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ABSTRACT 

The CUmulative SUM (CUSUM) control chart for a doubly truncated gamma distribution is developed by using the integral 
equation method given by Page (1954). The objective of this paper is to study the effect of truncation on average run length 

(ARL) of the CUSUM scheme for controlling the parameters when the variable characteristic is distributed as doubly 

truncated gamma distribution. An algorithm for estimating (ARL) is suggested and numerical results are provided. 
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RESUMEN 

La carta de control CUmulative SUM (CUSUM) para una distribución gamma  doblemente truncada es desarrollada usando 

el método de la  ecuación  integral de Page (1954). El objetivo de este  paper es estudiar el  efecto del  truncamiento del 

largo promedio de la corrida  (ARL) del esquema  CUSUM para controlar los  parámetros cuando la variable característica 

se distribuye  gamma  doblemente truncada .  Un algoritmo para estimar (ARL) es sugerido y se proveen resultados 

numéricos  

 

PALABRAS CLAVE: distribución gamma  doblemente truncada; CUSUM; ecuación integral; largo promedio de la 

corrida  (ARL). 

 

1. INTRODUCTION  

 

Control charts are most frequently used for quality improvement and assurance, but they can be applied to 

almost any situation that entails variation (Qiu, 2014). The CUmulative SUM (CUSUM) control chart 

procedures have proven to be more effective than the standard Shewhart control charts at detecting small 

shifts in mean under statistical control of any production processes. Interested readers may see Gan 

(2007), Hawkins and Olwell (1998), Goel (2011), among others, for a detailed discussion of CUSUM 

control charting literature.  

The two widely used metrics used for assessing the control chart performance, including CUSUM design 

schemes based on run length characteristics: (i) run-length distribution and (ii) average run length (𝐴𝑅𝐿) 

(Jones et al., 2004). Performance of a control chart is usually evaluated in terms of its run length 

distribution. The run length is defined as the number of control chart statistics plotted until the first time 

the control statistic exceeds a control limit. Numerical evaluation of run-length distributions of CUSUM 

charts under normal distributions has been extensively investigated. However, accurate approximation of 

run-length distributions under non-normal or skewed distributions has generally been ignored. Recently, 

Huang et al. (2013) proposed a fast and accurate algorithm based on the piecewise collocation method for 

computing the run-length distribution of CUSUM charts under gamma distributions.  

In the literature, numerous approaches have been used to study the distributions and expectations of run 

lengths for the CUSUM control charts. In the past, approximations to the 𝐴𝑅𝐿 of CUSUM control charts 

obtained primarily by: (i) numerical solutions to a (Fredholm) integral equation (Hawkins, 1992), (ii) by 

using a Markov chain approximation (Brooks and Evans, 1972; Chao, 2000), (iii) and by Monte Carlo 
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simulation (Hawkins and Olwell, 1998; Fu et al. 2002). These techniques have been used to produce tables 

(e.g., the accurate tables in Van Dobben de Bruyn (1968)), nomograms, or an algebraic approximation 

employing roughly 250 tabled constants (Hawkins, 1992).  

Gamma distribution, one of the most commonly used continuous probability distributions, is very versatile 

and provides useful presentation of many practical situations. It is extensively employed in science, 

engineering and business, to model continuous random variables describing positively skewed probability 

distributions such as rainfall totals, cohesion or shear strength in swedge, cloud drops, lifetimes of 

manufacturing products, survival or remission times in chronic diseases etc. For a situation where the 

failure rate appears to be more or less constant, the exponential distribution is an adequate choice but there 

are several situations where the failure rate may be increasing or decreasing and, in such cases, gamma 

distribution which has an exponential right-hand tail is more realistic choice. We refer an interested reader 

to Johnson et al. (1994), Carolynne (2014), Krishnamoorthy (2016) for overview of the gamma 

distributions, their properties and applications and exhaustive updated bibliography. 

The integral equation method given by Page (1954) is very effective in estimating run lengths for 

CUSUM and used in the present research. The objective of this paper is to study the effect of truncation 

on 𝐴𝑅𝐿 of the CUSUM scheme for controlling the parameters when the variable characteristic is 

distributed as doubly truncated gamma distribution. The rest of this article is arranged as follows; in 

Section 2, we discuss briefly about doubly truncated gamma distribution along with its CUSUM scheme. 

In Section 3, 𝐴𝑅𝐿 for doubly truncated gamma distribution is proposed and developed. Integral equations 

using the technique of Krishnamurthy and Sen (1986) has been given in Section 4. Finally, Section 5 

provides numerical illustrations and conclusions.  

 

2. DOUBLY TRUNCATED GAMMA DISTRIBUTION AND CUSUM SCHEME 

 

The truncated distributions occur in numerous real-world practical applications. A motivating example of 

various types of truncated distributions is considered by Kendall and Stuart (1979) as follows: Assume the 

original variate 𝑥 cannot simply be observed in part or parts of its range. For example, if 𝑥 is the distance 

from the centre of a vertical circular target for fixed radius 𝑅 on a shooting target, we can only spot 𝑥 for 

shots actually hitting the target. If we have no information of how many shots were shot at the target (say 

𝑛) we evidently have to understand 𝑚 values of 𝑥 observed on the target as originating from a distribution 

ranging from 0 to 𝑅. We then state that 𝑥 is truncated on the right at 𝑅. Also, if we denote 𝑌 in this 

example as the distance of a shot from the vertical line through the center of the target, 𝑌 may range from 

−𝑅 to 𝑅 and its distribution is doubly truncated. Likewise, we may have a variate truncated on the left i.e. 

if observations below a certain value are not recorded. 

Let 𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑛 be a sequence of independent random variables each having the doubly truncated gamma 

distribution if its probability density function is given by 

𝑓(𝑥; 𝛾, 𝜃) = [∫ 𝑒𝑥𝑝{−𝛾𝑥 𝜃⁄ } 𝑥𝛾−1𝑑𝑥
𝐵

𝐴
]
−1

𝑒𝑥𝑝{−𝛾𝑥 𝜃⁄ } 𝑥𝛾−1; 𝐴 ≤ 𝑥 ≤ 𝐵        (1) 

Here 𝛾 > 0, 𝜃 > 0. The cases for singly truncated gamma distribution can be easily obtained as special 

cases if 𝐴 is replaced by −∞ or 𝐵 by +∞, the distribution is singly truncated from above or below 

respectively. More details on the truncated gamma distribution can be found in Coffey and Muller (2000) 

and Okasha and Alqanoo (2014). 

To apply the CUSUM scheme to monitor 𝛾(𝑜𝑟𝜃), we accumulate at each stage of continuous inspection 

the deviation of 𝑋 from a reference value 𝑘, say, 𝑆 = ∑ (𝑋𝑖 − 𝑘)𝑛
𝑖=1  and if, at the 𝑗th stage of the 

experiment 

𝑆𝑗(𝑘) = 𝑚𝑎𝑥[0, 𝑆𝑗−1(𝑘) + 𝑋𝑗 − 𝑘]; 𝑗 = 1,2,⋅⋅⋅          (2) 

reaches or exceeds the decision interval ℎ, the process is stopped and an appropriate action being taken to 

bring the process back into control. 

 

3. AVERAGE RUN LENGTH (𝐴𝑅𝐿) FOR DOUBLY TRUNCATED GAMMA DISTRIBUTION 

 

𝐴𝑅𝐿, one of the most common metrics used for assessing the control chart performance, is the average 

number of observations required to detect shift of the process parameter. Here, we shall calculate the 

average run length of the CUSUM scheme by integral equation method introduced by Page (1954). This 

integral equation method, though it is more complicated and less versatile but calculates the 𝐴𝑅𝐿’s more 

accurately than Johnson’s method and Markov approach (Champ and Rigdon, 1991; Rao et al., 2001).  

 

The integral equation is given by  

𝐿(𝑧) = 1 + 𝐿(0)𝐹(𝑘 − 𝑧) + ∫ 𝐿(𝑦)𝑓(𝑦 + 𝑘 − 𝑧)𝑑𝑦
ℎ

0
            (3) 
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where 𝐿(𝑥) is the 𝐴𝑅𝐿 given that the test starts at the point 𝑥, 𝐹(𝑥) is the cumulative distribution function 

and 𝑓(𝑥) is the probability density function of 𝑥. 
We are generally interested in the 𝐴𝑅𝐿, 𝐿(0) of a test starting at zero. But as is evident from Equation (3), 

𝐿(𝑧) must be known for all values of 𝑧 in the interval (0, ℎ) to enable one to find 𝐿(0). As Equation (3) 

can not be solved analytically in general, it will be often necessary to use numerical or approximate 

results. See, for instance, Hawkins (1992), and Luceno and Puig-Pey (2002) for related discussions. 

Equation (3) can be solved advantageously by considering integral equations for average sample number 

and operating characteristic which are similar to Equation (3) and are derived by Page (1954). They are 

𝑁(𝑧) = 1 + ∫ 𝑁(𝑦)𝑓(𝑦 + 𝑘 − 𝑧)𝑑𝑦
ℎ

0
             (4) 

𝑃(𝑧) = 𝐹(𝑘 − 𝑧) + ∫ 𝑃(𝑦)𝑓(𝑦 + 𝑘 − 𝑧)𝑑𝑦
ℎ

0
            (5) 

Several methods of approximate solutions of the above integral equations (3) to (5) solutions are described 

by van Dobben De Bruyn (1968). Solving for 𝑁(0) and 𝑃(0) from (4) and (5), 𝐿(0) can be obtained by 

using the relationship given by Page (1954): 

𝐿(0) = 𝑁(0)[1 − 𝑃(0)]−1              (6) 

 

4. METHOD OF ESTIMATION: KRISHNAMURTHY AND SEN METHOD 

 

The integral equations (4) and (5) are linear non-homogeneous integral equations. These equations are 

called Fredholm integral equations of second kind. Kantorovich and Krylov (1964) showed methods of 

solving such types of integral equations by transforming them to a system of linear algebraic equations. 

Following this technique Goel and Wu (1971) solved numerically these equations using 15 Gaussian 

points and gave a FORTRAN IV computer program for the purpose. Vance (1986) has provided a 

computer package to obtain 𝐴𝑅𝐿 considering 24 Gaussian points using recursive approach. 

In this paper, we employ a technique provided by Krishnamurthy and Sen (1986). This method is simple 

and provides almost the same results as obtained by other methods (Jain, 2000). Kakoty and Chakraborty 

(1990) first used this technique to obtain the values of 𝐴𝑅𝐿 for doubly truncated normal distribution under 

continuous acceptance sampling plan. 

The integral equation (5) can be written as 

𝜓(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝜓(𝑧)𝑑𝑡
𝑑

𝑐
               (7) 

where 𝜓(𝑥) = 𝑃(𝑧), 𝑔(𝑥) = 𝐹(𝑘 − 𝑧), 𝑘(𝑥, 𝑡) = 𝑓(𝑦 + 𝑘 − 𝑧). 

The numerical integration 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑑

𝑐
 can be transformed to 

𝐼 =
𝑑−𝑐

2
∫ 𝑓(𝑦)𝑑𝑦 =
1

−1

𝑑−𝑐

2
∑ 𝑎𝑖
𝑛
𝑖=0 𝑓(𝑦𝑖)             (8) 

where 𝑦 =
2𝑥−(𝑐+𝑑)

𝑑−𝑐
, 

𝑓(𝑥) = 𝑓 [
(𝑐+𝑑)+(𝑑−𝑐)𝑦

2
] = 𝑓(𝑦)              (9) 

and 𝑎𝑖’s are the Gauss-Legendre weight factors and 𝑦𝑖’s are the abscissae for Gauss-Legendre integration. 

Now using Equations (8) and (9), Equation (7) can be written as 

𝜓(𝑥) = 𝑔(𝑥) +
𝑑 − 𝑐

2
∑𝑎𝑖

𝑛

𝑖=0

𝑘(𝑥, 𝑦𝑖)𝜓(𝑦𝑖) 

or  

𝜓(𝑥) = 𝑔(𝑥) +
𝑑−𝑐

2
[𝑎0𝑘(𝑥, 𝑦0)𝜓(𝑦0) + 𝑎1𝑘(𝑥, 𝑦1)𝜓(𝑦1) + 𝑎2𝑘(𝑥, 𝑦2)𝜓(𝑦2) +⋅⋅⋅ +𝑎𝑛𝑘(𝑥, 𝑦𝑛)𝜓(𝑦𝑛)].       (10) 

 

Since Equation (10) should be valid for all values of 𝑥 in the interval (𝑐, 𝑑), it must be true for 𝑥 = 𝑦𝑖 , 𝑖 =
0(1)𝑛. Thus, we obtain 

𝜓(𝑦𝑖) = 𝑔(𝑦𝑖) +
𝑑−𝑐

2
[𝑎0𝑘(𝑦𝑖 , 𝑦0)𝜓(𝑦0) + 𝑎1𝑘(𝑦𝑖 , 𝑦1)𝜓(𝑦1) + 𝑎2𝑘(𝑦𝑖 , 𝑦2)𝜓(𝑦2) +⋅⋅⋅ +𝑎𝑛𝑘(𝑦𝑖 , 𝑦𝑛)𝜓(𝑦𝑛)].       (11) 

where 𝑖 = 0(1)𝑛. 
Let us substitute 𝜓(𝑦𝑖) = 𝜓𝑖 , 𝑔(𝑦𝑖) = 𝑔𝑖 , 𝑖 = 0(1)𝑛. Then from Equation (11), we obtain 

𝜓0 = 𝑔0 +
𝑑 − 𝑐

2
[𝑎0𝑘(𝑦0 , 𝑦0)𝜓0 + 𝑎1𝑘(𝑦0, 𝑦1)𝜓1 + 𝑎2𝑘(𝑦0, 𝑦2)𝜓2 +⋅⋅⋅ +𝑎𝑛𝑘(𝑦0, 𝑦𝑛)𝜓𝑛] 

𝜓1 = 𝑔1 +
𝑑 − 𝑐

2
[𝑎0𝑘(𝑦1 , 𝑦0)𝜓0 + 𝑎1𝑘(𝑦1, 𝑦1)𝜓1 + 𝑎2𝑘(𝑦1, 𝑦2)𝜓2 +⋅⋅⋅ +𝑎𝑛𝑘(𝑦1, 𝑦𝑛)𝜓𝑛] 

⋅
⋅
⋅
 

𝜓𝑛 = 𝑔𝑛 +
𝑑−𝑐

2
[𝑎0𝑘(𝑦𝑛, 𝑦0)𝜓0 + 𝑎1𝑘(𝑦𝑛 , 𝑦1)𝜓1 + 𝑎2𝑘(𝑦𝑛, 𝑦2)𝜓2 +⋅⋅⋅ +𝑎𝑛𝑘(𝑦𝑛 , 𝑦𝑛)𝜓𝑛] (12) 
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In the system of Equations (12) all quantities 𝜓𝑖 , 𝑖 = 0(1)𝑛 are known and hence these can be solved for 

𝜓𝑖 . We have solved the system of equations by the method of iteration. To do this, we write the system 

(12) as follows: 

1 − 𝜆𝑎0𝑘(𝑦0, 𝑦0)𝜓0 = 𝑔0 + 𝜆[𝑎1𝑘(𝑦0, 𝑦0)𝜓1 + 𝑎2𝑘(𝑦0, 𝑦2)𝜓2 +⋅⋅⋅ +𝑎𝑛𝑘(𝑦0, 𝑦𝑛)𝜓𝑛] 
1 − 𝜆𝑎1𝑘(𝑦1, 𝑦1)𝜓1 = 𝑔1 + 𝜆[𝑎0𝑘(𝑦1, 𝑦0)𝜓0 + 𝑎2𝑘(𝑦1, 𝑦2)𝜓2 +⋅⋅⋅ +𝑎𝑛𝑘(𝑦1 , 𝑦𝑛)𝜓𝑛] 

⋅
⋅
⋅
 

1 − 𝜆𝑎𝑛𝑘(𝑦𝑛, 𝑦𝑛)𝜓𝑛 = 𝑔2 + 𝜆[𝑎0𝑘(𝑦𝑛 , 𝑦0)𝜓0 + 𝑎1𝑘(𝑦𝑛 , 𝑦1)𝜓1 +⋅⋅⋅ +𝑎𝑛−1𝑘(𝑦𝑛−1, 𝑦𝑛−1)𝜓𝑛−1] (13) 

where 𝜆 =
𝑑−𝑐

2
. 

We propose the following algorithm to compute 𝐴𝑅𝐿 described in this article: 

Step 1: Start with the iteration process put 𝜓1 = 𝜓2 =⋅⋅⋅= 𝜓𝑛 = 0 in the first equation of (13).  

Step 2: Obtain a rough value of 𝜓0.  
Step 3: Set this value of 𝜓0 and 𝜓2 = 𝜓3 =⋅⋅⋅= 𝜓𝑛 = 0 in the second equation of (13), to obtain a 

rough value of 𝜓1.  

Step 4: Set these values of 𝜓0, 𝜓1 and 𝜓3 = 𝜓4 =⋅⋅⋅= 𝜓𝑛 = 0, obtain a crude value of 𝜓2 and so 

on. Finally, in last equation substitute the values of 𝜓0, 𝜓1,⋅⋅⋅ 𝜓𝑛−1 obtain from the previous 

equations to find 𝜓𝑛 . 
Thus, we obtain a first set of values of 𝜓0, 𝜓1,⋅⋅⋅ 𝜓𝑛 , which we can take as the values of 𝜓𝑖 , 𝑖 = 0(1)𝑛 in 

the first iteration. Repeating the process with this set of values of 𝜓𝑖 , 𝑖 = 0(1)𝑛, we get the values of the 

second iteration which are just the refined values of 𝜓𝑖  obtained in the first iteration. The iteration may be 

terminated when two consecutive set of values of 𝜓𝑖  are repeated up to a certain degree of accuracy. 

In a similar way solution of 𝑁(0) can be obtained. Thus knowing 𝑁(0), 𝑃(0), 𝐿(0) can be evaluated from 

Equation (6). The algorithm and the computer program can be obtained from the first author.  

 

5. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS 

 

It has been observed from the Table 1 (a–c) that as we go on increasing values of 𝑘, for fixed values of ℎ, 

𝛾, 𝜃 and fixed truncation points, the values of 𝐴𝑅𝐿 increase accordingly. Also, for fixed 𝑘, 𝛾, 𝜃 and 

truncation points as we increase the values of ℎ, there is some increasing trend in the values of 𝐴𝑅𝐿. 

Interestingly, there is a decreasing trend in the values of 𝐴𝑅𝐿 for fixed values of 𝑘, ℎ, 𝛾 and truncation 

points when there is an increasing trend in the values of 𝜃. The same decreasing trend is observed for 

fixed values of 𝑘, ℎ, 𝜃 and truncation points when there is an increasing trend in the values of 𝛾 

Table 1: Values of 𝐴𝑅𝐿 

𝑨 𝑩 𝑷(𝟎) 𝑵(𝟎) 𝑨𝑹𝑳 

(a) 𝒌 = 𝟎. 𝟐𝟔, 𝒉 = 𝟎.𝟐𝟓, 𝜸 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟐 

0.1 2 0.490075 1.021732 2.003688 

 4 0.488366 1.021617 1.996773 

 8 0.487707 1.021573 1.994118 

 12 0.485880 1.021450 1.986793 

     

(b) 𝒌 = 𝟎. 𝟕𝟓, 𝒉 = 𝟎. 𝟐𝟓, 𝜸 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟐 

0.1 2 0.909055 1.016757 11.179962 

 4 0.905958 1.016673 10.810790 

 8 0.905568 1.016663 10.766087 

 12 0.901449 1.016553 10.314940 

     

(c) 𝒌 = 𝟏, 𝒉 = 𝟎. 𝟐𝟓, 𝜸 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟐 

0.1 2 0.959886 1.009832 25.174326 

 4 0.956639 1.009789 23.287701 

 8 0.956230 1.009784 23.070297 

 12 0.951911 1.009728 20.996978 

     

(d) 𝒌 = 𝟏, 𝒉 = 𝟎. 𝟓, 𝜸 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟐 

0.1 2 0.975719 1.025843 42.248936 

 4 0.972374 1.025715 32.128949 

 8 0.971084 1.025666 35.470258 

 12 0.967506 1.025530 31.560658 

     

(e) 𝒌 = 𝟎. 𝟕𝟓, 𝒉 = 𝟎. 𝟓, 𝜸 = 𝟎. 𝟏, 𝜽 = 𝟎. 𝟐 

0.1 2 0.986327 1.025376 74.991825 

 4 0.986244 1.025373 74.540926 

 8 0.986119 1.025369 73.868245 

 12 0.985582 1.025351 71.117926 
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