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ABSTRACT 

This paper proposes  a Randomized Response  methodology where the report may be produced by one of two procedures for 
scrambling. The sampler designs a Bernoulli experiment for deciding which scrambling procedure is to be used by the 

respondent .  Then,   the response is modeled  by a two stage RR procedure. The interviewed selects one of the two scrambling 

procedures. The respondent gives the response without informing which procedure was selected. 
The model is developed for Simple Random Sampling and Stratified  designs. The behavior of the proposed models is 

evaluated using real data of Mexico Covid19.   
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RESUMEN  

En este  paper se propone una metodología de Muestreo por Rangos Ordenados mediante un procedimiento de Respuestas 

Aleatorizadas donde el  reporte es producido por uno de dos procedimientos alternativos de enmascaramiento. El muestrista 

diseña un experimento de  Bernoulli para decidir cual de los procedimientos debe ser  usado por el entrevistado. Entonces la 

respuesta es modelada  por un nuevo procedimiento de Respuestas Aleatorizadas. El entrevistado selecciona uno de los 
procedimientos de enmascaramiento. Al responder da una respuesta sin   informar cual fue  seleccionado. 

El modelo es desarrollado para el Muestreo Simple Aleatorio y Estratificado. El comportamiento de  los modelos propuestos 

es evaluado usando datos reales de  México sobre la Covid19.   
 

PALABRAS CLAVE: Respuesta Aleatorizada, Enmascaramiento, Muestreo Simple Aleatorio,  Estratificado 

1. INTRODUCTION 

In a sample surveys commonly, some persons do not confide to the interviewer.  They provide incorrect 

answers when the question is potentially sensitive. In such cases they are not answering or giving  incorrect 

answers. This problem generates  an evasive answer bias which is difficultly  assessed. Warner (1965) 

proposed a method to  reduce the response biases generated by  dishonest answers to sensitive questions, 

see Chaudhuri- Mukerjee (1988). The technique is called randomized response (RR). His model dealt with 

qualitative variable, but it was extended for handling quantitative sensitive variables.  See  Greenberg et al. 

(1971) for earlier models.  Himmelfarb and Edgell (1980) introduced the idea of scrambling the sensitive 

variable. A variable  X with known distribution was used for scrambling.  Eichhorn and Hayre (1983) 

proposed to request  every respondent to report the product of the value of the sensitive variable Y and  the 

scrambling variable X. Many papers have considered estimating the mean of a single sensitive variable. 

Numerous techniques and models  have been developed for implementing  RR. Hence RR`s modeling is 

still placing challenges both for the theory of survey sampling and its application. Challenging new RR 

methods for dealing with quantitative sensitive variables are the  papers of Bouza (2010),  Tarray and Singh 

(2015), Ahmed, Sedory and Singh (2018, 2020) for estimating means. See Chaudhuri et al. (2016) for a 

broader look to the nowadays problematics in RR.   

In the sampling problem is assumed finite population of size 𝑁  of individuals Ω = {𝑢𝑖,   𝑖 = 1,… , 𝑁}.  A 

sampling design d is used for choosing randomly  𝑛  persons from  Ω .  𝑌𝑖  denotes the true value of the 

sensitive quantitative variable of the ith  unit of  Ω.   The proposed RR techniques assume that the 
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respondents answer truthfully when  using the randomized response device Thereof, RR  protects the 

privacy persons belonging to stigmatized groups. 

This paper proposes  a RR methodology where the report may be produced by one of two procedures for 

scrambling. The sampler designs a Bernoulli experiment for deciding which scrambling procedure is to be 

used by the respondent .  Then,   the response is modeled  by a two stage RR procedure. The interviewed 

selects one of the two scrambling procedures. The respondent gives the response without informing which 

procedure was selected. 

Simple random sampling design with replacement is a basic method (SRSWR) using Stratified sampling 

(SSRSWR) diminishes time and in costs. 

The proposed RR procedure is described in Section 2 below.  The necessary derivations for generating 

randomized responses are given.  It is also concerned with deriving,  explicitly, unbiased estimators of the 

mean of Y and their errors for SRSWR. Section 3 presents SSRSWR and the two sampling approaches are 

compared. 

 

2. A SIMPLE TWO STAGE RR SCRAMBLING PROCEDURE USING SRSWR. 

 

Consider that the interest is estimating the mean of a sensitive variable Y. Some persons of the population 

carry a stigma and tend to give an incorrect value of Y or to refuse giving a response. The seminal work on 

RR  is due to Warner (1965). It  opened a way of dealing with the response bias problem by using the so-

called technique of randomized response (RR). The use of RR provides the opportunity of reducing 

response biases, due to dishonest answers when questioning on Y.  This technique protects the privacy of 

the respondent by granting that belonging to a stigmatized group cannot be detected by the sampler.  

In this section is assumed that a sample s of size n is selected from the population U using SRSWR. That 

is, n units are selected independently by selecting  in each draw a 𝑖 ∈ 𝑈 with probability 1/N. 

Some simple RR scrambling  procedures are  described in Chaudhuri-Mukherjee (1988). Consider that the 

i-th respondent performs an experiment with probability P1 and generates a value of 𝐴𝑖 ∈ {𝐴1, … , 𝐴𝐾} with 

probability 𝜃i. Therefore, are known the mean and variance of the random variable Ai : (revise the order of 

the sentence) 

𝜇𝐴 = ∑𝐴𝑗𝜃𝑗;     𝜃𝑗 ∈ [0,1];  ∑𝜃𝑗 = 1

𝐾

𝑗=1

𝐾

𝑗=1

 

𝜎𝐴
2 = ∑(𝐴𝑗 − 𝜇𝐴)2𝜃𝑗 .

𝐾

𝑗=1

 

The respondent  reports  

𝑆𝑖 = 𝑌𝑖 + 𝐴𝑖 

without informing the value of the scrambling variable A. Considering only the randomness of A generated 

by the RR procedure R1 

𝐸(𝑆𝑖|𝑖) = 𝑌𝑖 + 𝜇𝐴 

𝑉(𝑆𝑖|𝑖) = 𝜎𝐴
2 

The behavior of R1 is characterized in the following lemma when the sampling design d is SRSWR 

Lemma 2.1. Using R1  an unbiased estimator of the mean of Y using SRSWR is �̅�𝑅1
= 𝑆̅ − 𝜇𝐴 and its 

sampling error is 𝑉(𝑆̅) =
𝜎𝑌

2+𝜎𝐴
2

𝑛
. 

Proof. 

The expectation is 𝐸(𝑆𝑖) = 𝐸𝑑(𝐸𝑅(1)(𝑌𝑖 + 𝐴𝑖)|𝑖) = 𝐸𝑑(𝑌𝑖 + 𝜇𝐴) = 𝜇𝑌 + 𝜇𝐴 . Noting that, as �̂�𝑖(𝑅1) = 𝑆𝑖 −

𝜇𝐴, hence 

𝐸(�̅�𝑅1
) = 𝐸(𝑆̅ − 𝜇𝐴) = 𝐸𝑑 (

1

𝑛
∑ 𝐸(�̂�𝑖(𝑅1)|𝑖)

𝑛
𝑖=1 ) = 𝐸𝑑(�̅�) = 𝜇𝑌. 

The variance of the report of a person is 𝑉(𝑆𝑖) = 𝜎𝑌
2 + 𝜎𝐴

2 because 𝐸𝑑(𝑉𝑅(1)(𝑆𝑖|𝑖)) = 𝜎𝐴
2 and 

𝑉𝑑(𝐸𝑅(1)(𝑆𝑖|𝑖)) = 𝑉𝑑(𝑦𝑖) = 𝜎𝑌
2.  As s is selected using SRSWR is obtained that  

𝑉(�̅�𝑅1
) = 𝑉(𝑆̅) =

𝜎𝑌
2+𝜎𝐴

2

𝑛
.  

Another popular scrambling method, identified by R2,  is described as follows. Each respondent selects 

randomly and independently values 𝐴𝑖 ∈ {𝐴1, … , 𝐴𝐾} and  𝐵𝑖 ∈ {𝐵1, … , 𝐵𝑚} with respective probabilities 

𝜃i and πi and reports 

𝑇𝑖 = 𝑌𝑖 + 𝐵𝑖𝐴𝑖. 

The following lemma characterized the behavior of R2. 
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Lemma 2.2. Using R2 an unbiased estimator of the mean of Y using SRSWR is �̅�𝑅2
= �̅� − 𝜇𝐴𝜇𝐵 and its 

sampling error is 𝑉(�̅�) =
𝜎𝑌

2+𝜎𝐴
2𝜎𝐵

2

𝑛
. 

Proof. 

The expectation of the report under  this scrambling procedure is  

𝐸(𝑇𝑖) = 𝐸𝑑(𝐸𝑅(2)(𝑌𝑖 + 𝐴𝑖𝐵𝑖)|𝑖) = 𝐸𝑑(𝑌𝑖 + 𝜇𝐴𝜇𝐵) = 𝜇𝑌 + 𝜇𝐴𝜇𝐵 .  
Note that  �̂�𝑖(𝑅2) = 𝑇𝑖 − 𝜇𝐴𝜇𝐵.  The variance of the report is  𝑉(𝑇𝑖) = 𝜎𝑌

2 + 𝜎𝐴
2𝜎𝐵

2 because  

𝐸𝑑(𝑉𝑅(2)(𝑇𝑖|𝑖)) = 𝜎𝐴
2𝜎𝐵

2 and 𝑉𝑑(𝐸𝑅(2)(𝑇𝑖|𝑖)) = 𝜎𝑌
2.   

Then the lemma is proved. 

The respondent will be more confident if the scrambling procedure is selected randomly. The interviewed  

selects the procedure. The sampler does not know which procedure generated the report. That is , the 

respondent`s confidence is improved, when selecting  R1 with a fixed probability P and R2 with probability 

Q=1-P, without informing the scrambling procedure used for reporting. Then the respondent performs a 

Bernoulli experiment with parameter P and obtains as result 𝛾𝑖.  The report  

𝑍𝑖 = {
𝑆𝑖  𝑖𝑓 𝛾𝑖 = 1
𝑇𝑖  𝑖𝑓 𝛾𝑖 = 0

 

is modeled by 

𝑍𝑖 = 𝛾𝑖𝑆𝑖 + (1 − 𝛾𝑖)𝑇𝑖  

Denote this procedure as R.  The expectation of this  report is 

 𝐸(𝑍𝑖|𝑖) = 𝑃(𝐸𝑅(1)(𝑌𝑖 + 𝐴𝑖)|𝑖) + 𝑄(𝐸𝑅(2)(𝑌𝑖 + 𝐴𝑖𝐵𝑖)|𝑖) = 𝑌𝑖 + 𝜇𝐴(𝑃 + 𝑄𝜇𝐵). 

Hence , as  

𝐸(�̅�) =
1

𝑛
∑ 𝐸(𝑍𝑖)

𝑛

𝑖=1

= 𝜇𝑌 + 𝜇𝐴(𝑃 + 𝑄𝜇𝐵) 

an unbiased estimator of the mean of Y is 

�̂�𝑌 = �̅� − 𝜇𝐴(𝑃 + 𝑄𝜇𝐵) 

The design variance of the conditional expectation is given by 

𝑉𝑑(𝐸(𝑍𝑖|𝑖)) = 𝜎𝑌
2  . 

The scrambling procedure variance is  

𝑉(𝑍𝑖|𝑖) = 𝛾𝑖
2(𝑉𝑅(1)(𝑌𝑖 + 𝐴𝑖)|𝑖) + (1 − 𝛾𝑖)

2(𝑉𝑅(2)(𝑌𝑖 + 𝐴𝑖𝐵𝑖)|𝑖) = 𝛾𝑖
2𝜎𝐴

2 + (1 − 𝛾𝑖)
2𝜎𝐴

2𝜎𝐵
2 

Due to the randomness of the selection of the scrambling procedure its expectation is 

𝐸𝑑(𝑉(𝑍𝑖|𝑖)) = 𝑃𝜎𝐴
2 + 𝑄𝜎𝐴

2𝜎𝐵
2 

Hence is proved the following lemma. 

Lemma 2.3. Using R and SRSWR the estimator  �̂�𝑌 = �̅� − 𝜇𝐴(𝑃 + 𝑄𝜇𝐵) is unbiased for the mean of Y 

and its variance is 𝑉(�̂�𝑌) =
𝜎𝑌

2+𝜎𝐴
2(𝑃+𝑄𝜎𝐵

2)

𝑛
. 

Proof . 

Previous  results support the unbiasedness of �̂�𝑌follows form   the fact that 𝐸(�̅�) = 𝜇𝑌 + 𝜇𝐴(𝑃 + 𝑄𝜇𝐵).  

The variance of the estimator is 

𝑉(�̂�𝑌) = 𝑉(�̅�) =
1

𝑛2
∑ 𝑉(𝑍𝑖) =

1

𝑛2
∑ 𝑉𝑑(𝐸(𝑍𝑖|𝑖)) +  𝐸𝑑(𝑉(𝑍𝑖|𝑖)) =

1

𝑛2
∑𝜎𝑌

2 + 𝑃𝜎𝐴
2 + 𝑄𝜎𝐴

2𝜎𝐵
2

𝑛

𝑖=1

𝑛

𝑖=1

 

Remark.2.1.  Note that if the sampler fixes a set of value of B satisfying 𝜎𝐵
2 = 1 then 𝑉(�̂�𝑌) =

𝜎𝑌
2+𝜎𝐴

2

𝑛
. 

Then, the sampling error of R and R1 are equal, though the respondents would be  more confident in being 

protected by using the proposed two stage scrambling procedure. 

3. STRATIFIED MODEL EXTENSION 

 

In this section, we will work with the two stage RR scrambling procedure seen in the previous section for 

the  stratified random sampling with replacement design (SSRSWR). 

In stratified random sampling, a population U with |𝑈| = 𝑁 is divided into L strata of size 𝑁1 + 𝑁2 + ⋯+
𝑁𝐿 = 𝑁. The sample sizes in each stratum are  𝑛1 + 𝑛2 + ⋯ + 𝑛𝐿 = 𝑛. A simple random sample is taken 

from each stratum.  

The Abdelfatah and Mazloum’s work (2016), proposed an efficient randomized response model with simple 

random sampling and its extension to stratified, in the same sense we work here the expansion to stratified.,  

was made 
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3.1. R1 with SSRSWR 

In the procedure R1, each individual of i in each stratum h, must generate 𝐴ℎ𝑖 ∈ {𝐴ℎ1, … , 𝐴ℎ𝐾}  with 

𝑃[𝐴ℎ𝑖] = 𝜃ℎ𝑖, and the involved parameters are 

𝜇ℎ𝐴 = ∑ 𝐴ℎ𝑗  𝜃ℎ𝑗
𝑘
𝑗=1  ;        𝜃ℎ𝑗 ∈  [0,1], ∑  𝜃ℎ𝑗 = 1𝑘

𝑗=1 ,   . 

𝜎ℎ𝐴
2 = ∑ (𝐴ℎ𝑗 − 𝜇ℎ𝐴)

2𝑘
𝑗=1 𝜃ℎ𝑗   , for  h=1, 2, …, L 

The i-th respondent reports: 

𝑆ℎ𝑖 = 𝑌ℎ𝑖 + 𝐴ℎ𝑖 

Considering only the randomness of A in the procedure, we have 

𝐸(𝑆ℎ𝑖|𝑖) = 𝑌ℎ𝑖 + 𝜇ℎ𝐴 

𝑉(𝑆ℎ𝑖|𝑖) = 𝜎ℎ𝐴
2  

We consider that the sampling design d is SSRSWR.  We characterize the behavior of R1 by: in the next 

lemma. 

Lemma 3.1. For R1, an estimator of the mean of Y per stratum using SSRSWR is    �̅�ℎ (𝑅1) = 𝑆ℎ̅ − 𝜇ℎ𝐴   

and its stratified global estimator �̅�𝑆𝑇,𝑅1 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅1)

𝐿
ℎ=1  is unbiased. Its sampling error per stratum is 

given by  𝑉(�̅�ℎ (𝑅1)) =
𝜎ℎ𝑌

2 +𝜎ℎ𝐴
2

𝑛ℎ
  and its global sampling error by   𝑉(�̅�𝑆𝑇,𝑅1 ) =

1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 +𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿
ℎ=1  

 

Proof  

𝐸(𝑆ℎ𝑖) = 𝐸𝑑(𝐸𝑅1 (𝑌ℎ𝑖 + 𝐴ℎ𝑖)|𝑖) = 𝐸𝑑(𝑌ℎ𝑖 + 𝜇ℎ𝐴) = 𝜇ℎ𝑌 + 𝜇ℎ𝐴. 

As   𝐸(𝑆ℎ𝑖|𝑖) = 𝑌ℎ𝑖 + 𝜇ℎ𝐴  , then,  �̂�ℎ𝑖 (𝑅1) = 𝑆ℎ𝑖 − 𝜇ℎ𝐴 , and,  �̅�ℎ (𝑅1) = 𝑆ℎ̅ − 𝜇ℎ𝐴 .  

Let's look at the unbiasedness  within stratum. 

𝐸 (�̅�ℎ (𝑅1)) = 𝐸(𝑆ℎ̅ − 𝜇ℎ𝐴) = 𝐸 (
1

𝑛ℎ
∑ 𝑆ℎ𝑖

𝑛ℎ
𝑖=1 −

1

𝑛ℎ
∑ 𝜇ℎ𝐴

𝑛ℎ
𝑖=1 ) = 𝐸𝑑 (

1

𝑛ℎ
∑ 𝐸(�̂�ℎ𝑖 (𝑅1)|𝑖)

𝑛ℎ
𝑖=1 ) = 𝐸𝑑(�̅�ℎ) =

𝜇ℎ𝑌. 

Let's look at the global unbiasedness.  

 Due to the general results obtained in the theory on SSRSWR, see Cochran (1977)  �̅�ℎ (𝑅1) = 𝑆ℎ̅ − 𝜇ℎ𝐴 is 

unbiased in stratum h, hence, �̅�𝑆𝑇,𝑅1 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅1)

𝐿
ℎ=1  is unbiased.  

Let's develop the estimator variance per stratum 

𝑉(�̅�ℎ (𝑅1)) =
1

(𝑛ℎ)2
∑ 𝑉(𝑆ℎ𝑖)

𝑛ℎ
𝑖=1 =

𝜎ℎ𝑌
2 +𝜎ℎ𝐴

2

𝑛ℎ
, 

since   

𝑉𝑑(𝐸𝑅(1)(𝑆ℎ𝑖|𝑖)) = 𝑉𝑑(𝑦ℎ𝑖) = 𝜎ℎ𝑌
2  

and  

𝐸𝑑(𝑉𝑅(1)(𝑆ℎ𝑖|𝑖)) = 𝜎ℎ𝐴
2  

Now we obtain the global estimator variance 

As   𝑉(�̅�ℎ (𝑅1)) =
𝜎ℎ𝑌

2 +𝜎ℎ𝐴
2

𝑛ℎ
 and by Cochran’s theorem 5.2, , 𝑉(�̅�𝑠𝑡) =

1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̅�ℎ )
𝐿
ℎ=1 , where  �̅�ℎ must be 

an  unbiased  estimator of  �̅�ℎ , which has already been demonstrated. the samples are considered 

independent.  Hence,  applying the  above mentioned theorem we have,  

𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑ 𝑁ℎ

2 𝑉(�̅�ℎ (𝑅1))

𝐿

ℎ=1

=
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿

ℎ=1

 

 

3.2. R2 with  SSRSWR 

Using R2, each individual of i in each stratum h, must select values randomly and independently 𝐴ℎ𝑖 ∈
{𝐴1, … , 𝐴𝐾}  and  𝐵ℎ𝑖 ∈ {𝐵1, … , 𝐵𝑚}  with  𝑃[𝐴ℎ𝑖] = 𝜃ℎ𝑖  and   𝑃[𝐵ℎ𝑖] = 𝜋ℎ𝑖, the respondent reports: 

𝑇ℎ𝑖 = 𝑌ℎ𝑖 + 𝐵ℎ𝑖  𝐴ℎ𝑖 

Considering the randomness of A and B in this procedure, we have,  

𝐸(𝑇ℎ𝑖|𝑖) = 𝑌ℎ𝑖 + 𝜇ℎ𝐵 𝜇ℎ𝐴 

𝑉(𝑇ℎ𝑖|𝑖) = 𝜎ℎ𝐵
2  𝜎ℎ𝐴

2  

Then we obtain a similar result  for  the sampling design d is SRSWR, under R2: 

Lemma 3.2. For R2, an unbiased estimator of the mean of Y per stratum using SSRSWR is   

�̅�ℎ (𝑅2) = �̅�ℎ − 𝜇ℎ𝐵 𝜇ℎ𝐴 
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and its stratified global estimator �̅�𝑆𝑇,𝑅2 =
1

𝑁
 ∑ 𝑁ℎ�̅�ℎ (𝑅2)

𝐿
ℎ=1 . Its sampling error per stratum is given by 

𝑉(�̅�ℎ (𝑅2)) =
𝜎ℎ𝑌

2 +𝜎ℎ𝐵
2  𝜎ℎ𝐴

2

𝑛ℎ
  and its global sampling error   𝑉(�̅�𝑆𝑇,𝑅2 ) =

1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 +𝜎ℎ𝐵
2  𝜎ℎ𝐴

2 )

𝑛ℎ

𝐿
ℎ=1  

Proof  

𝐸(𝑇ℎ𝑖) = 𝐸𝑑(𝐸𝑅2 (𝑌ℎ𝑖 + 𝐵ℎ𝑖  𝐴ℎ𝑖)|𝑖) = 𝐸𝑑(𝑌ℎ𝑖 + 𝜇ℎ𝐵  𝜇ℎ𝐴) = 𝜇ℎ𝑌 + 𝜇ℎ𝐵 𝜇ℎ𝐴. 

As  𝐸(𝑇ℎ𝑖|𝑖) = 𝑌ℎ𝑖 + 𝜇ℎ𝐵 𝜇ℎ𝐴  , then,  �̂�ℎ𝑖 (𝑅2) = 𝑇ℎ𝑖 − 𝜇ℎ𝐵 𝜇ℎ𝐴 , and, �̅�ℎ (𝑅2) = �̅�ℎ − 𝜇ℎ𝐵 𝜇ℎ𝐴 .  

The unbiasedness of �̅�ℎ (𝑅2) in each stratum is easily derived as follows: 

𝐸 (�̅�ℎ (𝑅2)) = 𝐸(�̅�ℎ − 𝜇ℎ𝐵 𝜇ℎ𝐴) = 𝐸 (
1

𝑛ℎ
∑ 𝑇ℎ𝑖

𝑛ℎ
𝑖=1 −

1

𝑛ℎ
∑ 𝜇ℎ𝐵  𝜇ℎ𝐴

𝑛ℎ
𝑖=1 ) = 𝐸𝑑 (

1

𝑛ℎ
∑ 𝐸(�̂�ℎ𝑖 (𝑅2)|𝑖)

𝑛ℎ
𝑖=1 ) =

𝐸𝑑(�̅�ℎ) = 𝜇ℎ𝑌. 

For the global unbiasedness we use the same reasoning as in  �̅�𝑆𝑇,𝑅1 . 

On the other hand, the estimator of the variance per stratum is  

𝑉(�̅�ℎ (𝑅2)) =
1

(𝑛ℎ)2
∑ 𝑉(𝑇ℎ𝑖)

𝑛ℎ
𝑖=1 =

𝜎ℎ𝑌
2 +𝜎ℎ𝐵

2  𝜎ℎ𝐴
2

𝑛ℎ
, 

since   

𝑉𝑑(𝐸
𝑅(2)

(𝑇ℎ𝑖|𝑖)) = 𝑉𝑑(𝑦ℎ𝑖) = 𝜎ℎ𝑌
2  ,  𝐸𝑑(𝑉𝑅(2)(𝑇ℎ𝑖|𝑖)) = 𝜎ℎ𝐵

2 𝜎ℎ𝐴
2 . 

The global estimator variance is derived applying the same reasoning as in  𝑉(�̅�𝑆𝑇,𝑅1 ). 

 

3.3. R procedure with SSRSWR 

Finally, we work the R procedure with SSRSWR. Let be   𝑃(𝑅ℎ1) = 𝑃ℎ   and   𝑃(𝑅ℎ2) = (1 − 𝑃ℎ) = 𝑄ℎ. 

Then respondent i-th in stratum h, performs a Bernoulli experiment with parameter 𝑃ℎ and obtains 𝛾ℎ𝑖 as a 

result. The report  

𝑍ℎ𝑖 = {
𝑆ℎ𝑖     𝑖𝑓     𝛾ℎ𝑖 = 1 
𝑇ℎ𝑖     𝑖𝑓     𝛾ℎ𝑖 = 0

 

is modeled by 

𝑍ℎ𝑖 = 𝛾ℎ𝑖  𝑆ℎ𝑖 + (1 − 𝛾ℎ𝑖) 𝑇ℎ𝑖   
The expectation of this report is 

𝐸(𝑍ℎ𝑖|𝑖) = 𝐸(𝑃ℎ  𝑆ℎ𝑖 + 𝑄ℎ  𝑇ℎ𝑖) = 𝑃ℎ  𝐸𝑅1
((𝑌ℎ𝑖 +  𝐴ℎ𝑖)|𝑖) + 𝑄ℎ  𝐸𝑅2

((𝑌ℎ𝑖 +  𝐵ℎ𝑖  𝐴ℎ𝑖)|𝑖) = 

𝑌ℎ𝑖  (𝑃ℎ + 𝑄ℎ) + 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ 𝜇ℎ𝐵) =  𝑌ℎ𝑖   +  𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵) . 
Hence, as  

𝐸(�̅�ℎ) =
1

𝑛ℎ

∑ 𝐸(𝑍ℎ𝑖)

𝑛ℎ

𝑖=1

= 𝐸𝑑(𝐸𝑅1 𝑃ℎ(𝑌ℎ𝑖 +  𝐴ℎ𝑖)|𝑖) +  𝐸𝑑(𝐸𝑅2 𝑄ℎ(𝑌ℎ𝑖 +   𝐵ℎ𝑖  𝐴ℎ𝑖)|𝑖)

= 𝜇ℎ𝑌  +  𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇𝐵) .  
An unbiased estimator of the mean of Y is  

�̂�ℎ 𝑌 = �̅�ℎ − 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇𝐵) . 
The design variance of the conditional expectation is given by  

𝑉𝑑(𝐸(𝑍ℎ𝑖|𝑖) ) =  𝜎ℎ𝑌
2  

The R procedure variance is  

𝑉(𝑍ℎ𝑖|𝑖) =  𝛾ℎ𝑖
2  (𝑉𝑅1 (𝑌ℎ𝑖 +  𝐴ℎ𝑖)|𝑖) + (1 − 𝛾ℎ𝑖)

2(  𝑉𝑅2(𝑌ℎ𝑖 +   𝐵ℎ𝑖  𝐴ℎ𝑖)|𝑖)
=  𝛾ℎ𝑖

2𝜎ℎ𝐴
2 + (1 − 𝛾ℎ𝑖)

2𝜎ℎ𝐵
2  𝜎ℎ𝐴

2  

And its expectation  

𝐸𝑑(𝑉(𝑍ℎ𝑖|𝑖)) = 𝑃ℎ  𝜎ℎ𝐴
2 + 𝑄ℎ 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2   

For this scrambling procedure, we have derived the following  lemma 

Lemma 3.3. For the procedure R and using SSRSWR, an estimator of the mean of Y is �̂�ℎ 𝑌 = �̅�ℎ −

 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵)     and its stratified global estimator �̅�𝑆𝑇,𝑅 =
1

𝑁
 ∑ 𝑁ℎ �̂�ℎ 𝑌

𝐿
ℎ=1 . Its sampling error per 

stratum is given by 𝑉(�̂�ℎ 𝑌) =
𝜎ℎ𝑌

2 +𝜎ℎ𝐴
2 (𝑃ℎ+𝑄ℎ 𝜎ℎ𝐵

2 )

𝑛ℎ
,   and its global sampling error     

𝑉(�̅�𝑆𝑇,𝑅 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑌

2 + 𝜎ℎ𝐴
2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵

2 ))

𝑛ℎ

𝐿

ℎ=1

 

Proof 

As  𝐸(𝑍ℎ𝑖|𝑖) = 𝑌ℎ𝑖   +  𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵) , then,  �̂�ℎ𝑖 (𝑅) = 𝑍ℎ𝑖 − 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵) , and, �̅�ℎ (𝑅) = �̅�ℎ −

𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵)  
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Now, let’s obtain the unbiasedness per stratum.  

𝐸 ( �̂�ℎ 𝑌) = 𝐸(�̅�ℎ − 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵)) = 𝐸 (
1

𝑛ℎ
∑ 𝑧ℎ𝑖

𝑛ℎ
𝑖=1 −

1

𝑛ℎ
∑ 𝜇ℎ𝐴 (𝑃ℎ + 𝑄ℎ  𝜇ℎ𝐵)

𝑛ℎ
𝑖=1 ) =

𝐸𝑑 (
1

𝑛ℎ
∑ 𝐸(�̂�ℎ𝑖 (𝑅)|𝑖)

𝑛ℎ
𝑖=1 ) = 𝐸𝑑(�̅�ℎ) = 𝜇ℎ 𝑌. 

Global unbiasedness is derived using the same reasoning as in the previous cases.  

In this case, the variance estimator per stratum is  

𝑉(�̂�ℎ 𝑌) =
1

(𝑛ℎ)2
∑ 𝑉(𝑍ℎ𝑖)

𝑛ℎ
𝑖=1 =

𝜎ℎ𝑌
2 +𝜎ℎ𝐴

2 (𝑃ℎ+𝑄ℎ 𝜎ℎ𝐵
2 )

𝑛ℎ
, since    𝑉𝑑(𝐸(𝑍ℎ𝑖|𝑖)) = 𝑃ℎ

2𝜎ℎ𝑌
2 + 𝑄ℎ

2𝜎ℎ𝑌
2  = 𝜎ℎ𝑌

2   and  

𝐸𝑑(𝑉(𝑍ℎ𝑖|𝑖)) = 𝑃ℎ  𝜎ℎ𝐴
2 + 𝑄ℎ  𝜎ℎ𝐵

2  𝜎ℎ𝐴
2  

We obtain the global estimator variance following the same reasoning as in the previous Lemmas. 

 

4. OPTIMAL ALLOCATION AND GAINS IN ACCURACY OF THE MODEL FOR 

SSRSWR 

 

Let us consider the minimization of the variance in terms of the strata sample sizes for  fixed n and cost C. 

The problem is to solve the optimization problem: 

𝐴𝑟𝑔𝑀𝑖𝑛�⃗�  {𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒|𝐶 =  𝑐0 + ∑ 𝑐ℎ 𝑛ℎ} 

Its dual is : 

𝐴𝑟𝑔𝑀𝑖𝑛�⃗�  𝐶|𝑉 =  ∑ 𝑉𝑎𝑟𝑖} 

 

4.1. 𝒏𝒉 y n optima para 𝑽(�̅�𝑺𝑻,𝑹𝟏 ) 

Lemma 4.1. Take the sampling design and the cost  function  𝐶 =  𝑐0 + ∑𝑐ℎ 𝑛ℎ , the  variance of the 

estimator of the population mean of the procedure 𝑅1 is minimized when  𝑛ℎ  ∝  𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2  
1

√𝑐ℎ
 . 

If  the variance  𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 +𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿
ℎ=1  is fixed the cost is minimized when 

𝑛ℎ ∝ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2
1

√𝑐ℎ

) 

 

Proof. . 

Our objective function is  

𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿

ℎ=1

 

Subject to  

𝐶 = 𝑐0 + ∑𝑐ℎ 𝑛ℎ, 𝑛 = ∑ 𝑛ℎ  . 

Using the method of  Lagrange, for determining the optimal sample sizes and taking 𝑛ℎ the Lagrange 

parameter 𝜆 the optimization problem may be rewritten as  : 

𝑓(𝑦, 𝜆) =  𝑉(�̅�𝑆𝑇,𝑅1 ) +  𝜆 (∑ 𝑐ℎ 𝑛ℎ − 𝐶 + 𝑐0 ) = ∑
𝑁ℎ

2 (𝜎ℎ𝑦
2 +𝜎ℎ𝐴

2 )

𝑁2   𝑛ℎ

𝐿
ℎ=1 + 𝜆 (𝑐1𝑛1 + ⋯+ 𝑐𝐿𝑛𝐿 − 𝐶 + 𝑐0 ) . 

The partial derivatives of    𝑓(𝑦, 𝜆) with respect to  the  𝑛ℎ′𝑠, h=1, 2, …, L, are 

𝜕 ℎ(𝑦,𝜆)

𝜕 𝑛1
= −

𝑁1
2 (𝜎1𝑦

2 +𝜎1𝐴
2 )

𝑁2𝑛1
2 + 𝜆𝑐1, … , 

𝜕 ℎ(𝑦,𝜆)

𝜕 𝑛𝐿
= −

𝑁𝐿
2 (𝜎𝐿𝑦

2 +𝜎𝐿𝐴
2 )

𝑁2𝑛𝐿
2 + 𝜆𝑐𝐿  ℎ = 1,… , 𝐿; 

Say.  

−
𝑁ℎ

2 (𝜎ℎ𝑦
2 +𝜎ℎ𝐴

2 )

𝑁2𝑛ℎ
2 + 𝜆𝑐ℎ = 0,  h=1,2, …, L. 

As a result: 

𝜆𝑐ℎ =
𝑁ℎ

2 (𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 )

𝑁2𝑛ℎ
2  ⇒ √𝜆√𝑐ℎ =

√𝑁ℎ
2 √(𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

√𝑁2√𝑛ℎ
2

⇒ 𝑛ℎ√𝜆 =

𝑁ℎ  √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 )

𝑁 √𝑐ℎ

 … (4.1.1) 

Summing them 
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∑ 𝑛ℎ√𝜆 = ∑

𝑁ℎ √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 )

𝑁 √𝑐ℎ

 ⇒ 𝑛√𝜆 = ∑

𝑁ℎ  √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 )

𝑁 √𝑐ℎ

 ….                                      (4.1.2) 

From (4.1.1) and (4.1.2) is derived the following expressions: 

𝑛ℎ

𝑛
=

𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2  
1

√𝑐ℎ

∑𝑁ℎ √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 ) 
1

√𝑐ℎ

  ℎ = 1,…                                                                                        (4.1.3) 

The proof of the first result is obtained. 

The dual optimal allocation problem is solved similarly. In this case V is fixed.  𝑉(�̅�𝑆𝑇,𝑅1 ) may be expressed 

as: 

𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

 𝑛

𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2  
1

√𝑐ℎ

∑𝑁ℎ  √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 ) 
1

√𝑐ℎ

  

𝐿

ℎ=1

 

That is 

 

𝑉(�̅�𝑆𝑇,𝑅1 ) =
1

𝑁2
 
1

𝑛
    ∑

[
 
 
 
 

𝑁ℎ
2 (𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2  
1

√𝑐ℎ

 

]
 
 
 
 

 

𝐿

ℎ=1

 ∑ [𝑁ℎ  √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 ) 
1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

and 

𝑛ℎ ∝ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2
1

√𝑐ℎ

) 

sizes will be larger whenever we have a larger variation in the  stratum  and the cost of sampling is small. 

This result is the counterpart of the classic optimal allocation theory.  

An explicit formula of the optimal allocations are easily derived noting that, see   (4.1.3),  𝑛ℎ depends also 

of  the fixed overall sample size  n=n1+…+nL.  

Doing the needed algebraic manipulations is obtained that,  for a fixed cost:  

𝑛 =

(𝐶 − 𝑐0)∑ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 1

√𝑐ℎ

)

∑ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2   √𝑐ℎ)

 

and for a fixed variance 

𝑛 =   
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑅1 )
   ∑ [ 𝑁ℎ  √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2  √𝑐ℎ  ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2 ) 
1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

 

4.2 𝒏𝒉 y n optima for 𝑽(�̅�𝑺𝑻,𝑹𝟐 ) 

 

Lemma 4.2. Take the sampling design  SSRSWR and  (4.1) as the cost function,  the  variance of the 

estimator of the population mean of the procedure  𝑅2 is minima when 𝑛ℎ  ∝  𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2  

1

√𝑐ℎ
  

Proof. 

The proof is derived using the also Lagrange multipliers method for  𝑅2  

𝑛ℎ

𝑛
=

𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2  

1

√𝑐ℎ

∑𝑁ℎ √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2 ) 

1

√𝑐ℎ

  …                                                                                                 (4.2.1) 

n is an optimum when C is fixed nd   
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𝑛 =

(𝐶 − 𝑐0)∑ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2 1

√𝑐ℎ

)

∑ (𝑁ℎ√𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2   √𝑐ℎ)

 

The optimum n for a fixed variance is   

𝑛 =   
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑅2 )
   ∑ [ 𝑁ℎ  √𝜎ℎ𝑦

2 + 𝜎ℎ𝐵
2  𝜎ℎ𝐴

2  √𝑐ℎ  ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √(𝜎ℎ𝑦
2 + 𝜎ℎ𝐵

2  𝜎ℎ𝐴
2 ) 

1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

For R2 the optimal allocation is obtained by substituting in the formulae.  

 

4.3 𝒏𝒉  and  n optima for  𝑽(�̅�𝑺𝑻,𝑹 ) 

 

Lemma 4.3. For SSRSWR and a  cost fixed  𝐶 =  𝑐0 + ∑𝑐ℎ 𝑛ℎ , the variance of the estimator for R is 

minimized for 𝑛ℎ  ∝  𝑁ℎ √𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵
2 ) 

1

√𝑐ℎ
  

Proof. 

Doing the same similar manipulations used for proving lemma 4.1 we have: 

𝑛ℎ

𝑛
=

𝑁ℎ √𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵
2 ) 

1

√𝑐ℎ

∑𝑁ℎ √𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵
2 ) 

1

√𝑐ℎ

    

For a fixed cost the optimum n is,   

𝑛 =

(𝐶 − 𝑐0)∑ (𝑁ℎ√𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ 𝜎ℎ𝐵
2 )

1

√𝑐ℎ

)

∑(𝑁ℎ√𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ 𝜎ℎ𝐵
2 )  √𝑐ℎ)

 

and for fixed variance   

𝑛 =   
1

𝑁2 𝑉(�̅�𝑆𝑇,𝑅 )
 ∑ [ 𝑁ℎ  √𝜎ℎ𝑌

2 + 𝜎ℎ𝐴
2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵

2 ) √𝑐ℎ ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √𝜎ℎ𝑌
2 + 𝜎ℎ𝐴

2 (𝑃ℎ + 𝑄ℎ  𝜎ℎ𝐵
2 ) 

1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

 

.  

4.4 Gains in accuracy for the optimal allocation in SSRSWR of  𝑽(�̅�𝑺𝑻,𝑹𝟏 )𝒐𝒑𝒕
  with respect to   

𝑽(�̅�𝑺𝑻,𝑹𝟏 ) 

 

From (4.1.3) substituting  nh in 𝑉(�̅�𝑆𝑇,𝑅1 ) we have that 𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡
  for fixed  n and  𝑐ℎ in for   R1 is :  

𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡
=

1

𝑁2 𝑛
   ∑ [ 𝑁ℎ  √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2  √𝑐ℎ  ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2  
1

√𝑐ℎ

 ]

𝐿

ℎ=1

 

 

Therefore, the gain of  𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡
  compared with   𝑉(�̅�𝑆𝑇,𝑅1 ) is  

𝐺(𝑆𝑇𝑅1
, 𝑆𝑇𝑅1𝑜𝑝𝑡  ) =  𝑉(�̅�𝑆𝑇,𝑅1 ) − 𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡

 =  

=
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 +𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿
ℎ=1 −

1

𝑁2 𝑛
   ∑ [ 𝑁ℎ   √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2  √𝑐ℎ ]

𝐿
ℎ=1     ∑ [𝑁ℎ √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2  

1

√𝑐ℎ
 ]𝐿

ℎ=1     

 

When the cost of evaluating a unit  is equal for all the strata, that is, C = c0 +cn, then  : 

𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡′
=

1

𝑁2 𝑛
   ∑ [ 𝑁ℎ  √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2   ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2   ]

𝐿

ℎ=1

  

Comparing  𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡′
  with   𝑉(�̅�𝑆𝑇,𝑅1 )  

𝐺(𝑆𝑇𝑅1
, 𝑆𝑇𝑅1𝑜𝑝𝑡′ ) = 𝑉(�̅�𝑆𝑇,𝑅1 ) − 𝑉(�̅�𝑆𝑇,𝑅1 )𝑜𝑝𝑡

=   

= 
1

𝑁2
∑

𝑁ℎ
2 (𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 )

𝑛ℎ

𝐿

ℎ=1

−
1

𝑁2 𝑛
   ∑ [ 𝑁ℎ  √𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2   ]

𝐿

ℎ=1

    ∑ [𝑁ℎ √𝜎ℎ𝑦
2 + 𝜎ℎ𝐴

2   ]

𝐿

ℎ=1
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= ∑
𝑁ℎ

2 𝑆ℎ
2

𝑁2  𝑛ℎ

𝐿

ℎ=1

−
1

 𝑛
{   ∑ [ 

𝑁ℎ  𝑆ℎ  

𝑁
 ]

𝐿

ℎ=1

    ∑ [
𝑁ℎ  𝑆ℎ 

𝑁
   ]

𝐿

ℎ=1

}

= ∑
𝑃ℎ

2 

  𝑛ℎ

𝐿

ℎ=1

−
1

 𝑛
 [∑ 𝑃ℎ ∗

𝐿

ℎ=1

∑ 𝑃ℎ

𝐿

ℎ=1

]  …                                                                                           (4.4.1) 

Where  𝑆ℎ
2 = 𝜎ℎ𝑦

2 + 𝜎ℎ𝐴
2 , 𝑃ℎ =

𝑁ℎ  𝑆ℎ 

𝑁
. As the right hand expression of  (4.4.1), is divided by  n, this 

difference is always larger or equal to zero. 

 

5. A SIMULATION STUDY USING COVID´S 19 REAL DATA. 

 

To evaluate the performance of the suggested models for estimating of the population mean of sensitive 

data, we consider the records of confirmed patients of COVID-19 in México since March-2020, up to May-

2021. The variables used were diabetes, hypertension, obesity, age and sex. These variables are of particular 

interest due to the fact that an infected  persons may be  discriminated and stigmatized by people in their 

surrounds  Therefore information provided in surveys may be considered sensitive when looking for an 

employ, for example.  

The data consisted of 1 048.575 cases on the risk quantification.  The managers considered that the data on 

Y= risk were strategically sensitive. Min (Y)=0,9, Max (Y)=68, 𝜇𝑌 = 15,85, 𝜎𝑌
2 = 203,51. The population 

is naturally divided by the epidemiologists into 10 strata according to the age intervals.  This problem is 

considered a Big Data case and are obtainable at https://coronavirus.gob.mx/ 

The evaluation of the data was made by quantifying the death-risk due COVID-19 if the person is positive 

to diabetes, hypertension or obesity as well as age and sex. The quantification of the risk was made using 

the weighting developed by Pamplona (2020). The accuracy and efficiency of the proposed estimators (R1, 

R2 y R) for SSRS and SSRSWR was used as evaluation measures of the them. The comparison of the 

accuracy was made by computing in each sample generated  s 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡)𝑠 =

(

 
 

|�̂�𝑠𝑡 − �̅�𝑠𝑡|

�̅�𝑠𝑡

|�̂� − �̅�|

�̅� )

 
 

𝑠

 

the efficiency was measured by   

𝐸(𝑠𝑡)𝑠 = (
𝑉(�̅�𝑠𝑡)

𝑉(�̅�)
)

𝑠

 

We fixed n= 65.000 as the sample size for applying SRSWR. The strata samples sizes were determined 

proportionally looking for maintaining the proportion 
𝑛

𝑁
. The corresponding probabilities P y Q for R were 

fixed adequately for observing the behavior of the estimators.  

The number of simulation runs was 1.000 for each method and design. That is s=1,…, 1.000. The evaluation 

process used the results of the 1000 runs and they were averaged determining 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝜌) =
∑ 𝐸𝑟𝑟𝑜𝑟(𝑠𝑡)1000

𝑠=1 𝑠|𝜌

1000
, 𝜌 = 𝑅1, 𝑅2, 𝑅 

𝐸(𝑠𝑡𝜌) =
∑ 𝐸(𝑠𝑡)1000

𝑠=1 𝑠|𝜌

1000
, 𝜌 = 𝑅1, 𝑅2, 𝑅 

See in Table 1 that the 3 procedures (R1, R2 y R) are more accurate when stratification is used. R1 scrambling 

procedures is more accurate than R2.  This conclusion is based in observing that R performs better when 

the probabilities of using R1 is P=0,7 are larger than the probability of observing R2 (Q=0.3).  
Table 1. Accuracy of the estimators of the mean in the designs.   

 R1 R2 R (P=0.3, Q=0.7) R’ (P=0.7, Q=0.3) 

SRSWR 0,003035 0,02539 0,04001 0,03747 

SSRSWR 0,001296 0,01912 0,02279 0,018519 

𝑬𝒓𝒓𝒐𝒓(𝒔𝒕) 
𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑅1)
= 0,42701812 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑅2)
= 0,75305238 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑅)
= 0,5696076 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑅′)
= 0,49423539 

The results in Table 2 are confirming the results observed in Table 1. Then the efficiency of the stratified 

design is better. 
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Table 2. Efficiency of the variances of the estimators of the mean in the designs.   

 R1 R2 R (P=0,3, Q=0,7) R’ (P=0,7, Q=0,3) 

SRSWR 0,003698 0,005282 0,004664 0,003839 

SSRSWR 0,0005953 0,004666 0,003445 0,001816 

𝑬(𝒔𝒕) 𝐸(𝑠𝑡𝑅1) = 0,160979 𝐸(𝑠𝑡𝑅2) = 0,883378 𝐸(𝑠𝑡𝑅) = 0,738636 𝐸(𝑠𝑡𝑅′) = 0,47304 

RECEIVED: JULY, 2021. 

REVISED: NOVEMBER , 2022. 

 

ACKNOWLEDGMENTS: The authors would like to express their most sincere gratitude to the the 

referees for their careful reading of the paper and for making many useful suggestions, all of which 

helped substantially improve the presentation of the paper. The paper was benefited by the project 

PN223LH010-005. 

 

REFERENCES 

 

[1] AHMED, S., SEDORY S. A. and  SINGH, S. (2018): Simultaneous estimation of means of two 

sensitive variables. Comm. Statist. Theory Methods 47 ,  324–343. 

[2] AHMED, S., SEDORY S. A. and  SINGH, S. (2020) Forcibly Re-scrambled randomized 

response model for simultaneous estimation of means of two sensitive variables. Commun. Math. 

Stat. 8, 23–45 

[3] BOUZA, C. (2010): Behavior of a randomized response procedure under unequal selection 

model of Chaudhuri-Stenger for insensitive variables under ranked set sampling. Advances and 

Applications in Statistical Sciences, 4, 136-44. 

[4] CHAUDHURI A., and  MUKERJEE R (1988): Randomized response: theory and techniques. 

Marcel Dekker Inc, New York.  

[5] CHAUDHURI, A. and STENGER, H. (1992): Sampling Survey. Marcel Dekker, New York. 

[6] CHAUDHURI, A., CHRISTOFIDES, T. C. and RAO, C. R., (2016): Handbook of Statistics 

34, Data gathering, analysis and protection of privacy through randomized response techniques. 

Elsevier, Amsterdam. 

[7] COCHRAN, W, G,. (1971): Técnicas de muestreo. John Willey and Sons. Inc., N. York. 

[8] COVID19 RISK (2021): Coronavirus Pandemic in Mexico. https://coronavirus.gob.mx/ (last 

consulted  20 May, 2021.) 

[9] GREENBERG, B. G., KUBLER, R. R. and HORVITZ, D. G. (1971): Applications of RR 

technique in obtaining quantitative data. Journal of the American Statistical Association, 66, 243-250.  

[10] HIMMELFARB, S. and EDGELL, S.E. (1980): Additive constant model: A randomized response 

technique for eliminating evasiveness to quantitative response questions. Psychological Bulletin, 87, 525-

530. 

[11] PAMPLONA, F., (2020): La pandemia de covid-19 en México y la otra epidemia. Espiral 

Estudios sobre Estado y Sociedad.  xxvii . 78-79  . 

[12] TARRAY, T. A. and H. SINGH (2015): A general procedure for estimating the mean of a sensitive 

variable using auxiliary information. Revista Investigación Operacional. 36, 268-279 

[13] WARNER, S.L. (1965): Randomized response: a survey technique for eliminating evasive 

answer bias. Journal of the American Statistical Association, 60, 63–69. 

 

 

https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/author.html?mrauthid=306484
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/journaldoc.html?id=3424
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/publications.html?pg1=ISSI&s1=359842
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/author.html?mrauthid=306484
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/journaldoc.html?id=8261
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/journaldoc.html?id=8261
https://0-mathscinet-ams-org.oasis.lib.tamuk.edu/mathscinet/search/publications.html?pg1=ISSI&s1=435619

