650 12 53 64.5 1 78 1000 20 

4 500 8 29 1300 20 54 160 3 79 500 9 

5 450 10 30 90 2 55 128 2 80 350 6.25 

6 150 5 31 170 3 56 490 7 81 700 10 

7 125 3 32 225 4 57 350 7 82 750 12 

8 250 4.25 33 300 5 58 230 4 83 700 12 

9 550 8.5 34 80 2 59 550 10 84 400 9 

10 200 2 35 400 7 60 520 8 85 300 4 

11 200 4 36 200 4 61 450 8 86 500 8 

12 400 7 37 900 12 62 850 12 87 150 3 

13 250 4 38 150 3.5 63 650 10 88 350 5 

14 900 15 39 800 14.5 64 950 12 89 250 4 

15 350 5 40 281 6 65 750 13.5 90 150 3 

16 850 12 41 158 4 66 600 9 91 250 5 

17 450 10.5 42 900 15 67 189 3 92 300 7 

18 1000 15 43 90 1.5 68 450 7 93 500 8 

19 300 4.75 44 400 7.5 69 500 11 94 100 2 

20 100 3.5 45 650 10 70 1000 20 95 400 6 

21 200 3 46 800 13 71 850 12 96 450 7 

22 200 3.5 47 350 6 72 800 12 97 200 3 

23 850 15 48 350 6 73 500 9 98 300 6 

24 150 3 49 1750 25 74 650 15 99 100 2 

25 350 6 50 350 7 75 300 6 100 450 10 

 

The following graph, Figure-1, represents fitting of different considered linear and non-linear regression 

models to the data-1.  
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Figure-1: Fitting of different linear and non-linear models to data-1 

The various fitting measures for the linear and non-linear regression models under consideration are 

presented in Table-3 below. 

Table-3: Fitting measures of different linear and non-linear regression models 

Model 𝑹𝟐 𝒔𝟐 MAE AIC 

Linear 0.938 817588.018 65.2570 8509.54 

Logarithmic 0.738 3475896.782 474.8450 36177.51 

Inverse 0.413 7780742.93 187.1220 80482.81 

Quadratic 0.945 726017.542 61.5440 7709.12 

Cubic 0.947 698237.382 60.6250 7563.92 

Compound 0.796 11.327 172.8010 0.11789 

Power 0.933 3.716 64.6817 0.03867 

S 0.743 14.253 131.0460 0.14834 

Growth 0.796 11.327 170.8800 0.11789 

Exponential 0.796 11.327 170.8900 0.11789 

Logistic 0.796 11.327 437.1720 0.11789 

 
Data Description of Data-2 

A 

primary 

data on 

Mango 
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Production has been collected from the Kakori Block 

of Lucknow District at Uttar Pradesh state in India. 

The data has been collected on 72 mango orchards 

from different villages of Kakori Block. The data 

description is given as: 

 Dependent Variable: Production denoted as Y in 

quintals 

 Independent Variable: Area of cultivation denoted 

as X  in Bigha 

 Descriptive Statistic: N = 72, �̅� = 4.180555556,  

�̅� =  96.45833333, 𝜎𝑋 = 1.829541533,  

 𝜎𝑌 = 44.40908976, 𝜌𝑋𝑌 = 0.972248893 
The data collected from 72 mango orchards is 

presented in Table-4 below. 

Table-4: Data-2 collected on mango yield form 

Lucknow District 

S.N. Y  X  S.N. Y  X  S.N. Y  X  S.N. Y  X  

1 110 5 19 23 1 37 135 5.5 55 154 6.5 

2 195 8 20 117 5 38 67 3 56 105 4.5 

3 100 4.5 21 45 2 39 86 4 57 86 3 

4 145 7 22 74 3.5 40 21 1 58 140 7 

5 136 5.5 23 68 3 41 75 3.5 59 120 5 

6 146 5 24 66 3 42 66 3 60 90 4 

7 70 3 25 113 5 43 47 2.5 61 105 4.5 

8 90 4.5 26 127 5.5 44 32 1.5 62 150 5.5 

9 145 7 27 92 4 45 63 3 63 80 3 

10 50 2 28 250 10 46 127 5 64 122 5 

11 128 6 29 137 5 47 95 4.5 65 175 7.5 

12 148 6 30 69 3 48 52 2.5 66 122 4.5 

13 90 4 31 87 4 49 127 5 67 128 4.5 

14 62 3 32 63 3 50 48 2.5 68 105 5 

15 44 2 33 69 3.5 51 43 2 69 102 4.5 

16 135 5.5 34 89 4 52 185 9 70 44 2 

17 67 3 35 47 2 53 72 3 71 23 1 

18 127 5 36 32 1.5 54 112 5 72 85 4.5 

 

The following graph Figure-2 represents fitting of different considered linear and non-linear regression 

models to the data-2.  

       Table-5: Fitting measures of different 

linear and   non-linear models to data-2      

 

Model 
𝑹𝟐 𝒔𝟐 MAE AIC 

Linear 0.945 109.483 7.408 112.522 

Logarithmic 0.856 288.519 12.728 296.53 

Inverse 0.608 784.984 21.502 806.778 

Quadratic 0.946 110.384 7.475 111.828 

Cubic 0.946 111.542 7.648 111.363 

Compound 0.865 0.037 15.230 0.0381 

Power 0.967 0.009 7.285 0.009 

S 0.857 0.039 14.850 0.040 

Growth 0.865 0.037 15.230 0.038 

Exponential 0.865 0.037 15.230 0.038 

Logistic 0.865 0.037 15.230 0.038 

. Figure-2: Fitting of different linear and non-linear  

models to data-2  regression models 

The various fitting measures for the linear and non-linear fitted regression models under consideration are 

presented in Table-5. 

Simulation Study 
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This section presents the procedure and analysis for the two simulated population each considering the 

parameters of the first and second primary data. It is required to generate a bivariate population with a 

specified correlation. We have used the mean, standard deviation and correlation coefficient of the 

primary data to simulate the population of 10,000 observations. 

Data Description of Simulated Data-1 

To generate simulated population, we have considered the same parameters of the two primary data. The 

simulated population is generated through bivariate normal distribution with their mean vector and 

variance-covariance matrix as: 

  Means of [Y, X] asμ = [468.745,8.0275].  

 Variances and covariance of [Y, X] as 𝜎2 = [
31.34204 1983.873

1983.87324 133832.715
]. 

 With correlation𝜌𝑌𝑋 = 0.968655062 

Hence a bivariate normal distribution of X and Y of size N = 10,000 have been generated through these 

parameters using R Program.  

The following graph Figure-3 represents fitting of different considered linear and non-linear regression 

models to the simulated data-1.  
Table-6: Fitting measures of different linear and non-linear 

regression models 

 
Model 𝑹𝟐 𝒔𝟐 MAE AIC 

Linear 0.919 8178.74 72.02 

8180.378 

Logarithmic 0.626 37620.95 147.61 

37628.48 

Inverse 0.011 99469.02 258.38 

99488.92 

Quadratic 0.920 7997.99 71.36 

7998.795 

Cubic 0.921 7925.23 71.12 

7925.237 

Compound 0.634 0.369 158.25 

0.369282 

Power 0.661 0.343 92.12 

0.342636 

S 0.026 0.983 266.56 

0.983652 

Growth 0.634 0.369 158.25 

0.369282 

Exponential 0.634 0.369 158.25 

0.369282 

Logistic 0.634 0.369 158.25 0.369282 

Figure-3: Fitting of different linear and non-linear  

models to simulated data-1    

         

The various fitting measures for the linear and non-

linear fitted regression models under consideration 

are presented in Table-6. 

Data Description of Simulated Data-2 

To generate simulated population, we have 

considered the same parameters of the two primary 

data. The simulated population is generated through 

bivariate normal distribution with their mean vector 

and variance-covariance matrix as: 

 Means of [Y, X] asμ =
[96.45833333,4.180555556]. 
 Variances and covariance of [Y, X] as 𝜎2 =

[
 3.347222 78.99354
78.993545 1972.16725

]. 

 With correlation 𝜌𝑌𝑋 = 0.972248893 

Hence a bivariate normal distribution of X and Y of 

size N = 10,000 have been generated through these 

parameters using R Program. 
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The following graph Figure-4 represents fitting of different considered linear and non-linear regression 

models to the simulated data-2.  

The various fitting measures for the linear and non-linear fitted regression models under consideration are 

presented in Table-7 below. 

       Table-7: Fitting measures of different 

linear and  

 non-linear regression model 
Model 𝑹𝟐 𝒔𝟐 MAE AIC 

Linear 0.945 105.973 8.2196 105.9941 

Logarithmic 0.699 577.031 17.3478 577.1465 

Inverse 0.005 1905.22 35.1740 1905.608 

Quadratic 0.945 105.712 8.2105 105.7221 

Cubic 0.945 105.606 8.2045 105.6055 

Compound 0.710 0.142 18.1325 0.141961 

Power 0.818 0.089 8.8283 0.088901 

S 0.017 0.481 36.6403 0.481289 

Growth 0.710 0.142 18.1325 0.141961 

Exponential 0.710 0.142 18.1325 0.141961 

Logistic 0.710 0.142 18.1325 0.141961 

 

 

 

 

Figure-4: Fitting of different linear and 

non-linear models to simulated data-2 

 

4. RESULTS AND DISCUSSION 

 

Following are some of very interesting 

observations to be considered:  

1. From Table-3, it may be observed 

that the “Power” non-linear model is the 

best fitted model to the data set-1 of the 

sugarcane yield.  It is the best fitted model 

for predicting sugarcane yield as compared 

to the considered linear and nonlinear 

models because it have least values of s2, 

MAE and AIC fitting measures.  

2. From Table-5, it is evident that 

the “Power” model is the best fitted model 

for the prediction of mango production in 

comparison to linear and non-linear 

competing estimators and this model have 

smaller  values of  s2, MAE and AIC fitting 

measures. The values of 𝑅2 are not 

compared as it may give misleading 

information in case of non-linear models.  

3. From Table-6, it may easily be 

seen that the “Power” model is the best 

fitted model for the simulated data on 

sugarcane production using the same 
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parameters of the real data set-1 among the class of all competing linear and non-linear models 

as the fitting measures obtained the optimum values for this model.  

4. From Table-7, it may be verified that the “Power” model is the best fitted model for the 

simulated data on mango production using the same parameters of the real data set-2 among the 

class of all competing linear and non-linear models as the fitting measures are having the 

optimum values for this model.  

 

5. CONCLUSIONS  

 

In this paper, we have fitted eleven different linear and non-linear models namely Linear, Logarithmic, 

Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential and Logistic for the analysis and 

prediction of Sugarcane and Mango productions at Sitapur and Lucknow districts of Uttar Pradesh State 

in India to two real primary data sets. The two simulated populations each of size 10000 for the same 

parameters of the real data sets with the bivariate normal distribution are generated and these models are 

also fitted to these simulated populations. From Table-3, Table-5, Table-6 and Table-7, it may easily be 

observed that the “Power” non-linear model is the best for all real and simulated populations. It exhibited  

the smallest  values of the residual sum of squares s2, which is one of the most suitable fitting measure 

among other fitting measures. Thus, the “Power” non-linear model may be used for the better explanation 

and future predictions of the Sugarcane and Mango productions and different policies may be formed 

accordingly.  
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