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ABSTRACT 

This paper presents several strategies to tune the parameters of metaheuristic methods for (discrete) design optimization of 

reinforced concrete (RC) structures. A novel utility metric is proposed, based on the area under the average performance curve. 
The process of modelling, analysis and design of realistic RC structures leads to objective functions for which the evaluation is 

computationally very expensive. To avoid costly simulations, two types of surrogate models are used. The first one consists of the 

creation of a database containing all possible solutions. The second one uses benchmark functions to create a discrete sub-space 
of them, simulating the main features of realistic problems. Parameter tuning of four metaheuristics is performed based on two 

strategies. The main difference between them is the parameter control established to perform partial assessments. The simplest 

strategy is suitable to tune good “generalist” methods, i.e., methods with good performance regardless the parameter configuration. 
The other one is more expensive, but is well suited to assess any method. Tuning results prove that Biogeography-Based 

Optimization, a relatively new evolutionary algorithm, outperforms other methods such as GA or PSO for such optimization 

problems, due to its particular approach of applying recombination and mutation operators. 
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RESUMEN 

Este artículo presenta varias estrategias para ajustar los parámetros de los métodos metaheurísticos en la optimización (discreta) 

del diseño estructural de estructuras de Hormigón Armado (HA). Una novedosa métrica de utilidad es propuesta, utilizando el área 

bajo la curva de rendimiento promedio. El proceso de modelación, análisis y diseño estructural de estructuras reales de HA deriva 
en funcione objetivos cuyas evaluaciones son muy costosas desde el punto de vista computacional. Para evitar estas costosas 

simulaciones, se emplean dos tipos de modelos sustitutivos. El primero consiste en la creación de una base de datos con todas las 

posibles soluciones. El segundo utiliza funciones de referencia para crear un sub-espacio discreto de estas, simulando las 
principales características de los problemas reales. Se ajustan los parámetros de cuatro metaheurísticas basado en dos estrategias. 

La mayor diferencia entre estas es el control de parámetros establecido para realizar mediciones parciales. La estrategia más simple 

es apropiada para ajustar métodos que sean buenos “generalistas”, es decir, con buenos resultados sin importar la configuración 
de parámetros. La otra es más costosa, pero es útil para medir el rendimiento de cualquier método. Los resultados demostraron 

que la Optimización Basada en Biogeografía, un algoritmo evolutivo relativamente nuevo, superó en rendimiento a otros métodos 

como GA y PSO para estos problemas de optimización, debido a su particular enfoque de aplicar los operadores de recombinación 
y mutación. 

 

PALABRAS CLAVES: Ajuste de Parámetros, Métodos Metaheurísticos, Optimización Discreta 

 

1. INTRODUCTION 

 

Optimization is a topic that has been deeply studied in recent years due to the continuous development of 

computational tools and the need to optimize processes in order to use resources in a more efficient way. 

To solve optimization problems, a large number of methods have been developed, depending on the type of 

problem to be solved and its characteristics (type and number of objective functions, types of variables). In the 

context of structural engineering, the design optimization of civil engineering structures has been studied by 

many researchers. In order to obtain results that are practical from an engineering point of view, this usually 

leads to a discrete and combinatorial optimization problem, for which the use of metaheuristics is the most 

common approach. These methods apply stochastic operators to explore the solution space and to guide the 

search towards optimal designs based on the objective(s) [12]. 
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These operators and the parameters of the method can be tuned for the optimization problem at hand. The 

performance of a metaheuristic method depends on three main aspects: (1) the optimization problem, (2) the 

values of the parameters, and (3) the random variability inherent to stochastic algorithms [12]. Therefore, one 

of the challenges to solve an optimization problem is, in addition to find an appropriate method, to find a good 

configuration of its parameters. In case one is "testing" several methods to solve certain problems using bad 

parameter configurations, the results can lead to the wrong selection of the method. Therefore, a poor selection 

of its parameters could lead to a lack of robustness of the results [16] (see Fig. 1). 

 
Fig. 1 The effect of parameter tuning on comparing metaheuristics. Left: the traditional situation, where the reported method 

performance is an “accidental” point on the scale ranging from the worst to the best performance (as determined by the parameter values 

used). Right: the improved situation, where the reported method performance is a near-optimal point on this scale, belonging to the 
tuned instance. This indicates the full potential of the given method, i.e., how good it can be when using the right parameter values [16]. 

According to [17], one can distinguish two approaches to improve methods’ performance: 

• Parameter tuning, where (good) parameter values are established before the run of a given 

metaheuristic. In this case, parameter values are fixed in the initialization stage and do not change 

while the method is running. 

• Parameter control, where (good) parameter values are established during the run of a given 

metaheuristic. In this case, parameter values are given an initial value when starting the metaheuristic 

and they undergo changes while the method is running. 

 

In our case, we are dealing with parameter tuning. However, the concept of parameter control can be applied to 

enhance the tuning procedure by means of pauses to check the method’s performance, changing the initial 

configuration of parameter and parameter values depending on the analysis of preliminary results. 

On the other hand, structural optimization processes are usually computationally expensive, therefore 

performing these tuning procedures is a difficult task. A common approach is to perform several independent 

runs of the algorithm for a given problem and to summarize the results using descriptive statistics [12]. The 

performance metrics (or utilities) commonly used in metaheuristics are: MBF (Mean Best Fitness), AES 

(average number of evaluations to solution) and SR (success rate) [17]. However, others could arise to get more 

information about the performance, based on the objectives pursued by the tuning process. 

In this paper we offer an alternative to perform parameter tuning of metaheuristic strategies in the design 

optimization of reinforced concrete (RC) frame structures, taking into account that the process of modelling, 

analysis and design of such structures leads to objective function evaluations that are computationally very 

expensive, which makes the assessment of the optimization methods very difficult. Therefore, the main goals 

of this paper are: (1) to propose strategies to enable parameter tuning of metaheuristics methods for (discrete) 

design optimization of RC frame structures using a commercial software as calculation engine; (2) to get insight 

of this kind of processes using a novel utility, based on the area under the average performance curve, which 

can allow to propose a fully automated procedure and (3) to test four metaheuristics in such (discrete) 

optimization problems. 

The structure of this paper is as follows. In section 2 the optimization problem is formulated, the optimization 

methods are described, an overview of parameter tuning is developed, the novel way to measure utility is 

introduced, in addition to the proposed strategies to be able to afford parameter tuning in real life challenging 

optimization problems. Section 3 is dedicated to show and to discuss the results. Finally, conclusions are drawn 

and future work is proposed. 
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2. PROBLEM DEFINITION AND METHODOLOGY 

 

Within the field of structural design optimization, the effect of the control parameters of metaheuristic 

algorithms has been hardly studied [13]. As mentioned, the process of modelling, analysis and design of 

structures is often computationally expensive, especially when a commercial software is used as calculation 

engine, as in our case. Thus, our methodology is based on the creation of surrogate models to be able to study 

optimization methods. These surrogate models are obtained by relatively simple procedures. The first one 

consists of the creation of databases containing the objective function values of the real model, i.e., the 

calculation engine is used to compute all possible solutions and by storing them and using interpolation, the 

surrogate model is obtained. Further analysis of this model do not need the use of the calculation engine 

anymore. The disadvantage of this strategy is the impossibility of evaluating highly complex structures, 

resulting in many variables and millions of possible solutions. The second strategy tries to overcome this 

shortcoming. It is less accurately, and uses benchmark functions [40] to simulate the main features of real 

problems, i.e. discrete optimization problems with the same number of variables (each variable with the same 

number of possible solutions), objective functions with the presence of many local minima and “similar” 

response surfaces. The advantage is that solutions are evaluated by an analytical function and not by a complex 

process. These two alternatives are further explained in in the following subsections. 

2.1 .Formulation of the optimization problem 

 

Real design optimization problems are usually formulated as the minimization of objectives such as economic 

cost [33,32,31,34,30], weight [12,13] (mainly for steel structures) or environmental issues (e.g. CO2 emissions 

or Embodied Energy) [30]. For RC structures, these optimization problems are nonlinear, i.e. objective 

functions depend nonlinearly on the variables (see Eq. 1 and Eq. 2), with highly nonlinear complex constraints 

(see Eq. 3). Additionally, objective functions values depend on many factors related to the variables, and if as 

in our cases, the problem is formulated to properly reflect an actual (RC) design [33,32,31,34,30], the response 

surface is very difficult to optimize, since it possesses many local minima. In this section, the main features of 

real variables-constraints and how they are simulated in surrogate models are explained. 

 

2.1.1. Objective functions, design variables and constraints 

 

As mentioned, objective functions used in structural design optimization depend on many factors. As an 

example, it can be illustrated the case of the monetary cost of a simple beam (Eq. 1), which includes formwork, 

stirrups elaboration, assembly and placement, longitudinal reinforcement elaboration, assembly and placement 

and concrete elaboration and placement. Eq. 2 shows a term (concrete elaboration) of the Eq. 1, which 

introduces non-linearity to the general equation. The general equation is conformed by many other terms. 

Additionally, real structures possess many elements (not only other beams, but columns and foundations as 

well), so, objective functions are usually complex. 

inf infbeam formw stirr elab stirr assemb placem longre elab longre asemb placem conc elab conc placemC C C C C C C C− − − − − − − −= + + + + + +  (1) 

CuecLppC elabconc **)2(*)1(=−
 (2) 

Here p(1) and p(2) are the cross-sectional dimensions (variables, see Fig. 2), L is the beam length and Cuec is 

the unit cost of concrete elaboration ($/m3). 

 
Fig. 2 Rectangular beam cross-section and diagram of forces, including some terms [34]. 
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In this study, four cases will be used as examples. Real structures were previously optimized with respect to 

economic objective [31,34]. Objective functions 1 and 2 are surrogate models or databases of simple real 

structures shown in Fig. 3. Objective functions 3 and 4 are surrogate models of the optimization of the real 

structure shown in Fig. 4. Note that this structure is more complex than the first ones. The Ackley and Eggholder 

continuous functions are used to create the surrogate models by discretizing them. This discretization process 

consists of creating a solution space using some evaluations of the continuous function, generating response 

surfaces with the desired complexity. In Fig. 4 it can be seen how the Eggholder function generates a surrogate 

model that is difficult to optimize, such as the real case study. Table 1 shows the particularities of the four case 

studies created by using the surrogate models. 

Real design optimization problems of RC structures usually include as variables dimensions of cross sections 

(see Fig. 2), solution (placement) of reinforcing steel, rectangularity of shallow foundations and properties of 

building materials. In our problems, these variables are discrete, in order to obtain practical solutions. This is 

reflected in the response surface of the objective functions, e.g., solutions that are practical from the engineering 

point of view, including the realistic distribution of reinforcing steel within the cross section. This introduces 

many local minima in the (discrete) objective function, since the configuration of steel bars varies strongly with 

the size of the elements. In cases 1 and 2 variables produce the same fitness value than real cases, i.e. the 

response surface is exactly the same as the one produced in the real problem. However, this is not true for cases 

3 and 4. They are only (discrete) points obtained from the benchmark functions evaluation and fitness values 

belong to that function, and not to real problems. However, these points are evaluated in such a way that the 

response surface becomes as complicated as desired. 

Table 1 Features of the four used case studies 

Function # variables # possible solutions Optimal value 

Case 1 7 21870 2445.66 

Case 2 8 98460 3378.44 

Case 3 16 2.36x1011 1.00 

Case 4 16 2.36x1011 -3473.20 

In real problems, the constraints can be divided in two groups. Design (explicit) constraints are imposed on the 

design variables directly and appear for various reasons, such as functionality, manufacturing, transport or 

esthetic, and are of the form Xmin ≤ X ≤ Xmax. Behavioral (implicit) constraints, which are sometimes called 

state equations, are indirect. They deal with the fulfilment of the limit states, i.e., they define the values that the 

variable parameters must meet to satisfy the behavioral requirements. As an example it can be seen the Eq. 3, 

which corresponds to a simple example of the many behavioral requirements. In our actual optimization 

procedures, the implicit constraints are evaluated as follows. When one of them is not satisfied, the objective 

 
Fig. 3 Cases studies 1 and 2 with corresponding response surfaces in function of the two most important 

variables. Surrogate models of these cases are obtaining by strategy 1 (storage of all possible solutions) 
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function is penalized and this solution will not be selected. Consequently, these constraints influence the 

response surface and they are not directly taken into account in this study. However, explicit constraints are 

very important for surrogate models obtained by using the second strategy. They define the sub-space of the 

benchmark function that will be taken into account to form the surrogate model, as well as the “difficulty” of 

the response surface. 
2( * * )*

[0.85* ´ * * ( ) * ´ ( )́] 0 
8 2

concq b h L a
f c a b d fy A s d d




+
− − + −   (3) 

Many of the terms shown in Eq. 3 can be found in Fig. 2. It can be seen the highly non-linearity of constraints 

in the RC structures design optimization. 

 

2.2 . Optimization methods 

 

In this study, four metaheuristics are tuned and tested. Three of them are based on two of the most used ones: 

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The fourth one, Biogeography-Based 

Optimization (BBO), is relatively new. We now briefly describe how these strategies work. 

 

2.2.1. GA Matlab toolbox 

 

The Genetic Algorithm was first proposed by John Holland [20]. GAs are a particular class of evolutionary 

algorithm based on the mechanics of natural selection and natural genetics. GA uses techniques inspired by 

evolutionary biology such as mutation, selection, and crossover. 

 
Fig. 4 Real RC frame structure and corresponding cases studies 3 and 4, which are surrogate models based 

on the real structure. Response surfaces of surrogate models represent fitness values of variables simulating 

the rectangularity of two design groups of foundations. 
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The following outline summarizes how classical genetic algorithm works [28]. In our case, the operators work 

with real numbers. 

1. The algorithm begins by creating a random initial population consisting of PopSize individuals. 

2. The algorithm then creates a sequence of new populations. At each step, the algorithm uses the individuals 

in the current generation to create the next population. To create the new population, the algorithm performs 

the following steps: 

a. Scores each member of the current population by computing its fitness value. 

b. Scales the raw fitness scores to convert them into a more usable range of values. 

c. Selects members, called parents, based on their fitness. This selection process is made by using some 

strategies or functions (SelFcn). 

d. Some of the individuals in the current population that have better fitness are chosen as elite. These elite 

individuals are passed to the next population. ECountFract specifies the percentage of the PopSize 

individuals that are guaranteed to survive to the next generation. 

e. Produces children from the parents selected by the selection function. Children are produced either by 

combining the vector entries of a pair of parents using a crossover function (CrossFcn) or by making 

random changes to a single parent (mutation). CrossFract represents the percantage of children 

(besides elite children) that are formed by crossover. The remaining individuals are formed by 

mutation. 

f. Replaces the current population with the children to form the next generation. 

3. The algorithm stops when the stopping criteria is met. 
 

2.2.2. GA YPEA toolbox 

 

This variant of GA is implemented in the toolbox of evolutionary strategies YPEAv1.0 [24]. The algorithm 

basically works as follows: 

1. It begins by creating a random initial population consisting of PopSize individuals, represented by a vector 

of real numbers. 

2. The algorithm then creates a sequence of new populations following next steps: 
a. Scores each member of the current population by computing its fitness value. 

b. Selects members, called parents, based on their fitness. This selection process is made by using roulette 

selection. Here, selection pressure (SelPress) determines the parents’ selection probabilities. Low 

values of SelPress offer a more equal selection probability among all the parents, i.e., the higher 

SelPress is, parents with best fitness will have a higher probability of being selected. 

c. This variant does not include elitism. The number of children obtained by crossover are defined by the 

crossover probability (CrossProb). Two previously selected parents x1 and x2 are combined to create 

two children y1 and y2 as follows: 

( ) ( )  1 * 1 1 * 2y alpha x alpha x= + −  (4) 

( ) ( )2 * 2 1 * 1y alpha x alpha x= + −   

with alpha defined by: 

( ) ( ) ( )  1 * 0,1alpha CrossInfl CrossInfl CrossInfl U= − + + − −  
 (5) 

where CrossInfl is the crossover inflation or extrapolation factor and 𝑈(0,1) is a random number 

uniformly distributed between 0 and 1. 

d. Other children are created by mutation (as long as CrossProb  1) as follows: 

( )  *  0,1y x MutStepSize N= +  (6) 

where y is the generated child, x is the randomly selected individual to mutate, MutStepSize defines 

the size of the change in the mutation process and 𝑁(0,1) is a random number drawn from the standard 

normal distribution. The mutation occurs in MutRate*NVars number of gens of the selected solution 

to mutate as in Eq. 3. MutRate is a fraction between 0 and 1 and NVars is the number of variables of 

the problem. 

The algorithm stops when the stopping criteria is met. 

2.2.3. PSO 
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Particle swarm optimization simulates the behavior of the flocking of birds, proposed by Kennedy and Eberhart 

[25]. The particles fly through the D-dimensional problem space by learning from the best experiences of all 

the particles. Therefore, the particles have a tendency to fly towards better search areas over the course of the 

search process. 

The algorithm basically consists of the following steps: 

1. The PSO algorithm begins by creating the initial particles, each with an initial position and velocity. 

2. The algorithm evaluates the objective function (or fitness function) at each particle location. Then it 

determines the best function value and the best location. 

3. It then iteratively updates the particle locations, velocities and neighbors. 

a. Global information is obtained from the neighborhood. The initial neighborhood size (N) is obtained 

according to: 

max(1, ( ) * )SwarmSN ize MinFr ractf Neilo gho=  (7) 

where SwarmSize is the number of particles and MinFractNeigh is the minimum adaptive 

neighborhood size. N is updated in every iteration, according to whether the best function value is 

improved or not. 

b. The velocity of each particle is updated as follows: 

( ) ( )  *   1* 1*   2* 2*updv W v y u p x y u g x= + − + −  (8) 

where W is the inertia of the particle. It is initialized with the maximum value of InertiaRange (or 

minimum if InertiaRange has negative values), which establishes the lower and upper bounds of the 

adaptive inertia; v is the previous velocity; y1 (SelfAdj) and y2 (SocAdj) are acceleration constants 

representing the weighting of stochastic acceleration terms that pull each particle towards the personal 

best and global best positions, respectively; u1 and u2 are uniformly distributed random numbers in 

[0,1]; (p-x) is the difference between the current position and the best position the particle has seen and 

(g-x) is the difference between the current position and the best position in the current neighborhood. 

c. The position is updated according to: 
    upd updx x v= +  (9) 

where x is the previous position. 

4. Iterations proceed until the algorithm reaches a stopping criterion. 

 

2.2.2. Biogeography-Based Optimization 

 

BBO is a relatively new method. It is an evolutionary algorithm (EA) and was proposed by Simon [37]. It is 

based on mathematical models of how species migrate from one island to another, how new species arise, and 

how species become extinct. Geographical areas that are well suited as residences for biological species are 

said to have a high habitat suitability index (HSI). The correspondence between the BBO terminology and the 

classical EA terminology is the following: set of habitats, habitats, species and HSI correspond to respectively 

population, individuals (solutions), gens and fitness value. Hence, the number of species in each habitat is equal 

to the number of variables in the optimization problem. The number of habitats is equal to the population size. 

Since this method is rather new, it is not yet commonly used. However, its effectiveness to solve discrete 

problems has been shown. In [31] BBO outperformed other 10 metaheuristic techniques in the discrete design 

optimization of RC frame structures, including discrete GA and discrete PSO. In addition, in [34] by means of 

an extensive parameter tuning process, BBO demonstrated to be a very good method to solve this type of 

discrete optimization problems.  

The algorithm consists of the following steps: 

1. The procedure starts with a random initial set of habitats with a uniform HIS distribution. In every iteration, 

emigration and immigration coefficients, denoted by respectively μ and λ, are assigned to each habitat. 

Solutions or habitats with a high HSI receive high values of μ and low values of λ, and vice versa. 

2. The algorithm processes the habitats in order of decreasing HSI, using the parameters μ, λ and mutation 

probability as follows: 

a. Within each habitat, for each species the possibility to carry out the migration process is analyzed: 

each species is checked based on the habitat’s immigration coefficient λ. Therefore, the species in the 

best habitats have little chance to enter this process, while this chance increases when considering 

habitats with a higher λ. 

b. Once a species enters the migration process, another species from another habitat is selected using 

roulette wheel selection (to select the habitat) based on μ to immigrate to the habitat being worked on. 
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c. Once the species are selected, immigration starts, which is not the substitution of one by the other, but 

a combination of both, performed as: 

  ( ) i i j i

k k k kNewSpecies Species Species Species= + −  (10) 

where 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑘
𝑖 , i.e., the k-th species of habitat i, is the species being analyzed and 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑘

𝑗
 , i.e., the 

k-th species of habitat j, is the species selected to immigrate, and α is the acceleration coefficient. 

d. In addition, species can mutate with a certain probability according to: 

  * (0,1)i i

k kNewSpecies NewSpecies N= +  (11) 

where σ is the mutation step size and 𝑁(0,1) is a random number with mean 0 and standard deviation 

1. After every iteration, σ decreases, modified by mutation step size damping. 

Once the entire population is analyzed, the new one is formed by selecting the best habitats of the previous 

population (before being transformed) and the best of the new population. KeepRate denotes the fraction of the 

previous population that survives. This is similar to elitism used in GA. This iterative process ends when a stop 

criterion is satisfied. 

 

2.3. Parameter tuning 

 

Parameter tuning can improve the performance of an optimization algorithm [15,39,21], but can be tedious and 

difficult to implement. Some of the most used strategies to afford this process are: (1) Meta-Optimization; (2) 

Design of Experiments (DOE), Model-Based Optimization and Machine Learning, and (3) Model-Free 

Algorithm Configuration [28]. 

Meta-Optimization consists of using algorithmic parameters as variables in an optimization problem. Thus, the 

objective function is the utility metric of the algorithm performance. Depending on the problem that is 

generated, it can be solved by iterated local search [23] or by another metaheuristic algorithm [29,2]. The meta-

optimizer can be applied either directly to the performance landscape [19] or to a surrogate model of it [3]. 

Design of Experiments aims to maximize the information obtained from experiments in highly empirical fields 

of science. The most common approaches of DOE include factorial designs, coupled with analysis of variance 

or regression analysis [1,10,35]. Similar further approaches are: Design and Analysis of Computer Experiments 

(DACE) methodology [36], specifically created for deterministic computer algorithms [7]; Sequential 

Parameter Optimization (SPO) introduced by [6], which uses Kriging techniques to build a predictive model of 

the performance landscape; Sequential Model-based Algorithm Configuration (SMAC) introduced in [22], and 

[14] combines the DOE methodology with artificial neural networks as a basis for a parameter tuning 

framework. 
Model-free Algorithm Configurations are mainly based on statistical hypothesis testing to compare different 

parameter settings [11,9,41]. The disadvantage of this method is the large number of experimental runs needed 

to obtain sufficient statistical accuracy. The F-Race algorithm is an efficient alternative presented in [8], where 

a number of predefined parameter configurations are tested on one or more benchmark problems and inferior 

ones are eliminated as soon as any significance arises. Balaprakash et al. [4] presented two improvement 

strategies for the F-Race algorithm, called sampling design and iterative refinement. Yuan and Gallagher [42] 

proposed a combination of F-Race and meta-optimization. López-Ibáñez [27] presented the irace package, 

offering iterated racing with a restart mechanism. Hyperband was introduced by [26] in order to adaptively 

allocate more resources to promising parameter configurations to enhance random search. Falkner et al. [18] 

combined Hyperband with Bayesian optimization in the BOHB (Bayesian optimization and Hyperband) 

method. 

2.3.1. Utility metrics 

 

To measure the performance of a metaheuristic, one must take into account the quality of the solution and the 

computational cost of the algorithm. Most, if not all, performance metrics used in metaheuristic optimization 

are based on variations and combinations of these two. Solution quality can be naturally measured by using the 

fitness function [17]. 

In [17] a summary of the most used utilities is given, stating that these measures are not always appropriate. 

For example, in case of large variance in the performance results of a metaheuristic, the use of the mean (and 

standard deviation) may not be significant and the use of median or best fitness may be preferable [5]. The 

performance metrics determine the optimal parameter vector. Hence, the final results of the method may vary 

substantially depending on the utility used. Therefore, care must be taken when defining it [38]. 
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This strategy was initially proposed in [34]. We assume that the metaheuristic is run N times with a given fixed 

parameter vector to reduce stochastic effects. The average performance curve, or APC (average fitness in 

function of the iteration number), denoted as fa(x), is obtained by averaging the performance curves of N runs 

of the method (see Fig. 5a). This curve gives more information about performance than simple performance 

measures, such as MBF or AES, and allows an easy comparison between two or more procedures. Therefore, 

the proposed utility is based on the use of the APC. 

 

  

 
Fig. 5 Defining the utility function. Above: the average performance curve of the N curves. Below: scheme to 

get the utility function [34]. 

To assess real optimization problems, both the quality of the solution and the computational cost are important. 

The final point of the APC (dn+1 in Fig. 5b) is the MBF. It only takes into account the quality of solutions. We 

call it FA as in Eq. 12.  

1A nF d +=  (12) 

To take into account the computational cost, the area under the average performance curve can be used. By 

splitting the number of iterations in n equal intervals of length b and by defining di, i = 1,…, n+1 as the values 

of the average fitness at the end points of the intervals (Fig. 5b) we approximate the area under the average 

performance curve by B in Eq. 13.  

1

1 2

n
i i

i

d d
B b+

=

+ 
=  

 
  

(13) 

Note that this is equivalent to using the trapezoidal quadrature formula to approximate the integral. By means 

of several parameter sensitivity studies, it was decided to use n=14. 

However, B does not sufficiently take into account MBF, since it is possible that a method that converges fast 

to a rather high MBF has a lower B than another one that converges slowly to a substantially better MBF. Hence, 

to ensure that MBF is properly taken into account, FA and B are combined to get the proposed utility. Therefore, 

to make B “compatible” with FA, Eq. 13 is rescaled, yielding FB as in Eq. 14. 

1

1 2

n
i i

i

B

d d

F
n

+

=

+ 
 
 =


 

(14) 

The proposed utility FC is a weighted linear combination of utilities FA and FB, with a higher weight on FA, to 

give more significance on the solution quality than on the convergence speed, hence: 
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Z F F
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Z

+
=

+
 (15) 

with Z1 ≥ 1, the weight that we give to utility FA, i.e., MBF. We propose Z1 = 4. Thus, utility FC is used to assess 

method’s performance instead classical utilities. 

 

3. GENERAL METHODOLOGY 

 

This methodology, as explained above, is carried out in order to gain insight into the operation of these 

procedures. It is based on Model-free Algorithm Configurations. In this proposal, each parameter is set with 

pre-established and ordered values, so that all possible combinations are tested under equal conditions. Using 

the Fc utility in a sensitivity analysis, it was found that N=20 is a good value to counteract the stochastic effects 

of metaheuristic optimization processes, being N the number of optimization procedures needed to obtain a 

reliable APC. Thus, if a method has four parameters and each parameter has four possible values, a total of 

44*20 tests will be performed to assess its performance. Table 2 introduces the parameters and parameter values 

that will be evaluated. As mentioned in Section 2.1 on parameter tuning, these methodologies are 

computationally expensive, so several strategies could be used to reduce the number of simulations needed, 

such as the use of Monte Carlo simulations using sampling techniques or the use of meta-models to predict 

response surfaces. 

Two tuning processes will be proposed. The first one is very simple and consists of the selection of the 

configuration with the best performance in a series of similar tests (see Fig. 6a). The second one is more 

complicated and deals with two intermediate parameter control procedures before obtaining final results, i.e., 

the process starts with all possible configurations as candidates and by means of intermediate assessments, best 

configurations remain for further analysis (see Fig. 6b). Results will be presented by box plots where bottom 

whisker, box bottom, middle, top and top whisker denote minimum, 25th percentile, median, 75th percentile and 

maximum Fc utility of each process, respectively. 

 

 
Fig. 6 Two strategies proposed to perform parameter tuning 

 

4. RESULTS AND DISCUSSIONS 

 

The results are divided in two main points. The first one is related to comparisons between methods’ 

performances for the given optimization problems. The second one is about finding the way of getting an 

efficient strategy to perform parameter tuning for linked problems. This would be the first step to create a fully 

automated tuning procedure based on concepts developed in this work. 

4.1. Comparison between the four methods 

 

In this section, the four methods are assessed and compared. This comparison is made by performing and storing 

FC values of all the possible parameter and parameter value combinations of each method. Tables 3, 4, 5 and 6 

show the configurations of the three best FC values obtained by each method tested in each case study. Some 

conclusions can be drawn about best configurations of each method to solve discrete optimization problems, 

e.g. tournament selection function seems to be the best option for strategies based on GA, or high ratios of 

social adjustment for swarm intelligence algorithms. How these parameters influence the methods’ behavior 

can be found in section 2.2. 
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Tables 3-6 and Fig. 7 show that cases 1 and 2 are relatively the solved by the four methods. However, cases 3 

and 4 are much more difficult to optimize, and GA-toolbox and PSO perform worse compared to GA in YPEA 

Toolbox and BBO. The last one has excellent results while optimizing all case studies, also showing that is a 

good “generalist”, i.e., it offers good results regardless of the used configuration. 

 

 
Table 2 Parameter and parameter values to be tuned 

Method Parameter Parameter values 

GA toolbox PopSize 50; 100; 150; 200 

 ECountFract 0.05; 0.10; 0.15; 0.20 

 CrossFract 0.70; 0.80; 0.90; 1.00 
 SelFcn “stochunif”; “remainder”; “uniform”; “roulette”; “tournament” 

 CrossFcn “scattered”; “intermediate”; “heuristic”; “sinpoint”; “twopoints”; “arithmetic” 

GA YPEA PopSize 50; 100; 150; 200 
 CrossProb 0.60; 0.70; 0.80; 0.90 

 CrossInfl 0.10; 0.20; 0.30; 0.40 

 MutRate 0.10; 0.20; 0.30; 0.40 
 MutStepSize 0.05; 0.10; 0.15; 0.20 

 SelPressure 1; 3; 5 

PSO SwarmSize 50; 100; 150; 200 

 MinFractNeigh 0.10; 0.20; 0.30; 0.40 
 SelfAdj 0.50; 1.00; 1.49; 1.99 

 SocialAdj 0.50; 1.00; 1.49; 1.99 

BBO PopSize 50; 80; 100; 120; 140 
 Alpha 0.90; 0.95; 0.99 

 MutProb 0.30; 0.40; 0.50 

 MutStepSize 0.025; 0.050; 0.075; 0.100 
 MutStepSizeDamp 0.99; 1.00; 1.01; 1.02 

 
Table 3 Three best FC values obtained using GA-toolbox method 

Function Best values PopSize ECountFract CrossFract SelFcn CrossFcn FC value 

Case 4A 1 200 0.10 0.90 Remainder Scattered 2449.989 

2 200 0.15 0.90 Tournament Scattered 2450.066 

3 200 0.10 0.90 Tournament Scattered 2450.245 

Case 4B 1 200 0.10 0.90 Tournament Scattered 3383.426 

2 200 0.10 1.00 Tournament Scattered 3384.222 

3 200 0.05 0.80 Tournament Scattered 3384.249 

Ackley 1 150 0.00 0.90 Tournament Scattered 1.319 

2 200 0.00 1.00 Tournament Scattered 1.355 

3 200 0.00 0.90 Tournament Scattered 1.379 

Eggholder 1 200 0.00 1.00 Tournament Single Point -3125.725 

2 200 0.15 1.00 Tournament Scattered -3110.837 

3 200 0.00 0.80 Tournament Two Point -3098.315 

 
Table 4 Three best FC values obtained using GA-YPEA method 

Function Best 

values 

PopSize CrossProb CrossInfl MutRate MutStepSize SelPress FC value 

Case 4A 1 50 0.60 0.30 0.30 0.20 3 2447.464 

2 50 0.60 0.30 0.40 0.20 3 2447.618 

3 50 0.60 0.20 0.30 0.20 5 2447.677 

Case 4B 1 50 0.60 0.30 0.40 0.20 1 3381.301 

2 50 0.60 0.30 0.40 0.20 5 3381.316 

3 50 0.80 0.30 0.30 0.20 1 3381.368 

Ackley 1 50 0.60 0.30 0.20 0.20 1 1.196 

2 50 0.70 0.30 0.10 0.20 1 1.199 

3 50 0.60 0.30 0.40 0.15 1 1.207 

Eggholder 1 50 0.60 0.30 0.40 0.20 5 -3022.268 

2 50 0.60 0.30 0.40 0.20 3 -3022.228 

3 50 0.60 0.30 0.30 0.20 3 -3016.860 

 
Table 5 Three best FC values obtained using PSO method 

Function Best values SwarmSize MinFractNeigh SelfAdj SocialAdj FC value 

Case 4A 1 200 0.30 1.49 1.99 2446.003 

2 150 0.40 1.99 1.99 2446.053 

3 200 0.20 1.99 1.99 2446.104 

Case 4B 1 100 0.30 1.99 1.49 3380.028 
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2 150 0.30 1.49 1.99 3380.111 

3 100 0.10 1.99 1.99 3380.336 

Ackley 1 50 0.30 1.49 1.99 2.645 

2 50 0.20 1.99 1.99 2.697 

3 50 0.20 1.49 1.99 2.737 

Eggholder 1 50 0.20 1.99 1.99 -3025.778 

2 50 0.10 1.49 1.99 -3019.160 

3 50 0.10 1.99 1.99 -3013.728 

 
Table 6 Three best FC values obtained using BBO method 

Function Best values PopSize Alpha MutProb MutStepSize MutStepSizeDamp FC value 

Case 4A 1 60 0.99 0.50 0.10 1.02 2446.694 

2 60 0.99 0.40 0.10 0.99 2446.716 

3 60 0.95 0.40 0.10 1.00 2446.720 

Case 4B 1 60 0.99 0.50 0.075 1.01 3379.987 

2 60 0.99 0.30 0.10 1.01 3380.044 

3 60 0.99 0.30 0.075 1.01 3380.046 

Ackley 1 60 0.99 0.30 0.05 0.99 1.137 

2 60 0.99 0.30 0.05 1.02 1.138 

3 60 0.95 0.50 0.05 1.00 1.139 

Eggholder 1 80 0.99 0.50 0.075 1.01 -3218.605 

2 80 0.99 0.30 0.075 1.01 -3215.875 

3 80 0.99 0.50 0.075 0.99 -3211.563 

 

 

(a) (b) 

(c) (d) 
Fig. 7 Summary of results of the four methods applied to the four case studies using box plots with FC values; (a), (b), (c) and (d) 

represent case studies 1, 2, 3, and 4 respectively. 

The first and simplest strategy proposed to perform parameter tuning (Fig. 6a) consists of selecting as the best 

configuration the one with the best FC (bottom whisker in box plots). The main disadvantage is that a deep 

statistical analysis is not considered, and configurations with faster convergence to any optimum (local or 

global) may have good FC values, and yet, the global one cannot frequently be found. Other configurations with 

lower FC values may take longer to converge, but the global optimum is found more frequently. This strategy 

will be called “parameter tuning 1”. Other alternatives can include the use of the median or the mean. However, 

in simple procedures such as the proposed one, the complex interaction between parameters and parameter 
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values is not taken into account, i.e., one parameter value can lead to excellent results with some specific values 

of other parameters and to very poor results with other ones, affecting the mean or the median, thus this 

parameter value could be neglected even when, in other circumstances, it could be the best, or a good one at 

least. 

 

 
Fig. 8 Result of applying the first control. Above: GA YPEA applied to the four cases studies. Below: BBO also applied to the four 

cases.  Note that y-axis ranges are not the same for both methods, so comparisons between methods are not allowable. 
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4.2. Use of parameter control to tune the parameters 

 

In order to avoid the last shortcoming, another strategy will be developed based on the concept of parameter 

control (see Fig. 6b). As explained, the process has two phases. In the first one, instead of finalizing the process, 

a new set of parameter is fixed as follows: the two most evident influential parameters (we consider a parameter 

to be influential if varying its value leads to substantial differences in performance) are fixed with the best 

values. A number of new simulations are made based on the remaining possible configurations. Using this new 

result (some remaining parameters may change the “optimal value” obtained in the first series of test), in the 

second phase parameter values with an “evident” poor performance, are omitted, and with this new 

configuration, the final number of simulations are run. This new result give the final solution. This will be called 

“parameter tuning 2”. 

Results after applying the first phase are shown in Fig. 8. It was decided to keep PopSize as a variable parameter 

even when it is very significant, due to its strong dependence on the values of other parameters and its 

importance as a regulator of solution quality and computational cost. It can be seen how, in both cases, results 

substantially improve (except GA YPEA applied to the case 4). 

In this first phase, GA YPEA gives significant performance improvements in cases 1, 2 and 3. However, the 

enhancement in case 4 is not substantial. This means that, as this is the most difficult function to optimize, there 

are still parameter values with poor performance. 

However, the improvements in BBO performance is quite significant in all cases. It is because the set of 

parameters is very influential on the method’s behavior. E.g., it seems that Alpha, which determines the 

magnitude of the immigration process (or combination between the two analyzed variables, see Eq. 10), is quite 

significant for the recombination operator of BBO. 

The importance of this first phase is not only checked by the mentioned improvements, but also by changes of 

ostensible optimal parameter values result of the first series of tests, e.g. MutStepSize (case 2) and CrossProb 

(case 4) from GA YPEA or MutProb (case 2) and PopSize (case 4) from BBO. 

 
Fig. 9 Result of applying the second control. Above: GA YPEA applied to case study 4. Below, BBO also applied to case study 4. Note 

that y-axis ranges are not the same for both methods, so comparisons between methods are not allowable. 

The second phase was only applied to the case study 4. In Fig. 9, it can be seen that the improvements achieved 

with GA YPEA are outstanding, obtained by the elimination of some parameter values such as population sizes 

of 150 and 200. BBO does not achieve significant enhancements, due to the high accuracy of the first phase. 

The most important changes are the improvement of values such as population size of 100, 40% mutation 

probability and no damping of the mutation step size. A summary of the results of each configuration is shown 

in Fig. 10. 
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Fig. 10 Summary of results. Left: comparison between all configurations, parameter tuning 1 is the first strategy proposed and parameter 

tuning 2 is the second one including initial configuration, first and second control results to assess methods’ performance. Right: APCs 
of two tuning strategies for GA YPEA and BBO. 

This figure shows the progressive improvement in the performance of the methods and the superiority of the 

second tuning strategy. In order to assess the performance of the two tuning strategies, 50 independent runs 

were performed using each configuration resulting from both tuning processes. For GA YPEA, the second 

strategy clearly outperformed the first one, which is not the case of BBO. It is important to take into 

consideration the property of good “generalist” of this method, i.e., it is not difficult to find a “good 

configuration” to deal with similar problems.  

On the other hand, the APCs shown in this figure demonstrate the efficiency of the proposed utility. The 

performances of the curves are similar, especially the ones belonging to the same method. However, results 

shown using box plots (which use FC values) clarify the results. The case of BBO is interesting. The curve 

belonging to strategy 1 has a faster convergence to good solutions. The area under this curve is smaller than the 

one belonging to the strategy 2. However, the last one finally converges to better results, resulting in a better 

MBF. This is why box plots of tuning strategies using BBO are quite similar. If FC would not assign a higher 

weight to MBF than to the area under the APC, the implied box plots would probably indicate the opposite 

result. Otherwise, if the MBF is used instead of FC, box plots would indicate that the difference between the 

two tuning strategies is larger, which is not the case. When analyzing the results achieved with GA YPEA, the 

two APCs are almost the same. Nevertheless, box plots suggest that the second strategy is clearly better than 

the first one. Therefore, the proposed utility FC takes into account more information than classical utility 

metrics. 

Finally, it would be interesting to analyze the good performance of BBO when dealing with this type of discrete 

optimization problems, evidently superior to the other methods. The great difference between BBO and classical 

related metaheuristics, such as GA, is the recombination and mutation operator used. Classical EAs combine 

entire solutions, i.e., two previous solutions are selected as parents (in case of GA), and they are “combined” to 

obtain the new solution, or child. This means that the analysis is done from solution to solution. In the case of 

BBO, this process of combining solutions is done from variable to variable. This means that solutions are 

formed by a number of variables. BBO performs this analysis from variable to variable (or species in the BBO 

terminology), and when GA combine two solutions to create a new one, BBO can obtain solutions from more 

than two previous candidates. In addition, the combination (Eq. 10) and the mutation (Eq. 11) operators, in the 

same process of getting new solutions, can affect the variable involved. This could be the explanation of why 

BBO seems to be a better strategy to solve discrete optimization problems. 

5. CONCLUDING REMARKS AND FUTURE WORK 

 

In this paper, alternatives to tune the stochastic operators and their parameters of metaheuristic methods are 

presented. We consider genetic algorithms, particle swarm optimization and biogeography-based optimization 

applied to the structural design optimization of reinforced concrete frame structures. An important issue is the 

computational cost of these processes, especially when a commercial software is used as calculation engine to 

determine the fitness or objective function. Since tuning processes themselves are also expensive, tuning the 

parameters for such optimization problems is very challenging. Therefore we propose the use of surrogate 

models instead of the real models to evaluate the fitness or objective function. Another novel feature introduced 

in this paper is the use of a utility metric based on the average performance curve (APC), instead of classical 

ones such as mean best fitness, average number of evaluations to solution or success rate. This new utility metric 

offers more information about the performance of the metaheuristics.  

Further, two alternatives to perform parameter tuning are presented. Ideally, all possible combinations of 

parameters and parameter values should be evaluated. The first one is very simple and consists of running 
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experiments with many (or all) parameter and parameter values and select the best one as the tuned parameter 

configuration. The second one is more complex and requires more computations. It takes into account the 

concept of parameter control, and consists of two phases, in which initial parameters and parameter values 

change according to statistical analysis done with the intermediate results. The first strategy offers good results 

only for methods that are good generalists, i.e., methods that offer good performance regardless of the used 

parameter configuration. The second strategy leads to much better results. 

It is important to highlight that biogeography-based optimization (BBO) is able to deal very well with discrete 

optimization problems, due to its particular strategy to obtain the new solutions. Classical EAs create, 

independently, new solutions by means of crossover of two (or more) individuals, mutation or elitism. BBO is 

able to create a new solution by recombination and mutation of variables in several individuals. 

Nevertheless, the proposed methodology still has two disadvantages. Even when the computational cost is 

substantially reduced by the use of surrogate models, such models are only suitable for simple structures (first 

type of surrogate models) or are not sufficiently analogous to the real ones (second type). The use of meta-

models to be able to create more accurate models could be a possible solution for this shortcoming. The other 

disadvantage is related to the tuning process, which needs many runs to be able to tune the parameters. Further 

work will use strategies such as Monte Carlo simulations to combine parameters and parameter values in a more 

efficient way. Additionally, the use of meta-models will be used to predict the utility landscape, also reducing 

the number of experimental runs needed. 
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